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Abstract: In this study, the neutrosophic triplet G-module is introduced and the properties of
neutrosophic triplet G-module are studied. Furthermore, reducible, irreducible, and completely
reducible neutrosophic triplet G-modules are defined, and relationships of these structures with
each other are examined. Also, it is shown that the neutrosophic triplet G-module is different from
the G-module.
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1. Introduction

Neutrosophy is a branch of philosophy, firstly introduced by Smarandache in 1980. Neutrosophy [1]
is based on neutrosophic logic, probability, and set. Neutrosophic logic is a generalized form of many
logics such as fuzzy logic, which was introduced by Zadeh [2], and intuitionistic fuzzy logic, which
was introduced by Atanassov [3]. Furthermore, Bucolo et al. [4] studied complex dynamics through
fuzzy chains; Chen [5] introduced MAGDM based on intuitionistic 2–Tuple linguistic information,
and Chen [6] obtain some q–Rung Ortopair fuzzy aggregation operators and their MAGDM. Fuzzy
set has function of membership; intuitionistic fuzzy set has function of membership and function of
non-membership. Thus; they do not explain the indeterminancy states. However, the neutrosophic set
has a function of membership, a function of indeterminacy, and a function of non-membership. Also,
many researchers have studied the concept of neutrosophic theory in [7–12]. Recently, Olgun et al. [13]
studied the neutrosophic module; Şahin et al. [14] introduced Neutrosophic soft lattices; Şahin et al. [15]
studied the soft normed ring; Şahin et al. [16] introduced the centroid single-valued neutrosophic
triangular number and its applications; Şahin et al. [17] introduced the centroid points of transformed
single-valued neutrosophic number and its applications; Ji et al. [18] studied multi-valued neutrosophic
environments and their applications. Also, Smarandache et al. [19] studied neutrosophic triplet (NT)
theory and [20,21] neutrosophic triplet groups. A NT has a form <x, neut(x), anti(x)>, in which neut(x)
is neutral of “x” and anti(x) is opposite of “x”. Furthermore, neut(x) is different from the classical
unitary element. Also, the neutrosophic triplet group is different from the classical group. Recently,
Smarandache et al. [22] studied the NT field and [23] the NT ring; Şahin et al. [24] introduced the
NT metric space, the NT vector space, and the NT normed space; Şahin et al. [25] introduced the NT
inner product.

The concept of G-module [26] was introduced by Curties. G-modules are algebraic structures
constructed on groups and vector spaces. The concept of group representation was introduced by
Frobenious in the last two decades of the 19th century. The representation theory is an important
algebraic structure that makes the elements, which are abstract concepts, more evident. Many
important results could be proved only for representations over algebraically closed fields. The module
theoretic approach is better suited to deal with deeper results in representation theory. Moreover,
the module theoretic approach adds more elegance to the theory. In particular, the G-module structure
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has been extensively used for the study of representations of finite groups. Also, the representation
theory of groups describes all the ways in which group G may be embedded in any linear group GL
(V). The G-module also holds an important place in the representation theory of groups. Recently
some researchers have been dealing with the G-module. For example, Fernandez [27] studied
fuzzy G-modules. Sinho and Dewangan [28] studied isomorphism theory for fuzzy submodules
of G-modules. Şahin et al. [29] studied soft G-modules. Sharma and Chopra [30] studied the injectivity
of intuitionistic fuzzy G-modules.

In this paper, we study neutrosophic triplet G-Modules in order to obtain a new algebraic
constructed on neutrosophic triplet groups and neutrosophic triplet vector spaces. Also we define the
reducible neutrosophic triplet G-module, the irreducible neutrosophic triplet G-module, and the
completely reducible neutrosophic triplet G-module. In this study, in Section 2, we give some
preliminary results for neutrosophic triplet sets, neutrosophic triplet groups, the neutrosophic triplet
field, the neutrosophic triplet vector space, and G-modules. In Section 3, we define the neutrosophic
triplet G-module, and we introduce some properties of a neutrosophic triplet G-module. We show
that the neutrosophic triplet G-module is different from the G-module, and we show that if certain
conditions are met, every neutrosophic triplet vector space or neutrosophic triplet group can be a
neutrosophic triplet G-module at the same time. Also, we introduce the neutrosophic triplet G-module
homomorphism and the direct sum of neutrosophic triplet vector space. In Section 4, we define
the reducible neutrosophic triplet G-module, the irreducible neutrosophic triplet G-module, and the
completely reducible neutrosophic triplet G-module, and we give some properties and theorems for
them. Furthermore, we examine the relationships of these structures with each other, and we give
some properties and theorems. In Section 5, we give some conclusions.

2. Preliminaries

Definition 1. Let N be a set together with a binary operation *. Then, N is called a neutrosophic triplet set if for
any a ∈ N there exists a neutral of “a” called neut(a) that is different from the classical algebraic unitary element
and an opposite of “a” called anti(a) with neut(a) and anti(a) belonging to N, such that [21]:

a*neut(a) = neut(a)* a = a,
and
a*anti(a) = anti(a)* a = neut(a).

Definition 2. Let (N,*) be a neutrosophic triplet set. Then, N is called a neutrosophic triplet group if the
following conditions are satisfied [21].

(1) If (N,*) is well-defined, i.e., for any a, b ∈ N, one has a*b ∈ N.
(2) If (N,*) is associative, i.e., (a*b)*c = a*(b*c) for all a, b, c ∈ N.

Theorem 1. Let (N,*) be a commutative neutrosophic triplet group with respect to * and a, b ∈ N, in which a
and b are both cancellable [21],

(i) neut(a)*neut(b) = neut(a*b).
(ii) anti(a)*anti(b) = anti(a*b).

Definition 3. Let (NTF,*, #) be a neutrosophic triplet set together with two binary operations * and #. Then
(NTF,*, #) is called neutrosophic triplet field if the following conditions hold [22].

1. (NTF,*) is a commutative neutrosophic triplet group with respect to *.
2. (NTF, #) is a neutrosophic triplet group with respect to #.
3. a#(b*c) = (a#b)*(a#c) and (b*c)#a = (b#a)*(c#a) for all a, b, c ∈ NTF.
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Theorem 2. Let (N,*) be a neutrosophic triplet group with respect to *. For (left or right) cancellable a ∈ N, one
has the following [24]:

(i) neut(neut(a)) = neut(a);
(ii) anti(neut(a)) = neut(a);
(iii) anti(anti(a)) = a;
(iv) neut(anti(a)) = neut(a).

Definition 4. Let (NTF, ∗1, #1) be a neutrosophic triplet field, and let (NTV, ∗2, #2) be a neutrosophic triplet
set together with binary operations “ ∗2” and “#2”. Then (NTV, ∗2, #2) is called a neutrosophic triplet vector
space if the following conditions hold. For all u, v ∈ NTV, and for all k ∈ NTF, such that u∗2v ∈ NTV and u
#2k ∈ NTV [24];

(1) (u∗2v) ∗2t = u∗2 (v∗2t); u, v, t ∈ NTV;
(2) u∗2v = v∗2u; u, v ∈ NTV;
(3) (v∗2u) #2k = (v#2k) ∗2(u#2k); k ∈ NTF and u, v ∈ NTV;
(4) (k∗1t) #2u = (k#2v) ∗1(u#2v); k, t ∈ NTF and u ∈ NTV;
(5) (k#1t) #2u = k#1(t#2u); k, t ∈ NTF and u ∈ NTV;
(6) There exists any k ∈ NTF such that u#2neut(k) = neut(k) #2u = u; u ∈ NTV.

Definition 5. Let G be a finite group. A vector space M over a field K is called a G-module if for every g ∈ G
and m ε M there exists a product (called the action of G on M) m.g ∈M satisfying the following axioms [26]:

(i) m.1G = m, ∀ m ε M (1G being the identity element in G);
(ii) m.(g.h) = (m.g).h, ∀ m ε M; g, h ε G;
(iii) (k1m1 + k2m2).g = k1(m1.g)+ k2(m2.g); k1, k2ε K; m1, m2ε M, and g ε G.

Definition 6. Let M be a G-module. A vector subspace N of M is a G-submodule if N is also a G-module under
the same action of G [26].

Definition 7. Let M and M∗ be G-modules. A mapping φ [26]: M→ M∗ is a G-module homomorphism if

(i) φ(k1.m1 + k2.m2) = k1. φ(m1) + k2.φ(m2);
(ii) φ(m.g) = φ(m).g; k1, k2ε K; m, m1, m2ε M; g ε G.

Further, if φ is 1-1, then φ is an isomorphism. The G-modules M and M* are said to be isomorphic
if there exists an isomorphism φ of M onto M*. Then we write M ∼= M∗.

Definition 8. Let M be a nonzero G-module. Then, M is irreducible if the only G-submodules of M are M and
{0}. Otherwise, M is reducible [26].

Definition 9. Let M1, M2, M3, . . . , Mn be vector spaces over a field K [31]. Then, the set {m1 + m2 + . . . +
mn; mi ε Mi} becomes a vector space over K under the operations

(m1+m2 + . . . + mn) +
(
m1
′ + m2

′ + . . . + mn
′) = (m1 + m1

′)+ (m2 + m2
′)+ . . . +

(
mn + mn

′) and

α(m1+m2 + . . . + mn) = αm1 + αm2 + . . . + αmn; α ε K, mn
′ ε Mi

It is the called direct sum of the vector spaces M1, M2, M3, . . . , Mn and is denoted by n
i=1⊕Mi.

Remark 1. The direct sum M = n
i=1⊕Mi of vector spaces Mi has the following properties [31]:

(i) Each element m ε M has a unique expression as the sum of elements of Mi.
(ii) The vector subspaces M1, M2, M3, . . . , Mn of M are independent.
(iii) For each 1 ≤ i ≤ n, Mj ∩ (M1 + M2 + . . . + Mj−1 + Mj+1 + . . . + Mn) = {0}.
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Definition 10. A nonzero G-module M is completely reducible if for every G-submodule N of M there exists a
G-submodule N* of M such that M = N ⊕ N∗ [26].

Proposition 1. A G-submodule of a completely reducible G-module is completely reducible [26].

3. Neutrosophic Triplet G-Module

Definition 11. Let (G, *) be a neutrosophic triplet group, (NTV,∗1, #1) be a neutrosophic triplet vector space on
a neutrosophic triplet field (NTF,∗2, #2), and g*m ε NTV for g ε G, m ε NTV. If the following conditions are
satisfied, then (NTV,∗1, #1) is called neutrosophic triplet G-module.

(a) There exists g ∈ G such that m*neut(g) = neut(g)*m = m for every m ∈ NTV;
(b) m∗1(g∗1h) = (m∗1g) ∗1h, ∀ m ∈ NTV; g, h ∈ G;
(c) (k1#1m1 ∗1 k2 #1m2)*g = k1#1 (m1*g)∗1k2#1 (m2*g), ∀k1, k2ε NTF; m1, m2 ε NTV; g ε G.

Corollary 1. Neutrosophic G-modules are generally different from the classical G-modules, since there is a single
unit element in classical G-module. However, the neutral element neut(g) in neutrosophic triplet G-module
is different from the classical one. Also, neutrosophic triplet G-modules are different from fuzzy G-modules,
intuitionistic fuzzy G-modules, and soft G-modules, since neutrosophic triplet set is a generalized form of fuzzy
set, intuitionistic fuzzy set, and soft set.

Example 1. Let X be a nonempty set and let P(X) be set of all subset of X. From Definition 4, (P(X), ∪, ∩) is a
neutrosophic triplet vector space on the (P(X), ∪, ∩) neutrosophic triplet field, in which
the neutrosophic triplets with respect to ∪; neut(A) = A and anti(A) = B, such that A, B ∈ P(X); A ⊆ B;
and the neutrosophic triplets with respect to ∩; neut(A) = A and anti(A) = B, such that A, B ∈ P(X); B ⊇ A.
Furthermore, (P(X), ∪) is a neutrosophic triplet group with respect to ∪, in which
neut(A) = A and anti(A) = B such that A, B ⊂ P(X); A ⊆ B. We show that (P(X), ∪, ∩) satisfies condition of
neutrosophic triplet G-module. From Definition 11:

(a) It is clear that if A = B, there exists any A ∈ P(X) for every B ∈ P(X), such that B ∪ neut(A) = neut(A) ∪
B = A.

(b) It is clear that A ∪ (B ∪ C) = (A ∪ B) ∪ C, ∀ A ∈ P(X); B, C ∈ P(X).
(c) It is clear that

((A1 ∩ B1)∪ (A2 ∩ B2)) ∪ C = (A1 ∩ B1) ∪ C))∪ (A2 ∩ B2) ∪ C)), ∀A1, A2 ε P(X); B1, B2 ε P(X); C ε P(X).
Thus, (P(X), ∪, ∩) is a neutrosophic triplet G-module.

Corollary 2. If G = NTV, * = ∗1, then each (NTV,∗1, #1) neutrosophic triplet vector space is a neutrosophic
triplet G-module at the same time. Thus, if G = NTV and * = ∗1, then every neutrosophic triplet vector space or
neutrosophic triplet group can be a neutrosophic triplet G-module at the same time. It is not provided by classical
G-module.

Proof of Corollary 1. If G = NTV, * = ∗1;

(a) There exists a g ε NTV such that m*neut(g) = neut(g)*m = m, ∀m ε NTV;
(b) It is clear that m*(g*h) = (m*g)*h, as (NTV,*) is a neutrosophic triplet group; ∀ m, g, h ∈ NTV;
(c) It is clear that (k1#1m1 ∗1 k2 #1m2)*g = k1#1(m1*g)∗1k2#1 (m2*g), since (NTV,∗1, #1) is a neutrosophic

triplet vector space; ∀ g, k1, k2 ε NTF; m1, m2 ε NTV.

Definition 12. Let (NTV,∗1, #1) be a neutrosophic triplet G-module. A neutrosophic triplet subvector space
(N, ∗1, #1) of (NTV,∗1, #1) is a neutrosophic triplet G-submodule if (N,∗1, #1) is also a neutrosophic triplet
G-module.

Example 2. From Example 1; for N ⊆ X, (P(N), ∪, ∩) is a neutrosophic triplet subvector space of (P(X), ∪, ∩).
Also, (P(N), ∪, ∩) is a neutrosophic triplet G-module. Thus, (P(N), ∪, ∩) is a neutrosophic triplet G-submodule
of (P(X), ∪, ∩).
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Example 3. Let (NTV,∗1, #1) be a neutrosophic triplet G-module. N = {neut(x)} ∈ NTV is a neutrosophic
triplet subvector space of (NTV,∗1, #1). Also, N = {neut(x) = x} ∈ NTV is a neutrosophic triplet G-submodule of
(NTV,∗1, #1).

Definition 13. Let (NTV,∗1, #1) and (NTV∗,∗3, #3) be neutrosophic triplet G-modules on neutrosophic triplet
field (NTF,∗2, #2) and (G, *) be a neutrosophic triplet group. A mapping φ: NTV→NTV∗ is a neutrosophic
triplet G-module homomorphism if

(i) φ(neut(m)) = neut(φ(m))
(ii) φ(anti(m)) = anti(φ(m))
(iii) φ((k1#1m1) ∗1 (k2#1m2)) = (k1#3φ(m1))∗3(k2#3φ(m2))
(iv) φ(m*g) = φ(m)*g; ∀ k1, k2 ∈ NTF; m, m1, m2 ∈M; g ∈ G.

Further, if φ is 1-1, then φ is an isomorphism. The neutrosophic triplet G-modules (NTV,∗1, #1)
and (NTV∗,∗3, #3) are said to be isomorphic if there exists an isomorphism φ: NTV→ NTV∗. Then,
we write NTV ∼= NTV∗.

Example 4. From Example 1, (P(X), ∪, ∩) is neutrosophic triplet vector space on neutrosophic triplet field
(P(X), ∪, ∩). Furthermore, (P(X), ∪, ∩) is a neutrosophic triplet G-module. We give a mapping φ: P(X)→
P(X), such that φ(A) = neut(A). Now, we show that φ is a neutrosophic triplet G-module homomorphism.

(i) φ(neut(A)) = neut(neut(A)) = neut(φ(A))
(ii) φ(anti(A)) = neut(anti(A)); from Theorem 2, neut(anti(A)) = neut(A).

anti(φ(A)) = anti(neut(A)); from Theorem 2, anti(neut(A)) = neut(A). Then φ(anti(A)) = anti(φ(A)).
(iii) φ((A1 ∩ B1)∪ (A2 ∩B2)) = neut(A1 ∩ B1)∪ (A2 ∩B2)); from Theorem 1, as neut(a)*neut(b) = neut(a*b);

neut(A1 ∩ B1) ∪ (A2 ∩B2)) = neut(A1 ∩ B1) ∪ neut(A2 ∩B2) =

((neut(A1) ∩ neut(B1)) ∪ ((neut(A2) ∩ neut(B2)). From Example 1, as neut(A) = A,

((neut(A1) ∩ neut(B1)) ∪ ((neut(A2) ∩ neut(B2)) = (A1∩ neut(B1)) ∪ (A2 ∩ neut(B2)) =

(A1∩ neut(B1) ) ∪(A2 ∩ neut(B2)) = (A1∩φ(B1)) ∪(A2 ∩ φ (B2)).
(iv) φ(A*B) = neut(A*B); from Theorem 1, as neut(a)*neut(b) = neut(a*b), neut(A*B) = neut(A)* neut(B).

From Example 1, as neut(A) = A, neut(A)* neut(B) = A* neut(B) = A* φ(B).

4. Reducible, Irreducible, and Completely Reducible Neutrosophic Triplet G-Modules

Definition 14. Let (NTV,∗1, #1) be neutrosophic triplet G-modules on neutrosophic triplet field (NTF,∗2, #2).
Then, (NTV,∗1, #1) is irreducible neutrosophic triplet G-modules if the only neutrosophic triplet G-submodules
of (NTV,∗1, #1) are (NTV,∗1, #1) and {neut(x) = x}, x ∈ NTV. Otherwise, (NTV,∗1, #1) is reducible neutrosophic
triplet G-module.

Example 5. From Example 2, for N = {1,2} ⊆ {1,2,3} = X, (P(N), ∪, ∩) is a neutrosophic triplet subvector space
of (P(X), ∪, ∩). Also, (P(N), ∪, ∩) is a neutrosophic triplet G-module. Thus, (P(N), ∪, ∩) is a neutrosophic
triplet G-submodule of (P(X), ∪, ∩). Also, from Definition 14, (P(X), ∪, ∩) is a reducible neutrosophic triplet
G-module.
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Example 6. Let X = G = {1, 2} and P(X) be power set of X. Then, (P(X), *, ∩) is a neutrosophic triplet vector
space on the (P(X), *, ∩) neutrosophic triplet field and (G, *) is a neutrosophic triplet group, in which

A∗B =



B\A, s(A) < s(B)ΛB ⊃ A ∧ A′ = B
A\B, s(B) < s(A)ΛA ⊃ B ∧ B′ = A

(A\B)′, s(A) > s(B) ∧ A ⊃ B ∧ B′ 6= A
(B\A)′, s(B) > s(A) ∧ B ⊃ A ∧ A′ 6= B

X, s(A) = s(B) ∧ A 6= B
∅, A = B

Here, s(A) means the cardinal of A, and A’ means the complement of A.
The neutrosophic triplets with respect to *;
neut(∅) = ∅, anti(∅) = ∅; neut({1}) = {1, 2}, anti({1}) = {2}; neut({2}) = {1, 2}, anti({2}) = {1}; neut({1, 2}) = ∅,
anti({1,2}) = {1, 2};
The neutrosophic triplets with respect to ∩;
neut(A) = A and anti(A) = B, in which B ⊃ ⋂ A.
Also, (P(X), *, ∩) is a neutrosophic triplet G-module. Here, only neutrosophic triplet G-submodules of (P(X), *,
∩) are (P(X), *, ∩) and {neut(∅) = ∅}. Thus, (P(X),*, ∩) is a irreducible neutrosophic triplet G-module.

Definition 15. Let (NTV1,∗1, #1), (NTV2,∗1, #1), . . . , (NTVn,∗1, #1) be neutrosophic triplet vector spaces on
(NTF,∗2, #2). Then, the set {m1 + m2 + . . . + mn; mi ε NTVi} becomes a neutrosophic triplet vector space on
(NTF,∗2, #2), such that

(m1 ∗1 m2 ∗1 . . .∗1mn) ∗1 (m1
′ ∗1 m2

′∗1 . . . ∗1 mn
′) = (m1 ∗1 m1

′) ∗1 (m2 ∗1 m2
′) ∗1 . . . ∗1

(mn ∗1 mn
′) and

α#1(m1∗1 m2∗1 . . . ∗1 mn) =
(
α#1m1)∗1α#1m2)∗1 . . . ∗1 (α#1mn); α ε NT f , mn

′ ε NTVi.

It is called the direct sum of the neutrosophic triplet vector spaces NTV1, NTV2, NTV3, . . . , NTVn

and is denoted by n
i=1⊕NTVi.

Remark 2. The direct sum NTV = n
i=1⊕NTVi of neutrosophic triplet vector spaces NTVi has the following

properties.

(i) Each element m ε NTV has a unique expression as the sum of elements of NTVi.
(ii) For each 1 ≤ i ≤ n, NTVj ∩ (NTV1 + NTV2 + . . . + NTVj−1 + NTVj+1 + . . . + NTVn) = {x: neut(x)

= x}.

Definition 16. Let (NTV, ∗1, #1) be neutrosophic triplet G-modules on neutrosophic triplet field (NTF, ∗2, #2),
such that NTV 6= {neut(x) = x}. Then, (NTV, ∗1, #1) is a completely reducible neutrosophic triplet G-module
if for every neutrosophic triplet G-submodule (N1, ∗1, #1) of (NTV, ∗1, #1) there exists a neutrosophic triplet
G-submodule (N2, ∗1, #1) of (NTV, ∗1, #1), such that NTV = N1 ⊕ N2.

Example 7. From Example 5, for N = {1, 2}, (P(N), ∪, ∩) is a neutrosophic triplet vector space on (P(N), ∪, ∩)
and a neutrosophic triplet G-module. Also, the neutrosophic triplet G-submodules of (P(N), ∪, ∩) are (P(N), ∪,
∩), (P(M), ∪, ∩), (P(K), ∪, ∩), and (P(L), ∪, ∩). Here, M = {1}, K = {2}, and T = {∅}, in which P(M)⊕P(K) =
P(N), P(K)⊕P(M) = P(N), P(N)⊕P(T) = P(N), and P(T)⊕P(N) = P(N). Thus, (P(N), ∪, ∩) is a completely
reducible neutrosophic triplet G-module.

Theorem 3. A neutrosophic triplet G-submodule of a completely reducible neutrosophic triplet G-module is
completely neutrosophic triplet G-module.

Proof of Theorem 1. Let (NTV, ∗1,#1) is a completely reducible neutrosophic triplet G-module on neutrosophic
triplet field (NTF, ∗2, #2). Assume that (N, ∗1, #1) is a neutrosophic triplet G-submodule of (NTV, ∗1, #1) and
(M, ∗1, #1) is a neutrosophic triplet G-submodule of (N, ∗1, #1). Then, (M, ∗1,#1) is a neutrosophic triplet
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G-submodule of (NTV, ∗1, #1). There exists a neutrosophic triplet G-submodule (T, ∗1, #1), such that NTV =
M⊕T, since (NTV, ∗1, #1) is a completely reducible neutrosophic triplet G-module. Then, we take N′ = T ∩ N.
From Remark 2,

N′ ∩M ⊂ M ∩ T = {x : neut(x) = x} (1)

Then, we take y ∈ N. If y ∈ N, y ∈ NTV and y = m ∗1 t, in which m ∈M; t ∈ T. Therefore, we obtain t ∈
N. Thus,

tN′ = T ∩ N and y = m∗1 tN′⊕M (2)

From (i) and (ii), we obtain N = N′⊕M. Thus, (N, ∗1, #1) is completely reducible neutrosophic triplet G-module.

Theorem 4. Let (NTV, ∗1, #1) be a completely reducible neutrosophic triplet G-module on neutrosophic triplet
field (NTF, ∗2, #2). Then, there exists a irreducible neutrosophic triplet G-submodule of (NTV, ∗1, #1).

Proof of Theorem 2. Let (NTV, ∗1, #1) be a completely reducible neutrosophic triplet G-module and (N, ∗1,
#1) be a neutrosophic triplet G-submodule of (NTV, ∗1, #1). We take y 6= neut(y) ∈ N, and we take collection
sets of neutrosophic triplet G-submodules of (N, ∗1, #1) such that do not contain element y. This set is not empty,
because there is {x: x = neut(x)} neutrosophic triplet G-submodule of (N, ∗1, #1). From Zorn’s Lemma, the
collection has maximal element (M, ∗1, #1). From Theorem 3, (N, ∗1, #1) is a completely reducible neutrosophic
triplet G-module, and there exists a (N1, ∗1, #1) neutrosophic triplet G-submodule, such that N = M⊕N1.
We show that (N1∗1, #1) is a irreducible neutrosophic triplet G–submodule. Assume that (N1, ∗1, #1) is a
reducible neutrosophic triplet G–submodule. Then, there exists (K1, ∗1, #1) and (K2, ∗1, #1) neutrosophic triplet
G-submodules of (N1, ∗1, #1), such that y ∈ N1, N2, and from Theorem 3, N1 = K1 ⊕ K2, in which, as N =
M⊕N1, N = M⊕K1 ⊕ K2. From Remark 2, (M∗1K1) ∩ K2 = {neut(x) = x} or (M∗1K2) ∩ K1 = neut(x) = x}.
Then, y /∈ (M∗1K1) ∩ K2 or y /∈ (M∗1K2) ∩ K1. Hence, y /∈ (M∗1K1) or y /∈ (M∗1K2). This is a contraction.
Thus, (N1∗1, #1) is an irreducible neutrosophic triplet G-submodule.

Theorem 5. Let (NTV, ∗1, #1) be a completely reducible neutrosophic triplet G-module. Then, (NTV, ∗1, #1) is
a direct sum of irreducible neutrosophic triplet G-modules of (NTV, ∗1, #1).

Proof of Theorem 3. From Theorem 3, (Ni,∗1, #1) (i = 1, 2, . . . , n), neutrosophic triplet G-submodules of
(NTV, ∗1, #1) are completely reducible neutrosophic triplet G-modules, such that NTV = Ni−k ⊕ Nk (k = 1, 2,
. . . , i − 1). From Theorem 4, there exists (Mi, ∗1, #1) irreducible neutrosophic triplet G-submodules of (Ni, ∗1,
#1). Also, from Theorem 3, (Mi, ∗1, #1) are completely reducible neutrosophic triplet G-modules, such that Ni =
Ni−k ⊕ Nk (k = 1, 2, . . . , i − 1). If these steps are followed, we obtained (NTV, ∗1, #1), which is a direct sum of
irreducible neutrosophic triplet G-modules of (NTV, ∗1, #1).

5. Conclusions

In this paper; we studied the neutrosophic triplet G-module. Furthermore, we showed that
neutrosophic triplet G-module is different from the classical G-module. Also, we introduced the
reducible neutrosophic triplet G-module, the irreducible neutrosophic triplet G-module, and the
completely reducible neutrosophic triplet G-module. The neutrosophic triplet G-module has new
properties compared to the classical G-module. By using the neutrosophic triplet G-module, a theory of
representation of neutrosophic triplet groups can be defined. Thus, the usage areas of the neutrosophic
triplet structures will be expanded.

Author Contributions: Florentin Smarandache defined and studied neutrosophic triplet G-module, Abdullah
Kargın defined and studied reducible neutrosophic triplet G-module, irreducible neutrosophic triplet G-module,
and the completely reducible neutrosophic triplet G-module. Mehmet Şahin provided the examples and organized
the paper.
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