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Abstract: In this paper, we consider a stochastic diffusion process able to model the interest rate
evolving with respect to time and propose a first passage time (FPT) approach through a boundary,
defined as the “alert threshold”, in order to evaluate the risk of a proposed loan. Above this alert
threshold, the rate is considered at the risk of usury, so new monetary policies have been adopted.
Moreover, the mean FPT can be used as an indicator of the “goodness” of a loan; i.e., when an
applicant is to choose between two loan offers, s/he will choose the one with a higher mean exit time
from the alert boundary. An application to real data is considered by analyzing the Italian average
effect global rate by means of two widely used models in finance, the Ornstein-Uhlenbeck (Vasicek)
and Feller (Cox-Ingersoll-Ross) models.
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1. Introduction

In recent decades, increasing attention has been paid to the study of the dynamics underlying the
interest rates. The intrinsically stochastic nature of the interest rates has suggested the formulation
of various models often based on stochastic differential equations (SDEs) (see, for example, [1,2]
and references therein). More recently, further stochastic representations of non-usurious interest
rates have been provided in order to obtain information concerning costs of loans. Most of them
are simple and convenient time-homogeneous parametric models, attempting to capture certain
features of observed dynamic movements, such as heteroschedasticity, long-run equilibrium, and other
peculiarities (see, for example, [3–5]).

An interest rate is “usurious” if it is markedly above current market rates. France was the first
European country to introduce an anti-usury law in 1966. In Italy, the first law of this nature (Law
No. 108) was introduced in 1996. An inventory of interest rate restrictions against usury in the EU
Member States was achieved at the end of 2010. In particular, the EU authorities’ attention focused
on the interest rate restrictions established on precise legal rules restricting credit price, both directly
by fixed thresholds as well as indirectly by intervening on the calculation of compound interest
(Directorate-General of the European Commission, 2011).

Since May 2011, the Italian law has governed interest rates in loans with new regulations, fixing a
threshold above which interest rates applied in loans are considered usurious. The threshold rate is
based on the actual global average rate of interest (TEGM) that is quarterly determined by the Italian
Ministry of Economy and Finance (Ministero dell’Economia e delle Finanze), and it is a function of
various types of homogeneous transactions. Specifically, the threshold rate is calculated as 125% of the
reference TEGM plus 4%. Therefore,

Threshold rate = 1.25 TEGM + 0.04.
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Moreover, the difference between the TEGM and the usury threshold cannot exceed 8%, so the
maximum value admissible for TEGM cannot exceed 16%.

Note that the penal code (art. 644, comma 4, c.p.) establishes that the scheduling of the usury
interest rate takes into account errands, wages, and costs, but not taxes related to the loan supply,
but, to compute the TEGM, the Bank of Italy does not consider these items. Therefore, this difference
between the principle stated by the legislature and the instructions of the Bank of Italy decreases
both the average rates and the threshold rates. Therefore, another boundary that is lower than that
established by the Bank of Italy should be introduced. This case has also been extended to other
European countries.

The basic idea of the present work is to investigate the (random) time in which an interest rate
reaches an “alert boundary”, that is near the admitted limit of 0.16. To do this, we start with two
classical models in the literature: Vasicek and Cox-Ingersoll-Ross (CIR) ([6,7]) since they provide good
characterization of the short-term real rate process. In particular, the CIR model is able to capture the
dependence of volatility on the level of interest rates ([8]).

We then investigated the first passage time (FPT) through a boundary generally depending on
time. This approach is useful in economy since it suggests the time in which the trend of a loan interest
rate can be considered at risk of usury, so it has to be modified from the owner of the loan service.
Moreover, the mean first exit time through the alert boundary could be adopted as an indicator of the
“goodness” of the loan, in the sense that an applicant choosing between two loan offers will choose the
one with a higher mean exit time from the alert boundary. For the FPT analysis, we consider a constant
boundary; clearly this kind of approach is applicable to other underlying models that are different
from the Vasicek and CIR models and to boundaries generally depending on time, which is the case of
time-dependent loan interest rate.

The layout of the paper is as follows. In Section 2, a brief review of diffusion models describing
the dynamics of the interest rate is discussed. The FPT problem through a time-dependent threshold
S(t) is analyzed. In Section 3, we consider data of the TEGM published by Bank of Italy. In particular,
we compare the Vasicek and CIR models in order to establish which model better fits our data.
Moreover, a Chow test shows the presence of structural breaks. In Section 4, the FPT problem through
a constant “alert boundary” is analyzed. Concluding remarks follow.

2. Mathematical Background

We denote by {X(t), t ≥ t0} the stochastic process describing the dynamics of a loan interest
rate. We assume that X(t) is a time-homogeneous diffusion process defined in I = (r1, r2) by the
following SDE:

dX(t) = A1[X(t)]dt +
√

A2[X(t)] dW(t), X(t0) = x0 a.s., (1)

where A1(x) and A2(x) > 0 denote the drift and the infinitesimal variance of X(t) and W(t) is
a standard Wiener process. The instantaneous drift A1(x) represents a force that keeps pulling
the process towards its long-term mean, whereas A2(x) represents the amplitude of the random
fluctuations. Let

h(x) = exp
{
−2

∫ x A1(z)
A2(z)

dz
}

, s(x) =
2

A2(x) h(x)
(2)

be the scale function and speed density of X(t), respectively. The transition probability density function
(pdf) of X(t), denoted by f (x, t|y, τ), is a solution of the Kolmogorov equation,

∂ f (x, t|y, τ)

∂τ
+ A1(y)

∂ f (x, t|y, τ)

∂y
+

A2(y)
2

∂2 f (x, t|y, τ)

∂y2 = 0

and of the Fokker–Planck equation,
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∂ f (x, t|y, τ)

∂t
= − ∂

∂x

[
A1(x) f (x, t|y, τ)

]
+

∂2

∂x2

[A2(x)
2

f (x, t|y, τ)
]
,

with the delta initial conditions:

lim
t↓τ

f (x, t|y, τ) = lim
τ↑t

f (x, t|y, τ) = δ(x− y).

The above conditions assure the uniqueness of the transition pdf only when the endpoints of
the diffusion interval are natural; otherwise, suitable boundary conditions may have to be imposed
(cf., for istance, [9]).

Further, if X(t) admits a steady-state behavior, then the steady-state pdf is

W(x) ≡ lim
t→∞

f (x, t|x0, t0) =
s(x)∫ ∞

−∞ s(z) dz
.

Let
TX0 = inf

t>t0
{t : X(t) > S(t) | X(t0) = x0}

be the FPT variable of X(t) through a time-dependent boundary S(t) starting from x0, and let
g[S(t), t|x0, t0] = dP(Tx0 < t)/dt be its pdf. In the following, we assume that x0 < S(t0) since
in our context x0 represents the initial observed value of the interest rate. The FPT problem has
far-reaching implications (see, for instance, [10,11]).

As shown in [12,13], if S(t) is in C2[t0, ∞), g can be obtained as a solution of the following
second-kind Volterra integral equation:

g[S(t), t|y, τ] = −2Ψ[S(t), t|y, τ] + 2
∫ t

t0

g[S(ϑ), ϑ|y, τ]Ψ[S(t), t|S(ϑ), ϑ] dϑ (3)

where

Ψ[S(t), t|y, τ] =
1
2

f (x, t|y, τ)
{

S′(t)− A1[S(t)] +
3
4

A′2[S(t)]
}

+
A2[S(t)]

2
∂ f (x, t|y, τ)

∂x

∣∣∣
x=S(t)

.

If A1(x) and A2(x) are known, i.e., if the process is fixed, some closed form solution of (3) can be
obtained for particular choices of the boundary S(t). Further results have been obtained in [14–16].
Alternatively, a numerical algorithm can be successfully used; for example, the R package fptdApprox
is also a useful instrument for the numerical evaluation of the FPT pdf (see [17,18]).

Further, if the FPT is a sure event and if S(t) = S is time-independent, the moments of the FPT
can be evaluated via a recursive Siegert-type formula (see, for instance, [9]):

tn(S|x0) =
∫ ∞

0
tn g(S, t|x0) dt = n

∫ S

x0

dz h(z)
∫ z

−∞
s(u) tn−1(S|u) du

n = 1, 2, . . . (4)

where t0(S|x0) = P(Tx0 < ∞) = 1 and h(x) and s(x) given in Equation (2).

3. Modeling the Italian Loans

In this section, we consider two stochastic processes widely used in the financial literature, the
Vasicek and CIR models (see [1,19]), for describing a historical series of Italian average rates on loans.
We use the Akaike information criterion (AIC) as an indicator of the goodness of fit of the two models.
Moreover, the presence of structural breaks is verified by means of a Chow test applied to the Euler
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discretization of the corresponding SDE. More precisely, the Chow test is sequentially applied for
each instant in order to evaluate whether the coefficients of the Euler discretization made on each
subinterval are equal to those including all observed time intervals.

TEGM values are quarterly settled and published by the Bank of Italy (see https://www.
bancaditalia.it) for different types of credit transactions. We refer to the TEGM values for a particular
credit transaction, “one-fifth of salary transfer”, in the period from 1 July 1997 to 31 March 2015
(data are quarterly observed, so the number of observations is 72). Moreover, two amount classes
are analyzed:

• Dataset A: up to 10 million lira (until 31 December 2001) and up to e 5000 (after 2002);
• Dataset B: above 10 million lire (until 31 December 2001) and above e 5000 (after 2002).

In Figure 1, Dataset A is shown on the left and Dataset B is on the right.
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Figure 1. TEGM for one-fifth of salary transfer up toe 5000 (on the left) and abovee 5000 (on the right).

We estimate the parameters for the Vasiceck and CIR models, maximizing the conditional
likelihood function. Specifically, we assume that the process X(t) is observed at n discrete time
instants t1, . . . , tn with ti ≥ t0 and denote by x1, . . . , xn the corresponding observations.

Let θ be the vector of the unknown parameters and let us assume P[X(t1) = x1] = 1.
The likelihood function is

L(x1, . . . , xn; θ) =
n

∏
i=2

f (xi, ti|xi−1, ti−1).

3.1. The Vasiceck Model

The Vasiceck model describes the short rate’s dynamics. It can be used in the evaluation of interest
rate derivatives and is more suitable for credit markets. It is specified by the following SDE:

dX(t) = [θ1 − θ2X(t)]dt + θ3 dW(t), (5)

where θ1, θ2, θ3 are positive constants. The model (5) with θ1 = 0 was originally proposed by Ornstein
and Uhlenbeck in 1930 in the physical context to describe the velocity of a particle moving in a fluid
under the influence of friction and it was then generalized by Vasicek in 1977 to model loan interest
rates. It is also used as a model and in physical and biological contexts (see, for instance, [20–23]).

https://www.bancaditalia.it
https://www.bancaditalia.it
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We note that, for θ2 > 0, the process X(t) is mean reverting oscillating around the equilibrium
point θ1/θ2. The process is defined in R and the boundaries ±∞ are natural. The transition pdf of X(t)
is given by

f (x, t|x0, t0) =
1√

2πV(t|t0)
exp

{
− [x−M(t|x0, t0)]

2

2V(t|t0)

}
, (6)

where

M(t|x0, t0) =
θ1

θ2

[
1− e−θ2(t−t0)

]
+ x0e−θ2(t−t0), V(t|t0) =

θ2
3

2θ2

[
1− e−2θ2(t−t0)

]
represent the mean and the variance of X(t) with the condition that X(t0) = x0, respectively.

Further, X(t) has the following steady-state density:

W(x) =
s(x)∫ ∞

−∞ s(z) dz
=

√
θ2

πθ2
3

exp

{
− θ2

θ2
3

(
x− θ1

θ2

)2
}

,

which describes a Gaussian distribution with mean θ1/θ2 and variance θ2
3/2 θ2.

Let θ = (θ1, θ2, θ3) be the vector of the unknown parameters. The maximum likelihood estimate is
obtained as θ̂ = arg maxθ log L(x1, . . . , xn; θ). Implementing this method, making use of the R package
sde (see [24,25]), the procedure produces the results shown in Table 1. In the last row of this table, the
AIC, i.e.,

AIC = 6− 2 log L(x1, . . . , xn; θ̂),

is shown for the two datasets.

Table 1. ML estimates of Model (5) for Dataset A (on the left) and for Dataset B (on the right). The last
row shows the AIC.

Vasicek Model

Dataset A Dataset B

estimate standard error estimate standard error

θ̂1 0.9473455 0.62502358 1.9016919 0.41732799
θ̂2 0.0658379 0.03621181 0.1675858 0.03403613
θ̂3 1.0355084 0.08881145 0.5610075 0.04793382

AIC 207.8207 113.8432

For Datasets A and B, the Chow test applied to the Euler discretization of Model (5) shows a
structural break at time t = 42, corresponding to 1 January 2008 (p-value = 0.002726) for Dataset A
and at time t = 47 corresponding to 1 January 2009 (p-value = 0.006231) for Dataset B. In Table 2, the
ML estimates for Datasets A and B are shown considering separately the series before and after these
dates. Precisely, we consider for Dataset A the following sub-periods:

• first period: 1 July 1997–1 October 2007;
• second period: 1 January 2008–31 March 2015;

for Dataset B, the sub-intervals are as follows:

• first period: 1 July 1997–1 October 2008;
• second period: 1 January 2009–31 March 2015.

The existence of a structural break is quite clear just looking at the data in Figure 1, but the Chow
test permits us to establish the time at which the break verifies, and the AIC values confirm that the
estimations evaluated in the two periods work better then the estimates on the whole dataset.
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Table 2. ML estimates of Model (5) and the corresponding AIC for the periods indicated by Chow test
for Dataset A (on the top) and for Dataset B (on the bottom).

The Vasicek Model

Dataset A

First Period Second Period
1 July 1997–1 October 2007 1 January 2008–31 March 2015

estimate standard error estimate standard error

θ̂1 5.3865862 2.4412428 4.3464435 1.6780736
θ̂2 0.2862057 0.1245413 0.3411949 0.1264711
θ̂3 1.2012565 0.1489351 0.8262836 0.1179829

AIC 126.2129 67.89682

Dataset B

First Period Second Period
1 July 1997–1 October 2008 1 January 2009–31 March 2015

estimate standard error estimate standard error

θ̂1 1.5003276 0.37401583 7.9272605 3.1400451
θ̂2 0.1380841 0.02919803 0.6949408 0.2786503
θ̂3 0.4386253 0.04613525 0.7898723 0.1424101

AIC 54.51816 48.00966

In Figure 2, the steady state pdf are plotted for the two datasets, making use of the estimates of
the parameter θ given in Table 1 for the whole period and in Table 2 for the sub-intervals.
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Figure 2. The Vasicek steady-state densities for Datasets A (on the left) and B (on the right) evaluated
by using θ given in Table 1 for the whole period: 1 July 1997–31 March 2015 and by using the parameters
given in Table 2 for the sub-intervals identified by the Chow test.

3.2. The CIR Model

The CIR model, originally introduced by Feller as a model for population growth in 1951,
was proposed by John C. Cox, Jonathan E. Ingersoll, and Stephen A. Ross as an extension of the
valuation of interest rate derivatives. It describes the evolution of interest rates, and it is characterized
by the following SDE:

dX(t) = [θ1 − θ2X(t)]dt + θ3

√
X(t) dW(t). (7)

We point out that Model (7) has widely been used in the literature in the context of neuronal
modeling (see, for example, [26–28]).
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The process X(t) in (7) is defined in I = (0,+∞). The nature of the boundaries 0 and +∞ depends
on the parameters of the process and establishes the conditions associated with the Kolmogorov and
Fokker–Planck equations to determine the transition pdf. In particular, the lower boundary 0 is exit
if θ1 ≤ 0, regular if 0 < θ1 < θ2

3/2, and entrance if θ1 ≥ θ2
3/2, whereas the endpoint +∞ is natural

(see [29]). In the following, we assume that θ1, θ2, θ3 are positive constants and that θ1 ≥ θ2
3/2. This last

condition assures that X(t) is strictly positive so that the zero state is unattainable. In this case, the 0
state is an entrance boundary, so that the transition pdf can be obtained solving the Kolmogorov and
Fokker–Planck equations with the initial delta condition and a reflecting condition on the zero state.
Specifically, denoting

h−1(y) = y2θ1/θ2
3 e−2θ2y/θ2

3

the inverse of the scale function defined in (2), the reflecting condition for the Kolmogorov equation is

lim
y→0

h−1(y)
∂

∂y
f (x, t|y, τ) = 0,

whereas, for the Fokker–Planck equation, it is

lim
x→0

{ ∂

∂x

[ θ2
3x
2

f (x, t|y, τ)
]
− (θ1 − θ2x) f (x, t|y, τ)

}
= 0.

Therefore, for θ1 ≥ θ2
3/2, one obtains

f (x, t|x0, t0) =
2θ2

θ2
3 [1− e−θ2t]

exp

{
−2θ2(x + x0e−θ2t)

θ2
3 [1− e−θ2t]

}(
x
x0

e−θ2t
)θ1/θ2

3−1/2

×I2θ1/θ2
3−1

[
4θ2(eθ2tx x0)

1/2

θ2
3(e

θ2t − 1)

]
(8)

where Iν(z) denotes the modified Bessel function of the first kind:

Iν(z) =
∞

∑
k=0

(z/2)2k+ν

k!Γ(ν + k + 1)

and Γ is the Euler Gamma function:

Γ(z) =
∫ +∞

0
tz−1e−t dt.

The steady-state pdf for X(t) is a Gamma distribution with shape parameter 2θ1/θ2
3 and scale

parameter θ2
3/2θ2, i.e.,

W(x) =
1

x Γ(2θ1/θ2
3)

(2θ2

θ2
3

x
)2θ1/θ2

3
exp

{
−2θ2

θ2
3

x
}

.

For Model (7), in Table 3, the maximum likelihood estimates of the parameters and the standard
errors and the AIC values are shown for Datasets A and B. Moreover, in the last row of this table, the
AIC is shown for the two datasets.

Note that the Chow test applied to the Euler discretization of Model (7) produces the same results
that the Vasiceck model does. Indeed, Models (5) and (7) show the same trend, but in the CIR model
one assumes residuals heteroschedasticity that does not bias the parameter estimates; it only makes
the standard errors incorrect. Moreover, in Table 4, the estimates of the parameters, the standard errors,
and the AIC values are shown before and after the structural breaks indicated by the Chow test. In
addition, in this case, the estimates for the two separated periods work better than the estimates using
only one model for the whole period shown from the AIC values.
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Table 3. ML estimates of Model (7) for Dataset A (on the left) and for Dataset B (on the right). Last row
shows the AIC.

CIR Model

Dataset A Dataset B

estimate standard error estimate standard error

θ̂1 0.87234371 0.57486263 0.71000000 0.69208186
θ̂2 0.06140606 0.03471271 0.06913925 0.05744829
θ̂3 0.24781675 0.02122343 0.16565230 0.01524389

AIC 204.3006 123.7508

In Figure 3, the steady state pdf are plotted for the two datasets making use of the estimates of the
parameter θ given in Table 3 for the whole period and in Table 4 for the sub-intervals.

Table 4. ML estimates of Model (7) and the corresponding AIC for the periods indicated by the Chow
test for Dataset A (on the top) and for Dataset B (on the bottom).

CIR Model

Dataset A

before 1 January 2008 after 1 January 2008

estimate standard error estimate standard error

θ̂1 0.70000000 1.96946686 0.50000000 1.5237235
θ̂2 0.04645403 0.10114005 0.05015628 0.1157965
θ̂3 0.25705245 0.02838514 0.21809718 0.0293771

AIC 130.8434 73.32189

Dataset B

before 1 January 2009 after 1 January 2009

estimate standard error estimate standard error

θ̂1 0.55000000 0.7378984 0.53234000 2.02364571
θ̂2 0.06276713 0.0587019 0.03746054 0.18050398
θ̂3 0.12443707 0.0159996 0.21651927 0.03194828

AIC 58.07491 75.83153
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Figure 3. CIR steady-state densities for Datasets A (on the left) and B (on the right) evaluated by using θ given
in Table 3 for the whole period: 1 July 1997–31 March 2015 and by using the parameters given in Table 4 for the
sub-intervals identified by the Chow test.
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4. FPT Analysis for TEGM

In this section, we consider the FPT analysis for the Vasicek model. This choice is motivated by
the results of Section 3. Indeed, comparing the two models by looking at the AIC values, we can see
that the Vasicek model better fits our datasets in all cases (only for Dataset A does the CIR model work
better than the Vasicek model).

For Datasets A and B, due to the Markovianity of the process, we consider the estimates relative
to the second periods (1 January 2008–31 March 2015 for Dataset A and 1 January 2009–31 March 2015
for Dataset B) shown in Table 2.

By using the recursive Equation (4), we obtain the estimates of FPT moments for Dataset A on the
period 1 January 2008–31 March 2015. In Table 5, these estimates are shown for various values of S (on
the top), with x0 = 13.28 corresponding to the mean of the data in the considered period, and various
values of the initial point x0 (on the bottom) fixing the alert boundary S = 15.

Table 6 shows the analogous analysis of Table 5 for Dataset B, with x0 = 12.1636 and S = 14.
We note that, by increasing the distance between S and x0, the mean FPT increases. From an

economic point of view, the choice of such a distance can be interpreted as a choice of “propensity of
risk” of an available loan. Figure 4 shows the mean FPT (quarters starting from the loan deposit) as a
function of the alert boundary (up) and as a function of the initial point x0. Clearly, each applicant
knows the initial point x0 and can choose the “alert boundary” S.

Table 5. For Dataset A, second period, mean, second order moment, and variance of the random
variable Tx0 through various values of the threshold S (on the top) and for various values of x0

(on the bottom).

x0 = 13.28 S t1(S|x0) t2(S|x0) Var(S|x0)

14.0 6.780026 1.312067× 102 8.5238× 101

14.2 1.018325× 10 2.612374× 102 1.575387× 102

14.4 1.488234× 10 5.135466× 102 2.920625× 102

14.6 2.157931× 10 1.021095× 103 5.554285× 102

14.8 3.144937× 10 2.089585× 103 1.100522× 103

15 4.651822× 10 4.462957× 103 2.299013× 103

15.2 7.038275× 10 1.00658× 104 5.112068× 103

15.4 1.096303× 102 2.421257× 104 1.219378× 104

15.6 1.76713× 102 6.262414× 104 3.139667× 104

15.8 2.959467× 102 1.752716× 105 8.768709× 104

16 5.16416× 102 5.332541× 105 2.665686× 105

S = 15 x0 t1(S|x0) t2(S|x0) Var(S|x0)

12.0 5.116115× 10 4.937052× 103 2.319589× 103

12.2 1.808844× 102 6.413534× 104 6.413534× 104

12.4 1.803493× 102 6.394063× 104 3.141475× 104

12.6 1.797354× 102 6.371754× 104 3.141272× 104

12.8 1.79022× 102 6.345886× 104 3.140997× 104

13 1.781812× 102 6.315425× 104 3.140572× 104

13.2 1.77174× 102 6.279051× 104 3.139988× 104

13.4 1.759456× 102 6.234752× 104 3.139065× 104

13.6 1.74417× 102 6.179734× 104 3.137605× 104

13.8 1.724714× 102 6.109852× 104 3.135214× 104

14 1.699329× 102 6.018864× 104 3.131143× 104
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Table 6. For Dataset B, second period, mean, second order moment, and variance of the random
variable Tx0 through the threshold S for various values of S and of x0.

x0 = 12.1636 S t1(S|x0) t2(S|x0) Var(S|x0)

13 0.2653719× 102 1.568046× 103 8.638236× 102

13.2 0.5332441× 102 5.985332× 103 3.141839× 103

13.4 1.134217× 102 2.631623× 104 1.345175× 104

13.6 2.606306× 102 1.371027× 105 6.917443× 104

13.8 6.547357× 102 8.602519× 105 4.315731× 105

14 1.808475× 103 6.548544× 106 3.277963× 106

14.2 5.502628× 103 6.05788× 107 3.029989× 107

14.4 1.844072× 104 6.801859× 108 3.401257× 108

14.6 6.800683× 104 9.250082× 109 4.625154× 109

14.8 2.75718× 105 1.520417× 1011 7.602126× 1010

15 1.227843× 106 3.015198× 1012 1.507601× 1012

S = 14 x0 t1(S|x0) t2(S|x0) Var(S|x0)

11 1.813076× 103 6.565252× 103 3.278009× 106

11.2 1.812688× 103 6.563835× 106 3.277998× 106

11.4 1.81221× 103 6.562115× 106 3.27801× 106

11.6 1.811604× 103 6.559909× 106 3.277999× 106

11.8 1.810807× 103 6.557028× 106 3.278004× 106

12. 1.809714× 103 6.553067× 106 3.278× 106

12.2 1.80814× 103 6.547343× 106 3.277975× 106

12.4 1.805734× 103 6.538643× 106 3.277966× 106

12.6 1.801816× 103 6.52444× 106 3.2779× 106

12.8 1.794949× 103 6.499556× 106 3.277714× 106

13 1.781937× 103 6.452422× 106 3.277121× 106
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Figure 4. Mean FPT versus the alert boundary (x0 = 13.28) and the initial value x0 (S = 15) for Dataset
A, second period (left), and for Dataset B, second period (right).

5. Conclusions

This paper addresses stochastic modeling of loan interest rate dynamics according to the current
laws against usury. Such modeling states an upper bound, above which an interest rate is considered a
usury rate and illegal. Here we focus on the Italian case and consider two models commonly used in
short-term loan rates, i.e., the Vasicek and CIR models. We propose a strategy based on FPT through
an alert boundary, above which the rate is considered at the risk of usury and hence has to be kept
under control. Moreover, the mean first exit time through the alert boundary can be an indicator of
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the “goodness” of the loan, in the sense that an applicant, when he/she is choosing between two loan
offers, should choose the one with a higher mean exit time from the alert boundary.

The procedure was applied to a historical series of Italian average rates on loans in the period
from 1 July 1997 to 31 March 2015. We considered “one-fifth of salary transfer” and two amount
classes were analyzed: (a) up to 10 million lira (until 31 December 2001) and up to e 5000 (after 2002);
and (b) above 10 million lire (until 31 December 2001) and above e 5000 (after 2002). The model
parameters were estimated by MLE, and a Chow test was applied to detect the presence of structural
breaks in our datasets.

The model and proposed strategy are apt for further development. Indeed, we can extend the
analysis to more general processes in which some parameters are time-dependent, or we can consider
time-dependent thresholds to model varying loan interest rates. Further generalization can include
analysis of FPT through two boundaries: the upper one describing an alert threshold and the lower
one representing a favorable interest rate.
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