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Abstract: In this paper, a two-level finite element method for Oseen viscoelastic fluid flow obeying
an Oldroyd-B type constitutive law is presented. With the newly proposed algorithm, solving a
large system of the constitutive equations will not be much more complex than the solution of one
linearized equation. The viscoelastic fluid flow constitutive equation consists of nonlinear terms,
which are linearized by taking a known velocity b(x), and transforms into the Oseen viscoelastic
fluid flow model. Since Oseen viscoelastic fluid flow is already linear, we use a two-level method
with a new technique. The two-level approach is consistent and efficient to study the coupled system
which contains nonlinear terms. In the first step, the solution on the coarse grid is derived, and the
result is used to determine the solution on the fine mesh in the second step. The decoupling algorithm
takes two steps to solve a linear system on the fine mesh. The stability of the algorithm is derived
for the temporal discretization and obtains the desired error bound. Two numerical experiments are
executed to show the accuracy of the theoretical analysis. The approximations of the stress tensor,
velocity vector, and pressure field are P1-discontinuous, P2-continuous and P1-continuous finite
elements respectively.

Keywords: viscoelastic fluid flow; two-level method; DG method; Oseen viscoelastic fluid flow model

1. Introduction

In nature, most fluids are non-Newtonian, and many researchers have investigated the behaviour
of non-Newtonian fluid extensively. Non-Newtonian fluid has numerous applications in different
sectors such as in the natural substances, in food processing, and biological fluid. Some familiar
examples of the natural substances are magma, lava, gums and so on. In the food processing area:
butter, cheese, jam, ketchup, soap, yogurt, and in the biological fluid flow sector: blood, saliva, mucus,
synovial fluids, are all examples of non-Newtonian fluid. Viscoelastic fluid is one of the essential
non-Newtonian fluid which satisfies both the viscous property of the fluid and elastic estate of solid.
Over the last few decades, the developments of viscoelastic fluid research have achieved significant
progress, but the rheological properties of the viscoelastic fluid is not similar as Newtonian fluid. To
describe the viscoelastic behaviour of the liquid, it was a significant challenge to formulate a suitable
constitutive equation. In 1950, James G. Oldroyd [1] introduced a new paradigm to study the dilute
solution of polymeric molecular behaviour. After that, many models have been developed to study
the viscoelastic fluid such as Phan-Thien-Tanner, Larson, Maxwell model and so on.

The Oseen fluid flow model for Newtonian fluid can be obtained from the Navier-Stokes equation.
By fixing the velocity, u(x) = b(x), of the nonlinear term of the momentum equation, the Navier-Stokes
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equation can be transformed into a linear system. In the viscoelastic fluid flow model, under a creeping
flow assumption, the inertia term u · ∇u is neglected in the momentum equation. So in the viscoelastic
fluid flow model, the non-linearity occurs only in the constitutive equation [2]. Thus, no simplification
takes place in the momentum equation, and the whole model equation consists of three unknowns
which are: scalar pressure field p, velocity vector field u, and symmetric stress tensor σ.

There are two usual approaches to solve the viscoelastic fluid flow models: the Streamline Upwind
Petrov Galerkin (SUPG) method and the discontinuous Galerkin (DG) approximation. In 1973, Reed
and Hill first proposed the discontinuous Galerkin technique in [3]. To solve the neutron transport
equation, Lesaint and Raviart discussed the discontinuous method in [4] for hyperbolic PDEs. DG
methods have become popular due to its computational flexibility, ability to incorporate physical
properties, element-wise conservative and implementable on an unstructured mesh. Fortin and
Fortin [5,6] first introduced the DG method for viscoelastic fluid flow. Barrenger and Sandri [7] first
proposed error analysis for the steady-state case for viscoelastic fluid flow model using the DG method.
For the steady-state problem, Najib and Sandri [8] introduced the semi-decoupled scheme by using
fixed point technique. Also, some researchers used the Streamline Upwind Petrov Galerkin (SUPG)
approximation [9] to deal with the constitutive equation. For example, in [10,11] Ervin and Miles
analysed an implicit Euler time discretization and a SUPG discretization for the constitutive equation.
To solve Oseen viscoelastic fluid flow, Lee et al. used domain decomposition method in [12], the
defect correction process at high Weissenberg number in [13], two-level stabilized mixed finite element
method in [14], stabilized Lagrange-Galerkin method for the nonlinear scheme in [15]. To discretize
the elliptic problems, the two-level method was first introduced by J. Xu in [16]. Layton-Tobiska [17]
used this method for solving Navier-Stokes equation and the same technique is studied in [18–26].

In this paper, we consider the two-level method to investigate the Oseen viscoelastic fluid flow
for error estimation. To solve a multi-model, the two-level approach is familiar with its computational
flexibility. Since in the Oseen viscoelastic fluid flow model, the constitutive equation is already linear
where the non-linearity vanishes because of creeping flow. This new feature allows us to consider a
two-level approach differently. In the first step, we solve the momentum equation and constitutive
equation on a coarse mesh, and in the second step, we decoupled the momentum equation and
constitutive equation with respect to velocity and stress. Using the coarse mesh solution, we determine
the solution on the fine mesh. The implementation in the temporal discretization of the proposed
two-level approach is as follows: we use two families of partitions Th and TH (h << H) to subdivide
our domain into triangles with sides of length h and H respectively and the corresponding finite
element spaces are denoted by (Xh, Qh, Sh) and (XH , QH , SH). The well-posedness of the scheme is
derived and obtains the desired error bound. The optimal convergence order is verified by considering
a true solution. The exclusive feature of the two-level method for Oseen viscoelastic fluid flow is
illustrated experimentally by considering a 4:1 abrupt contraction channel flow.

The remaining part of the paper is organized as follows: in Section 2, the Oseen viscoelastic
fluid flow model is introduced. In Section 3, the finite element approximation and the variational
formulation is discussed. We propose the algorithm for the two-level method, investigate the existence
and uniqueness of finite element solution also perform the error analysis in Section 4. The results of the
two numerical simulations illustrate in Section 5. Finally, a short conclusion is discussed in Section 6.

2. Model Equations

In this section, we describe the Oseen viscoelastic fluid flow model.

Model Problem

Let Ω be an open, bounded, simply connected domain in R2 with the Lipschitz continuous
boundary Γ. Consider the Johnson-Segalman model problem
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σ + λ(u · ∇)σ + λga(σ,∇u)− 2αD(u) = 0, in Ω, (1)

−∇ · σ− 2(1− α)∇ · D(u) +∇p = f, in Ω, (2)

∇ · u = 0, in Ω, (3)

u = 0, on Γ. (4)

where σ denotes the polymeric stress tensor, u is the velocity vector, p is the scalar pressure field
and λ is the Weissenberg number defined as the ratio of average relaxation time of polymer to an
external given time which is typical length to a typical velocity in the flow. The total stress tensor
σtot = −pI+ 2(1− α)D(u) + σ, consists of Newtonian part and viscoelastic part [27]. For notational
convenience, we use Einstein’s convention of summation and denote differentiation with comma as
∂u
∂xi

is written as u,i and
∂u
∂t

is written ut. For a scalar function p, gradient of p is a vector ∇p with

(∇p)i = p,i; for a vector u, gradient of u is a tensor ∇u with (∇u)ij = ui,j. For a vector function u,
divergence of u is a scalar, ∇ · u = ui,i and u · ∇ = ui∂/∂xi; for a tensor function σ, divergence of σ is
a vector ∇ · σ with (∇ · σ)i = σij,j [28]. We assume that p has zero mean value over Ω. α is a number
such that 0 < α < 1, which may be considered as the fraction of viscoelastic viscosity, and f is the body
force. The deformation tensor, D(u), and the vorticity tensor, W(u), are given by

D(u) =
1
2
(∇u + (∇u)T), W(u) =

1
2
(∇u− (∇u)T), (5)

where ga(σ,∇u) is defined by

ga(σ,∇u) = σW(u)−W(u)σ− a(D(u)σ + σD(u))

=
1− a

2
(σ∇u + (∇u)Tσ)− 1 + a

2
((∇u)σ + σ(∇u)T). (6)

a is related to material parameter with a ∈ [−1, 1]. For the case, a = 1, the Johnson-Segalman model
reduces to the well-known Oldroyd-B model.

The steady state viscoelastic fluid flow model (1)–(4) can be transformed into Oseen viscoelastic
fluid flow model considering a known velocity b(x) in the nonlinear terms of the constitutive equation
instead of unknown velocity u(x) to make the constitutive equation linear. The Oseen viscoelastic
fluid flow model as follows:

σ + λ(b · ∇)σ + λga(σ,∇b)− 2αD(u) = 0, in Ω, (7)

−∇ · σ− 2(1− α)∇ · D(u) +∇p = f, in Ω, (8)

∇ · u = 0, in Ω, (9)

u = 0, on Γ. (10)

We make the assumption for b:

b ∈ H1
0(Ω), ∇ · b = 0, ‖ b ‖∞6 M, ‖ ∇b ‖∞6 M < ∞.

3. The Weak Derivative and Finite Element Discretization

We introduce some notation first. The L2(Ω) and Lp(Ω) norms are denoted by the inner product
(·, ·), and ‖ · ‖Lp , with the special cases of L2(Ω) and L∞(Ω) norms being written as ‖ · ‖ and ‖ · ‖∞.
For m ∈ N, we denote the norm associated with the Sobolev space Wm,p(Ω) by ‖ · ‖Wm,p , with the
special case Wm,2(Ω) being written as Hm(Ω) with the norm ‖ · ‖m and seminorm | · |m. In order to
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introduce a variational formulation, we set the spaces X, Q, S, V for velocity u, pressure p, and stress
σ respectively.

Velocity Space : X : = H1
0(Ω)2 := {v ∈ H1(Ω) : v = 0, on ∂Γ},

Pressure Space : Q : = L2
0(Ω) = {q ∈ L2(Ω) :

∫
Ω

qdΩ = 0},

Stress Space : S : = {τ = (τij); τij = τji : τij ∈ L2(Ω); i, j = 1, 2,

(b · ∇)τ ∈ L2(Ω), ∀ b ∈ X},

Divergence Free Space : V : = {v ∈ X :
∫

Ω
q(∇ · v)dΩ = 0, ∀ q ∈ Q}.

In order to formulate the corresponding weak form of (7)–(10), multiply the Equations (7), (8)
and (9) by the test function τ, v, and q respectively. Integrating by parts and applying the divergence
theorem gives us: To find (u, σ, p) ∈ (X× S×Q) such that

(σ, τ) + λ((b · ∇)σ, τ) + λ(ga(σ,∇b), τ)− 2α(D(u), τ) = 0, ∀ τ ∈ S, (11)

(σ, D(v)) + 2(1− α)(D(u), D(v))− (p,∇ · v) = (f, v), ∀ v ∈ X, (12)

(q,∇ · u) = 0, ∀ q ∈ Q. (13)

It is well known that the velocity and pressure spaces, X and Q, satisfy the inf-sup (or LBB)
condition [29]

inf
0 6=q∈Q

sup
0 6=v∈X

(q,∇ · v)
‖ v ‖1‖ q ‖0

> C, (14)

where C is a positive constant independent of h and H.
Applying the inf− sup condition in the weak form (11)–(13) gives us, find (u, σ) : [0× T] →

(V × S) such that

(σ, τ) + λ((b · ∇)σ, τ) + λ(ga(σ,∇b), τ)− 2α(D(u), τ) = 0, ∀ τ ∈ S, (15)

(σ, D(v)) + 2(1− α)(D(u), D(v)) = (f, v). ∀ v ∈ V. (16)

Let Tµ is a uniformly regular triangulation of Ω such that Ω = {∪K : K ∈ Tµ}, µ = h, H and
µ = maxK∈Tµ µK. Assume that there exist positive constants c1, c2 such that c1µ 6 µK 6 c2ρK, where
µK is the diameter of K, ρK is the diameter of the greatest ball included in K. The classical Taylor-Hood
FE are used for the approximation in space of (X, Q) : P2-continuous in velocity u, P1-continuous in
pressure p, and P1-discontinuous approximation is considered for the stress σ. Due to the hyperbolic
nature of the constitutive equation, a stabilization technique is needed for the finite element simulation
of viscoelastic flows. Streamline upwinding and discontinuous Galerkin method are the commonly
used discretization techniques to handle this problem. We use the discontinuous Galerkin method for
approximating the stress. The corresponding FE spaces are defined as

Xµ : = {vµ ∈ Xµ ∩ (C0(Ω̄))2 : vµ

|Kµ ∈ (P2(Kµ))2, ∀Kµ ∈ Tµ},

Qµ : = {qµ ∈ Qµ ∩ C0(Ω̄) : qµ

|Kµ ∈ P1(Kµ), ∀Kµ ∈ Tµ},

Sµ : = {τ ∈ Sµ : τ
µ

|K ∈ P1(Kµ)2×2; ∀Kµ ∈ Tµ},

Vµ : = {vµ ∈ Xµ : (qµ,∇ · vµ) = 0, ∀qµ ∈ Qµ},

where Pi(K), i = 1, 2, denotes the space of polynomials of degree ≤ i on Kµ ∈ Tµ. It is well known [29]
that the Taylor-Hood pair (Xµ, Qµ) satisfies the discrete inf-sup condition. For discontinuous stress,
we need to use an upwinding technique introduced in [7]: for this, we define ∂(Kµ)−(b) = {x ∈
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∂Kµ; b(x) · nKµ(x) < 0} where ∂Kµ is the boundary of Kµ ∈ Tµ and n is the outward unit normal to
∂Kµ, and

Γµ = {∪∂K : K ∈ Tµ} \ Γ,

τ±(b)(x) = lim
ε→0+

τ(x± εb(x)).

Also, for any (σ, τ) ∈ ∏
Kµ∈Tµ

[H1(Kµ)]4, we define

(σ, τ)µ = ∑
Kµ∈Tµ

(σ, τ)Kµ ,

〈σ±, τ±〉µ,b = ∑
Kµ∈Tµ

∫
∂(Kµ)−(b)

(σ±(b), τ±(b))|nKµ · b|ds,

〈〈σ±〉〉2µ,b = 〈σ±, σ±〉1/2
µ,b ,

‖τ‖0,∂Γµ = ( ∑
Kµ∈Tµ

|τ|20,∂Kµ)1/2.

The term ((b · ∇)σ, τ) is approximated by means of an operator Bµ on (Xµ, Sµ, Sµ) is defined by

Bµ(b, σ, τ) = ((b · ∇)σ, τ)µ + (1/2)(∇ · bσ, τ)Ω + 〈σ+ − σ−, τ+〉µ,b,

= −((b · ∇)τ, σ)µ − (1/2)(∇ · bτ, σ)Ω + 〈σ−, τ− − τ+〉µ,b, (17)

= (b · ∇)σ, τ)µ + 〈σ+ − σ−, τ+〉µ,b, if ∇ · b = 0.

Then we have
Bµ(b, σ, σ) = (1/2)〈〈σ+ − σ−〉〉2µ,b ≥ 0. (18)

The discontinuous Galerkin finite element approximation of (11)–(13) is as follows: to find
uµ ∈ Xµ, pµ ∈ Qµ, σµ ∈ Sµ such that

(σµ, τµ)Ω + λ((b · ∇)σµ, τµ)Ω + λ(ga(σ
µ,∇bµ), τµ)Ω

−2α(D(uµ), τµ)Ω = 0, ∀τµ ∈ Sµ, (19)

(σµ, D(vµ))Ω + 2(1− α)(D(uµ), D(vµ))Ω − (pµ,∇ · vµ)Ω = (f, vµ)Ω, ∀vµ ∈ Xµ, (20)

(qµ,∇ · uµ)Ω = 0, ∀qµ ∈ Qµ. (21)

Applying the inf-sup condition

(σµ, τµ)Ω + λ((b · ∇)σµ, τµ)Ω + λ(ga(σ
µ,∇bµ), τµ)Ω

−2α(D(uµ), τµ)Ω = 0, ∀τµ ∈ Sµ, (22)

(σµ, D(vµ))Ω + 2(1− α)(D(uµ), D(vµ))Ω = (f, vµ)Ω, ∀vµ ∈ Vµ. (23)

For error estimates, the standard approximation results are as follows: Let σ̃h and ũh be the L2

projections of σ ∈ Sh, and u ∈ Vh defined by (∇(u− ũh),∇vh) = 0, ∀vh ∈ Vh. Then for u ∈ H3(Ω)

and σ ∈ H2(Ω)2×2,

‖ ∇(u− ũh) ‖0 6 Ch2 ‖ u ‖3, (24)

‖ σ− σ̃h ‖0,K +hK ‖ σ− σ̃h ‖1,K 6 Ch2
K ‖ σ ‖2,K, (25)

and on Γ:

‖ σ− σ̃h ‖0,Γ +h ‖ σ− σ̃h ‖1,Ω 6 Ch2 ‖ σ ‖2,Γ . (26)
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The internal boundaries are:

‖ σ− σ̃h ‖2
0,∂K 6 C(h−1

K ‖ σ− σ̃h ‖2
0,K +hK ‖ σ ‖2

1,K), (27)

summing over all K and defining Γh := {∪∂K, K ∈ Th} \ Γ, i.e. the internal boundaries yields:

‖σ− σ̃h‖0,Γh 6 Ch3/2 ‖ σ ‖2,Γ . (28)

4. Two-Level Algorithm’s Existence and Uniqueness, Error Analysis of Oseen Viscoelastic Fluid
Flow Model

In this section, we recall the two-level method for the steady state viscoelastic fluid flow and
propose the two-grid method for Oseen viscoelastic fluid flow model. We analyse the existence and
uniqueness of the model problem and derive the error analysis of the two-level process of Oseen
viscoelastic fluid flow model.

4.1. Two-Level Method for Steady State Viscoelastic Fluid Flow Model

First, we recall the traditional two-level method for steady state viscoelastic fluid flow model.
Step 1. To estimate the solution on nonlinear coarse mesh: Find (σH , uH , pH) ∈ (SH × XH ×QH)

satisfying (τH , vH , qH) ∈ (SH × XH ×QH) such that

(σH , τH)Ω + λBH(uH , σH , τH) + λ〈ga(σ
H ,∇uH), τH〉Ω − 2α(D(uH), τH)Ω = 0, (29)

(σH , D(vH))Ω + 2(1− α)〈D(uH), D(vH)〉Ω − (pH ,∇ · vH)Ω = 〈f, vH〉Ω, (30)

(qH ,∇ · uH)Ω = 0. (31)

Step 2. To estimate the solution on linear fine mesh: Find (σh, uh, ph) ∈ (Sh × Xh ×Qh) satisfying
for all (τh, vh, qh) ∈ (Sh × Xh ×Qh) such that

(σh, τh)Ω + λBh(u
H , σh, τh) + λ〈ga(σ

H ,∇uH), τh〉Ω − 2α(D(uH), τh)Ω = 0, (32)

(σh, D(vh))Ω + 2(D(uh), D(vh))Ω − 2α(D(uH), D(vh))Ω − (ph,∇ · vh)Ω = 〈f, vh〉Ω, (33)

(qh,∇ · uh)Ω = 0. (34)

4.2. Two-Level Method for Oseen Viscoelastic Fluid Flow

Step 1. To find the solution on nonlinear coarse mesh of the problem: Find (σH , uH , pH) ∈
(SH × XH ×QH) satisfying for all (τH , vH , qH) ∈ (SH × XH ×QH) such that

(σH , τH)Ω + λBH(b, σH , τH) + λ〈ga((σ
H ,∇b), τH〉Ω − 2α(D(uH), τH)Ω = 0, (35)

(σH , D(vH))Ω + 2(1− α)(D(uH), D(vH))Ω − (pH ,∇ · vH)Ω = (f, vH)Ω, (36)

(qH ,∇ · uH)Ω = 0. (37)

Step 2. To find the solution on linear fine mesh of the problem: Find (σh, uh, ph) ∈ (Sh×Xh×Qh)

satisfying for all (τh, vh, qh) ∈ (Sh × Xh ×Qh) such that

Substep 1

(σh, τh)Ω + λBh(b, σh, τh) + λ〈ga(σ
H ,∇b), τh〉Ω − 2α(D(uH), τh)Ω = 0, (38)

Substep 2

(σH , D(vh))Ω + 2(D(uh), D(vh))Ω − 2α(D(uH), D(vh))Ω − (ph,∇ · vh)Ω = (f, vh), (39)

(qh,∇ · uh)Ω = 0. (40)
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Applying inf− sup condition in (38) to (40), to find (σh, uh) ∈ (Sh × Vh) satisfies ∀ (τh, vh) ∈
(Sh ×Vh) such that

Substep 1

(σh, τh)Ω + λBh(b, σh, τh) + λ〈ga(σ
H ,∇b), τh〉Ω − 2α(D(uH), τh)Ω = 0, (41)

Substep 2

(σH , D(vh))Ω + 2(D(uh), D(vh))Ω − 2α(D(uH), D(vh))Ω = (f, vh)Ω. (42)

4.3. Existence and Uniqueness of the Finite Element Solution

Theorem 1. (Existence and uniqueness of the steady state viscoelastic fluid flow model step 1)
For 0 < α < 1, there exist C0, C

′
0 and H0 such that if (1)–(4) admits a solution (σ, u, p) ∈ (H2(Ω))4 ×

(H3(Ω))2 × (H2(Ω) ∩ L2
0(Ω)) satisfying:

M: = max{‖ σ ‖2,Ω, ‖ u ‖3,Ω, ‖ p ‖2,Ω} ≤ min{C0(1− α)

λ
,

C
′
0α(1− α)2

λ
}, then for all H ≤

{H0, (1− α)2} (29)–(31) admits a solution (σH , uH , pH) ∈ (SH × XH ×QH) and there exists a constant C,
independent of H, such that:

‖ σ− σH ‖0,Ω + ‖ D(u)− D(uH) ‖0,Ω≤ C(1− α)−1M(1 + λM + λ1/2M1/2)H3/2, (43a)

‖ p− pH ‖0,Ω≤ C(1− α)−1M(1 + λM + λ1/2M1/2)H3/2, (43b)

Furthermore, there exists an open set ε such that (σH , uH , pH) ∈ SH × XH ×QH is the unique solution
of step 1 in ε̄.

Proof of Theorem 1. See [8] Najib and Sandri [pp. 227–228].

Theorem 2. (Existence and uniqueness of the solutions of Oseen viscoelastic fluid flow model step 2)
For M satisfying 1− 2λMd > 0, and f ∈ H−1(Ω), there exists a unique solution (σh, uh) ∈ (Sh × Xh)

of the Equations (38)–(40).

Proof of Theorem 2. Multiplying the Equation (42) by 2α and adding with (41) as follows

(σh, τh)Ω + λBh(b, σh, τh) + λ〈ga(σ
H ,∇b), τh〉Ω − 2α(D(uH), τh)Ω

+ 2α(σH , D(vh))Ω + 4α(D(uh), D(vh))Ω − 4α2(D(uH), D(vh))Ω = 2α( f , vh)Ω,

then

(σh, τh)Ω + 4α(D(uh), D(vh))Ω + λBh(b, σh, τh)

= 2α( f , vh)Ω + 2α(D(uH), τh)Ω + 4α2(D(uH), D(vh))Ω

− 2α(σH , D(vh))Ω − λ(ga(σ
H ,∇b), τh)Ω. (44)

Now we will show that the left hand side of (44) is continuous and coercive on (Sh × Vh),
if 1− 2λMd > 0

Bh(b, σh, τh) = ((b · ∇)σh, τh)h + 〈σh+ − σh−, τh〉h,b

6‖ b ‖∞‖ ∇σh ‖0‖ τh ‖0 +C1 ‖ b ‖∞ (h−1/2 ‖ σh ‖0)(h−1/2 ‖ τh ‖0) (45)

6 Md ‖ ∇σh ‖0‖ τh ‖0 +C1 ‖ b ‖∞ (h−1/2 ‖ σh ‖0)(h−1/2 ‖ τh ‖0)

6 C2Mdh−1 ‖ σh ‖0‖ τh ‖0 +C1Mh−1 ‖ σh ‖0‖ τh ‖0, (46)
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also,

2α〈 f , vh〉Ω ≤ 2α ‖ f ‖−1‖ vh ‖1

≤ 2α ‖ f ‖−1‖ (τh, vh) ‖Sh×Xh . (47)

Hence,

(σh, τh)Ω + 4α(D(uh),D(vh))Ω + λBh(b, σh, τh)

≤‖ σh ‖0‖ τh ‖0 +4α ‖ D(uh) ‖0‖ D(vh) ‖0

+ λ(C2Mdh−1 ‖ σh ‖0‖ τh ‖0 +C1Mh−1 ‖ σh ‖0‖ τh ‖0)

≤ C ‖ (σh, uh) ‖S×X‖ (τh, vh) ‖Sh×Xh , (48)

which shows the continuity of the two-level algorithm.
For coercivity, using (18) we have

(σh, σh)Ω + 4α(D(uh),D(uh))Ω + λBh(b, σh, σh)

=‖ σh ‖2
0 +4α ‖ D(uh) ‖2

0 +
λ

2
〈〈σh+ − σh−〉〉2h,b

>‖ σh ‖2
0 +4α ‖ D(uh) ‖2

0

> C ‖ (σh, uh) ‖2
Sh×Xh , (49)

which shows the coercivity of the two-level algorithm. Hence, the well-posedness of the two-level
finite element scheme for Oseen viscoelastic fluid flow is obtained.

4.4. Error Analysis

In this subsection, we derive the error analysis for the solution (σµ, uµ) of the proposed
two-level-method.

Theorem 3. If (uh, σh) satisfies a unique solution of step 2 of the two-level methods of Oseen viscoelasic fluid
then the following estimate holds

‖ σ− σh ‖0 + ‖ D(u− uh) ‖0 +λ1/2/2〈〈(σ̃h − σh)+ − (σ̃h − σh)−〉〉h,b

6 C14h2 + C10(1− α)−1(
M
2

+
λM2C8h−1

2
+

λM2

2

+
λ2M3C8h−1

2
+

λ1/2M3/2

2
+

λ3/2M5/2C8h−1

2
)H3/2 (50)

+ C11
h2

2
(

1
2ε1

+
λ2M2C4

2ε2
h−2 +

λ2MC6

2ε4
h−2)1/2

+ C12(1− α)−1(αM + λαM2 + λ1/2αM3/2)H3/2.

Proof of Theorem 3. To find (σ, u) ∈ (Sh ×Vh) satisfies for all (τh, vh) ∈ (Sh ×Vh) as follows:

(σ, τh)Ω + λBh(b, σ, τh) + λ〈ga(σ,∇b), τh〉 − 2α(D(u), τh)Ω = 0, (51)

(σ, D(vh))Ω + 2(1− α)(D(u), D(vh))Ω = (f, vh)Ω, (52)

The inf− sup condition in step 2 of the algorithm can be written as: for all (τh, vh) ∈ (Sh ×Vh)

satisfies

(σh, τh)Ω + λBh(b, σh, τh) + λ〈ga(σ
H ,∇b), τh〉 − 2α(D(uH), τh)Ω = 0, (53)
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and

(σH , D(vh))Ω + 2(D(uh), D(vh))Ω − 2α(D(uH), D(vh))Ω = (f, vh)Ω. (54)

Subtracting (53) from (51) and (54) from (52) as follows:

(σ− σh, τh)Ω + λBh(b, σ− σh, τh) + λ(ga(σ− σH ,∇b), τh)Ω

−2α(D(u− uH), τh)Ω = 0, ∀ τh ∈ Sh, (55)

and

(σ− σH , D(vh))Ω + 2(D(u− uh), D(vh))Ω − 2α(D(u− uH), D(vh))Ω = 0, ∀ vh ∈ Vh, (56)

Adding and subtracting σ̃h, ũh in the Equations (55) and (56) which yields

(σ̃h − σ, τh)Ω + λBh(b, σ̃h − σ, τh) = (σ̃h − σh, τh)Ω + λBh(b, σ̃h − σh, τh)

+ λ(ga(σ− σH ,∇b), τh)Ω − 2α(D(u− uH), τh)Ω. (57)

Also,

(σ− σH , D(vh))Ω + 2(D(ũh − uh), D(vh))Ω−2α(D(u− uH), D(vh))Ω

= 2(D(ũh − u), D(vh))Ω. (58)

For all (τh, vh) ∈ (Sh ×Vh).
Since σ̃h and ũh are orthogonal projection of σ and u also, D(vh) ∈ Sh. So (D(ũh − u), D(vh))Ω = 0.
Then Equation (58) becomes

(σ− σH , D(vh))Ω + 2(D(ũh − uh), D(vh))Ω − 2α(D(u− uH), D(vh))Ω = 0. (59)

Now let τh = σ̃h − σh, vh = ũh − uh in Equations (57) and (59) respectively.
From Equation (57) we get

2α(D(u− uH), σ̃h − σh)Ω =‖ σ̃h−σh ‖2
0 +λBh(b, σ̃h − σh, σ̃h − σh)− (σ̃h − σ, σ̃h − σh)Ω

− λBh(b, σ̃h − σ, σ̃h − σh) + λ(ga(σ− σH ,∇b), σ̃h − σh)Ω, (60)

and from the Equation (59) we get

2 ‖ D(ũh − uh) ‖2
0,Ω= −(σ− σH , D(ũh − uh))Ω + 2α(D(u− uH), D(ũh − uh))Ω. (61)

By using Equation (60) and (18) we get

‖ (σ̃h − σh)− 2αD(u− uH) ‖2
0,Ω

= − ‖ σ̃h − σh ‖2
0,Ω +4α2 ‖ D(u− uH) ‖2

0,Ω −λ〈〈(σ̃h − σh)+ − (σ̃h − σh)−〉〉2h,b + 2Σ. (62)

where Σ = (σ̃h − σ, σ̃h − σh)Ω + λBh(b, σ̃h − σ, σ̃h − σh)− λ(ga(σ− σH ,∇b), σ̃h − σh)Ω.
Now we estimate the terms of Σ:
First term

| (σ̃h − σ, σ̃h − σh) |Ω6‖ σ̃h − σ ‖0‖ σ̃h − σh ‖0, (63)
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using Young’s inequality

| (σ̃h − σ, σ̃h − σh) |Ω6
1

4ε1
‖ σ̃h − σ ‖2

0 +ε1 ‖ σ̃h − σh ‖2
0 . (64)

Bh term

λBh(b, σ̃h − σ, σ̃h − σh)

= −λ((b · ∇)(σ̃h − σh), σ̃h − σ)h + ((σ̃h − σ)−, (σ̃h − σh)− − (σ̃h − σh)+)h,b. (65)

First term of Bh

| λ(b · ∇)(σ̃h − σh), σ̃h − σ) |
6 λ ‖ b ‖∞‖ ∇(σ̃h − σh) ‖0,h‖ σ̃h − σ ‖0

6 λMC3h−1 ‖ σ̃h − σh ‖0‖ σ̃h − σ ‖0

6 λ2M2C4h−2 1
4ε2
‖ σ̃h − σ ‖2

0 +ε2 ‖ σ̃h − σh ‖2
0 . (66)

Second term of Bh

| 〈(σ̃h − σ)−,(σ̃h − σh)− − (σ̃h − σh)+〉h,b |
6 C5 ‖ b ‖1/2

∞ (h−1/2 ‖ σ̃h − σh ‖0,h)(h−1/2 ‖ σ̃h − σ ‖0,Ω)

6 C5M1/2h−1 ‖ σ̃h − σh ‖0,Ω‖ σ̃h − σ ‖0,Ω

6 C6Mh−2 1
4ε3
‖ σ̃h − σ ‖2

0 +ε3 ‖ σ̃h − σh ‖2
0 . (67)

ga term

| λ(ga(σ−σH ,∇b), σ̃h − σh) |
6 λ ‖ σ− σH ‖0,Ω‖ b ‖∞‖ σ̃h − σh ‖0,Ω

6 λM ‖ σ− σH ‖0‖ σ̃h − σh ‖0

6 λM ‖ σ− σH ‖0 (h−1 ‖ σ̃h − σh ‖0)

6
λ2M2C7h−2

2ε4
‖ σ− σH ‖2

0 +ε4 ‖ σ̃h − σh ‖2
0 . (68)

Now combining all the estimates of Σ

| Σ |6λ2M2C4h−2 1
4ε2
‖ σ̃h − σ ‖2

0 +ε2 ‖ σ̃h − σh ‖2
0

+ λ2M2C4h−2 1
4ε2
‖ σ̃h − σ ‖2

0 +ε2 ‖ σ̃h − σh ‖2
0

+ C6Mh−2 1
4ε3
‖ σ̃h − σ ‖2

0 +ε3 ‖ σ̃h − σh ‖2
0

+
λ2M2C7h−2

2ε4
‖ σ− σH ‖2

0 +ε4 ‖ σ̃h − σh ‖2
0 . (69)

Substituting Equation (69) in Equation (62)
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‖ (σ̃h − σh)− 2αD(u− uH) ‖2
0,Ω

6 − ‖ σ̃h − σh ‖2
0,Ω +4α2 ‖ D(u− uH) ‖2

0,Ω

− λ << (σ̃h − σh)+ − (σ̃h − σh)− >>2
h,b

+
1

2ε1
‖ σ̃h − σ ‖2

0 +2ε1 ‖ σ̃h − σh ‖2
0 +

λ2M2C4

2ε2
h−2 ‖ σ̃h − σ ‖2

0

+ 2ε2 ‖ σ̃h − σh ‖2
0 +λ2C6Mh−2 1

2ε3
‖ σ̃h − σ ‖2

0 +2ε3 ‖ σ̃h − σh ‖2
0

+
λ2M2C7

2ε4
h−2 ‖ σ− σH ‖2

0 +2ε4 ‖ σ̃h − σh ‖2
0

6 4α2 ‖ D(u− uH) ‖2
0,Ω −λ << (σ̃h − σh)+ − (σ̃h − σh)− >>2

h,b

+ ‖ σ̃h − σ ‖2
0 (

1
2ε1

+
λ2M2C4

2ε2
h−2 +

λ2MC6

2ε3
h−2) (70)

− [1− (2ε1 + 2ε2 + 2ε3 + 2ε4)] ‖ σ̃h − σh ‖2
0 +

λ2M2C7h−2

2ε4
‖ σ− σH ‖2

0,

Take 1− (2ε1 + 2ε2 + 2ε3 + 2ε4) = ε

‖ (σ̃h − σh)− 2αD(u− uH) ‖0,Ω +λ1/2 << (σ̃h − σh)+ − (σ̃h − σh)− >>h,b

6 2α ‖ D(u− uH) ‖0,Ω + ‖ σ̃h − σ ‖0 (
1

2ε1
+

λ2M2C4

2ε2
h−2 (71)

+
λ2MC6

2ε3
h−2)1/2 − ε1/2 ‖ σ̃h − σh ‖0 +λMC8h−1 ‖ σ− σH ‖0 .

By the triangle inequality, we have

‖ D(u− uh) ‖0,Ω6‖ D(u− ũh) ‖0,Ω + ‖ D(ũh − uh) ‖0,Ω . (72)

From Equation (61)

2 ‖ D(ũh − uh) ‖2
0,Ω =| −((σ− σH)− 2αD(u− uH), D(ũh − uh) |Ω

6‖ ((σ− σH)− 2αD(u− uH) ‖0,Ω‖ D(ũh − uh) ‖0,Ω, (73)

‖ D(ũh − uh) ‖0,Ω 6
1
2
‖ (σ− σH)− 2αD(u− uH) ‖0,Ω

6
1
2
‖ σ− σ̃h + σ̃h − σh + σh − σH − 2αD(u− uH) ‖0,Ω . (74)

Using the triangle inequality

‖ D(ũh − uh) ‖0,Ω6
1
2
[‖ σ− σH − σ̃h + σh ‖0,Ω + ‖ σ̃h − σh − 2αD(u− uH) ‖0,Ω]

6
1
2
‖ (σ− σH) + (σh − σ̃h) ‖0,Ω +

1
2
‖ (σ̃h − σh)− 2αD(u− uH) ‖0,Ω

6
1
2
‖ σ− σH ‖0 +

1
2
‖ σh − σ̃h ‖0 +

1
2
‖ (σ̃h − σh)− 2αD(u− uH) ‖0,

6‖ σ− σH ‖0 (
1
2
+

λMC8h−1

2
)− λ1/2〈〈(σ̃h − σh)+ − (σ̃h − σh)−〉〉h,b
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+
1
2
(1− ε1/2) ‖ σ̃h − σh ‖0 +

1
2
‖ σ̃h − σ ‖0 (

1
2ε1

+
λ2MC4

2ε2
h−2

+
λ2MC6

2ε3
h−2)1/2 + α ‖ D(u− uH) ‖0 (75)

Using the result of (24), Theorem 1 and substitution of (75) in (72)

‖ D(u− uh) ‖0 6‖ D(u− ũh) ‖0 + ‖ D(ũh − uh) ‖0

6 C9h2+ ‖ σ− σH ‖0 (
1
2
+

λMC8h−1

2
)− λ1/2〈〈(σ̃h − σh)+ − (σ̃h − σh)−〉〉h,b

+
1
2
‖ σ̃h − σh ‖0 (1− ε1/2) +

1
2
‖ σ̃h − σ ‖0 (

1
2ε1

+
λ2MC4

2ε2
h−2

+
λ2MC6

2ε3
h−2)1/2 + α ‖ D(u− uH) ‖0,

6 C9h2 + C10(1− α)−1(
M
2

+
λM2C8h−1

2
+

λM2

2
(76)

+
λ2M3C8h−1

2
+

λ1/2M3/2

2
+

λ3/2M5/2C8h−1

2
)H3/2

+
1
2
(1− ε1/2) ‖ σ̃h − σh ‖0 +C11

h2

2
(

1
2ε1

+
λ2M2C4

2ε2
h−2 +

λ2MC6

2ε3
h−2)1/2

+ C12(1− α)−1(αM + λαM2 + λ1/2αM3/2)H3/2.

And

‖ σ− σh ‖0,Ω ≤‖ σ− σ̃h ‖0,Ω + ‖ σ̃h − σh ‖0,Ω

6 C13h2+ ‖ σ̃h − σh ‖0,Ω . (77)

Hence,

‖ σ− σh ‖0 + ‖ D(u− uh) ‖0 +
λ1/2

2
〈〈(σ̃h − σh)+ − (σ̃h − σh)−〉〉h,b

6 C13h2+ ‖ σ̃h − σh ‖0 +C9h2 + C10(1− α)−1(
M
2

+
λM2C8h−1

2
+

λM2

2

+
λ2M3C8h−1

2
+

λ1/2M3/2

2
+

λ3/2M5/2C8h−1

2
)H3/2 +

1
2
(1− ε1/2) ‖ σ̃h − σh ‖0

+ C11
h2

2
(

1
2ε1

+
λ2M2C4

2ε2
h−2 +

λ2MC6

2ε4
h−2)1/2

+ C12(1− α)−1(αM + λαM2 + λ1/2αM3/2)H3/2

6 C13h2 + C9h2 + C10(1− α)−1(
M
2

+
λM2C8h−1

2
+

λM2

2

+
λ2M3C8h−1

2
+

λ1/2M3/2

2
+

λ3/2M5/2C8h−1

2
)H3/2 (78)

+
1
2
(3− ε1/2) ‖ σ̃h − σh ‖0 +C11

h2

2
(

1
2ε1

+
λ2M2C4

2ε2
h−2 +

λ2MC6

2ε4
h−2)1/2

+ C12(1− α)−1(αM + λαM2 + λ1/2αM3/2)H3/2.

Choose ε appropriately, we have
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‖ σ− σh ‖0+ ‖ D(u− uh) ‖0 +λ1/2/2〈〈(σ̃h − σh)+ − (σ̃h − σh)−〉〉h,b

6 C14h2 + C10(1− α)−1(
M
2

+
λM2C8h−1

2
+

λM2

2

+
λ2M3C8h−1

2
+

λ1/2M3/2

2
+

λ3/2M5/2C8h−1

2
)H3/2 (79)

+ C11
h2

2
(

1
2ε1

+
λ2M2C4

2ε2
h−2 +

λ2MC6

2ε4
h−2)1/2

+ C12(1− α)−1(αM + λαM2 + λ1/2αM3/2)H3/2,

which completes the proof of the error analysis of the two-level method for Oseen viscoelastic
fluid flow.

Remark 1. The error estimate of the two-level method for Oseen viscoelastic fluid flow presented in Theorem 3
is a rough error, and the estimation of optimal convergence order is an open question. The scaling of h = H3/2

guarantees the linear convergence. In our understanding, the two-level method for viscoelastic fluid flow model
is not optimal, which is reflected by the papers [24,25]. In both articles, authors didn’t get the optimal error
order for the multi-level and two-level method for viscoelastic fluid flow model and the consequences for Oseen
viscoelastic fluid flow model have the same phenomenon. In the computational sense, the two-level method is
flexible, and the implementation is easy.

5. Numerical Tests

In this section, two numerical experiment results are presented to illustrate the exclusive features
of the proposed two-level method for Oseen viscoelastic fluid flow. First numerical simulation is
known as an analytical solution test. A well-known approach for the validation of the theoretical
analysis is to show the computation of the errors and the order of convergence for the proposed scheme.
In the exact solution test, the computation of the errors and the order of convergence are presented for
one-level and two-level algorithms with P2− P1− P1dc finite elements for Oseen viscoelastic fluid
flow. The second numerical test is known as the benchmark problem called 4:1 abrupt contraction
channel flow, a prototypical problem to show the viscoelastic flow behaviour [30,31]. In 4:1 contraction
channel flow, we demonstrate the graphical representation of streamlines, pressure oscillation, and
reentrant corner flow behaviour of the steady-state viscoelastic fluid flow model and Oseen viscoelastic
fluid flow model for one-level and two-level algorithms. The computations carried out for the solutions
under the fine mesh converge to a solution computed using the standard coarse mesh. The one-level
and two-level methods for the viscoelastic fluid flow model are well studied where the flow behaviour
and patterns of the streamlines are regular in shape. We compare the behaviour of the streamlines
and patterns of the contour for the one-level and two-level methods for Oseen viscoelastic with
the stationary viscoelastic fluid flow model which appear in the similar precision. The comparison
between these two models and two methods give us a strong overview of the proposed two-level
schemes accuracy. According to the theoretical analysis, continuous piecewise quadratic elements P2
are used for velocity, continuous piecewise linear elements P1 are used for pressure, and discontinuous
piecewise linear elements P1dc are used for stress. All the numerical tests are performed by using the
public domain software Freefem++ [32]. The figures and graphs are drawn by MATLAB and Tecplot
360 software package.
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5.1. Analytic Solution Test

The computational domain for analytical solution is considered as a unit square Ω = [0, 1]× [0, 1],
and the parameters λ, α, a in the equations are specified as 1.0, 0.5 and 0 [25,33,34], respectively. Hence,
the true solution is given by [33]

u =

(
−10(x4 − 2x3 + x2)(2y3 − 3y2 + y)
10(2x3 − 3x2 + x)(y4 − 2y3 + y2))

)
,

p = −10.0(2x− 1)(2y− 1),
σ = 2αD(u).

In the numerical computation b(x) is considered as an exact solution of u. Considering the global
domain Ω as a unit square which is divided into identical squares to create the triangular meshes.

For convenience the denotations of one-level errors are as follows

||eH ||0 = ‖u− uH‖0 ||eH ||1 = ‖u− uH‖1 ||εH ||0 = ‖σ− σH‖0 ‖ωH‖0 = ‖p− pH‖0 (80)

The denotations for two-level errors are as follows

||eh||0 = ‖u− uh‖0 ||eh||1 = ‖u− uh‖1 ||εh||0 = ‖σ− σh‖0 ‖ωh‖0 = ‖p− ph‖0 (81)

The standard way to verify the theoretical analysis accuracy is the computation of errors and
the order of convergence with the analytical solution. The order of convergence is represented by
Order = log(Error/Error1)

log(h/h′ )
. The term “Order” denotes the global rate of convergence. The notation h and

h
′

denote the mesh size with the global errors “Error” and “Error1”. The objective of the representation
of the following two tables is to verify the theoretical analysis accuracy by computing the order of the
convergence for the one-level and two-level method.

In Tables 1 and 2, we present a one-level and two-level method for Oseen viscoelastic fluid flow
for different λ = 5.0, 1.0, and 0.1 with P2− P1− P1dc finite elements. Several values of H and h
for coarse mesh and fine mesh with the relationship H ≈ h2/3 are presented. The values for coarse
mesh H = 1/2, 1/4, 1/8, 1/16, 1/32 appear h = 1/2, 1/8, 1/22, 1/64, 1/181 for the fine mesh.
In the one-level method for Oseen viscoelastic fluid flow model, we observe that the convergence
order for velocity u, stress σ, and pressure p achieve more than 2 order for L2-norm while velocity in
H1-norm obtained convergence order more than 1.5. For the two-level method, the convergence order
for velocity u in L2-norm is nearly second order, but for stress σ, the order is nearly 1.5 for L2-norm.
The convergence order for pressure p in L2-norm is nearly 1.5 order. For velocity u in H1-norm the
convergence order is 1.5. The results also illustrate for one-level, and two-level method for Oseen
viscoelastic fluid flow with P2− P1− P1dc finite element, achieve the desired error estimation with
exact convergence order. The computation of errors and order of convergence validate the theoretical
analysis accuracy for the relation H ≈ h2/3. Moreover with increases of the value of λ has a small
effect in the error order appear in a similar precision for the one-level and two-level method.
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Table 1. One-level method for Oseen viscoelastic fluid flow for different λ = 5.0, 1.0, and 0.1 with
P2− P1− P1dc finite elements.

H ||eH ||0 Order ||eH ||1 Order ||εH ||0 Order ||ωH ||0 Order

1/2 0.0121043 - 0.153692 - 0.160544 - 0.679008 -
1/4 0.0018913 2.6780 0.049206 1.6431 0.039237 2.0326 0.166186 2.0306
1/8 0.00025339 2.8999 0.014089 1.8042 0.009757 2.0075 0.040482 2.0374
1/16 0.000026587 3.2525 0.003482 2.0162 0.002458 1.9886 0.010090 2.0043
1/32 0.000003542 2.9080 0.000902 1.9476 0.000627 1.9697 0.0025218 2.0004

1/2 0.0117976 - 0.153040 - 0.117092 - 0.660409 -
1/4 0.0017827 2.7263 0.048192 1.6670 0.035114 1.73752 0.163208 2.0166
1/8 0.0002193 3.0231 0.013344 1.8526 0.009309 1.9152 0.040392 2.0145
1/16 0.00002454 3.1593 0.003363 1.9883 0.002317 2.0062 0.010088 2.0014
1/32 0.00000329 2.8962 0.000868 1.9533 0.000587 1.9806 0.002521 2.0001

1/2 0.0120841 - 0.153453 - 0.119684 - 0.650230 -
1/4 0.0018903 2.6763 0.048008 1.6764 0.038849 1.6232 0.162583 1.9997
1/8 0.0002191 3.1083 0.013018 1.8827 0.010598 1.8740 0.040382 2.0093
1/16 0.00002431 3.1724 0.003279 1.9888 0.002624 2.0136 0.010087 2.0011
1/32 0.00000314 2.9513 0.000834 1.9745 0.000638 2.0401 0.002521 2.0001

Table 2. Two-level method for Oseen viscoelastic fluid flow for λ = 5.0, 1.0, and 0.1 with P2− P1−
P1dc finite elements.

H h ||eh||0 Order ||eh||1 Order ||εh||0 Order ||ωh||0 Order

1/4 1/8 0.0011174 - 0.028512 - 0.033849 - 0.047326 -
1/8 1/22 0.0001464 2.0089 0.006602 1.4461 0.008810 1.3305 0.008135 1.7406
1/16 1/64 0.00001668 2.0341 0.001793 1.2203 0.002180 1.3077 0.001691 1.4707
1/32 1/181 0.00000216 1.9653 0.000413 1.4115 0.000510 1.3963 0.000406 1.3705

1/4 1/8 0.0016150 - 0.036364 - 0.031549 - 0.045067 -
1/8 1/22 0.0001714 2.2170 0.007398 1.5740 0.007916 1.3667 0.008142 1.6914
1/16 1/64 0.0000164 2.1949 0.001858 1.2939 0.001950 1.3118 0.001776 1.4254
1/32 1/181 0.00000198 2.0320 0.000408 1.4579 0.000433 1.4472 0.000420 1.3854

1/4 1/8 0.0017902 - 0.042179 - 0.038437 - 0.045171 -
1/8 1/22 0.0001969 2.1816 0.008877 1.5405 0.009659 1.3652 0.008582 1.6417
1/16 1/64 0.00001953 2.1641 0.002343 1.2472 0.002625 1.2198 0.002022 1.3537
1/32 1/181 0.00000229 2.0581 0.000492 1.5013 0.000622 1.3846 0.000493 1.3566

5.2. 4:1 Contraction Channel Flow

In this subsection, we examine a benchmark problem for viscoelastic fluid flow which is known
as 4:1 contraction channel flow. The study of this classic reference problem is used to investigate the
performance of various two-dimensional finite element, finite volume, hybrid, and spectral viscoelastic
solvers. It has various interesting applications in polymeric industries. The fluid behaviour of
contraction channel flow was studied widely by many authors in [35–37], also extensively used to
show the behaviour of the streamlines and contour patterns. Here the case of planar flow through
a contraction geometry with a ratio of 4:1 concerning upstream and downstream channel widths
are considered. The domain is constructed such that the channel lengths are sufficiently long for
fully developed Poiseuille flow at both the inflow and outflow boundaries. We demonstrate several
graphical representations of viscoelastic fluid flow model and Oseen viscoelastic fluid flow behaviour
for one-level and two-level method with reentrant corner flow, streamlines behaviour, pressure gradient
flow behaviour. The main focus of this experiments is to illustrate the proposed algorithms efficiency,



Mathematics 2018, 6, 71 16 of 20

and accuracy is comparing with the well studied steady-state viscoelastic fluid flow model’s behaviour
of streamlines and flow patterns.

For 4:1 contraction channel flow of Oseen viscoelastic fluid, we first determine the one-level
solution of u1 and u2 associated with one-level contraction domain. For two-level contraction domain,
the solution of uh1 and uh2 are determined in a similar way. We use those solutions in Oseen one-level
and two-level computation as b1, b2, bh1 and bh2, respectively. The computations are performed on a
uniformly refined mesh, shown in Figure 1. The method of structured mesh constructs the domain for
one-level H and for two-level h = H3/2. The one-level and two-level domain geometry consist of the
vertices (0, 0), (8, 0), (8, 0.25), (4, 0.25), (4, 1), (0, 1). The inflow and outflow boundaries are represented
by ∂Γin = {(x, y) : x = 0, 0 6 y 6 1} and ∂Γout = {(x, y) : x = 8, 0 6 y 6 0.25} for both one-level
and two-level method [27,30,31]. For the velocity,

u1 =
1

32
(1− y2), u2 = 0, on ∂Γin, (82)

u1 = 2(
1
16
− y2), u2 = 0, on ∂Γout. (83)

For stress, on ∂Γin,

σ11 =
−αλ(a + 1)(−y/16)2

(a2 − 1)λ2(−y/16)2 − 1
, (84)

σ12 = σ21 =
−α(−y/16)

(a2 − 1)λ2(−y/16)2 − 1
, (85)

σ22 =
−αλ(a− 1)(−y/16)2

(a2 − 1)λ2(−y/16)2 − 1
. (86)

No slip boundary conditions are imposed for the velocity on the solid walls of the contraction,
and symmetry condition is imposed on the bottom of the computational domain. Besides, the physical
parameters Re, α, λ, and a are chosen as 1, 8/9, 0.7 and 1, respectively. The computation carried out
using P2− P1− P1dc finite elements for one-level and two-level method. The size of mesh for the 4:1
contraction channel are 0.448783. For the one-level method, number of elements are 1408, number of
nodes for P2 is 2945, P1 is 769, P1dc is 4224. For the two-level method, number of elements are 12,496,
number of nodes for P2 is 25,373, P1 is 6439, P1dc is 37,488.
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Figure 1. The geometry of contraction mesh for one-level (up) and two-level (down).
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Figure 2 illustrates the graphical representation of the horizontal and vertical velocity near
re-entrant corner along the vertical line x = 4.0265 [27]. We demonstrate a one-level and two-level
method for steady state viscoelastic and Oseen viscoelastic fluid flow model. From the figure, we
observe that the velocity near re-entrant corner is almost continuous for one-level and two-level
method. The graphical representation illustrates the flow behaviour of the horizontal velocity near
re-entrant corner for one-level and two-level method is almost continuous for Oseen viscoelastic fluid
and similar to the viscoelastic fluid flow. For the vertical velocity, the flow behaviour achieves a
little different flow path but appear continuously. The graphical representation of the velocity near
re-entrant corner shows the accuracy of the two-level scheme.

In the Figures 3 and 4, we represent the streamlines and magnitude for steady state viscoelastic
fluid flow and Oseen viscoelastic fluid flow for one-level and two-level algorithms. The figures
demonstrate that the flow enters through the inflow boundary ∂Γin = {(x, y) : x = 0, 0 6 y 6 1} and
flow out through the outflow boundary ∂Γout = {(x, y) : x = 8, 0 6 y 6 0.25}. As expected, the flow
behaviour of the viscoelastic type always creates a vortex in the corner [27,34]. Oseen viscoelastic fluid
flow is a reduced linear model of the viscoelastic fluid flow model. The accuracy, behaviour of the
streamlines, flow characteristics and the shape of the contour is examined by the Figure 3. In Figure 3,
the flow pattern and nature of the streamlines are presented for the steady-state viscoelastic model
and Oseen viscoelastic fluid flow model with the one-level algorithm. The contour is drawn by using
the values generated for v. The comparison of both figures for one-level method illustrates that the
reduced Oseen viscoelastic fluid flow model’s shape of the contour is regular and obtains similar
accuracy. The flow rate and behaviour of the streamlines are also almost same. In the Figure 4, the fluid
flow behaviour of the two-level algorithm is presented for the steady-state viscoelastic model and
Oseen viscoelastic fluid flow model. The contour is drawn for the two-level method with uh where the
red colour in the outflow channel shows the maximum flow speed. In the inflow boundary, the flow
speed is less, which is represented by the contour colour and the slower flow is in the corner section
where a vortex form. The shape of contour, the behaviour of the streamlines and flow rate obtain
similar accuracy for the two-level method for steady state viscoelastic fluid flow and Ossen viscoelastic
fluid flow. All the figures appear with similar precision, and the patterns of the streamlines are regular
which validate the numerical computation’s accuracy. The physically valid results give the relevance
of the numerical methods.

In Figure 5, we represent the pressure contour for one-level and two-level methods for Oseen
viscoelastic fluid. The figures reveal the similar pattern and no pressure oscillation which also confirm
the two-level process accuracy.
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Figure 2. Horizontal velocity (left), vertical velocity (right) near re-entrant corner for steady state
viscoelastic and Oseen viscoelastic fluid flow one-level and two-level method.
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Figure 3. Streamlines and magnitude of velocity contours u for one-level method: steady state
viscoelastic fluid flow (left), Oseen viscoelastic fluid model (right).
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Figure 4. Streamlines and magnitude of velocity contours u for two-level method: steady state
viscoelastic fluid flow model (left), Oseen viscoelastic fluid flow model (right).
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Figure 5. Representation of pressure contour p: for one-level (left) and two-level (right) method for
Oseen viscoelastic fluid flow.

6. Conclusions

In this contribution, the two-level decoupled method for Oseen viscoelastic fluid flow is presented
and implemented for theoretical analysis with numerical experiments. Oseen viscoelastic fluid flow
model is a reduced linear model of the viscoelastic fluid flow model. The proposed numerical scheme
is reasonable for Oseen type problem where the non-linearity vanishes. To solve a multi-model,
two-level approach is familiar with its computational flexibility. The method developed herein reduces
the computational cost and implementation is easy. The solution on the coarse grid is derived in
the first step, and the result is used to determine the solution on the fine mesh in the second step.
The well-posedness of the scheme ensures the validation of the temporal discretization. The scaling
of h = H3/2 guarantees the linear convergence and the optimality of the convergence order is an
open question. The numerical experiments support the theoretical analysis accuracy. The optimal
convergence order is obtained by considering an analytical solution of the model problem. The
graphs and figures of the viscoelastic fluid flow model and Oseen viscoelastic fluid flow model for
the one-level and two-level methods appear in similar precision, which also validate the numerical
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computation accuracy. The results of the theoretical analysis and numerical simulation illustrate the
algorithm proposed here can be applied to the linear Oseen type PDEs conveniently.
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