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Abstract: The main purpose of the present paper is to well define Minkowskian angles and
pseudo-angles between the two null directions and between a null direction and any non-null direction,
respectively. Moreover, in a kind of way that will be tried to be made clear at the end of the paper,
these new sorts of angles and pseudo-angles can similarly to the previously known angles be seen as
(combinations of) Minkowskian lengths of arcs on a Minkowskian unit circle together with Minkowskian
pseudo-lengths of parts of the straight null lines.
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1. Introduction

In his 1908 lecture “Raum und Zeit" (cfr. Figure 1), Hermann Minkowski presented his indefinite geometry,
which made possible the development of Lorentzian geometry and, more generally, of pseudo-Euclidean
geometry and of pseudo-Riemannian geometry; (for references on these geometries, see e.g., [1–9] and the
references in these books and chapters of books and articles).
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Figure 1. From Minkowski’s “Raum und Zeit”.

In the course of time, in Minkowskian planes, proper definitions have been given for the angles
between any two spacelike directions and for the angles between any two timelike directions (which two
cases geometrically are the same, of course) and for the angle between any spacelike direction and any
timelike direction. A notion of such angles as equivalence classes under Minkowskian rotations, and
their therefrom coming measure of angles has proper meaning only for two spacelike directions and
equivalently for two timelike directions which direct to one and the same branch of a Minkowskian
circle, or, still, to one and the same branch of a Euclidean orthogonal hyperbola with the two
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null directions of the Minkowskian plane as asymptotic directions, centered at the center of such
rotations. And the measures of such angles then in fact are given by the Minkowskian lengths of the
corresponding arcs on the concerned branches of this unit Minkowskian circle, in a perfect double
analogy with the Euclidean angles between any two directions and their measure as central angles
on a unit Euclidean circle. For the other above-mentioned Minkowskian angles then, the term angle
essentially refers just to a measure of angle in some generalised above sense whereby trying to deal a
bit cautiously with positive and negative arcs on Minkowskian circles. And further on, geometrically,
the terms Minkowskian angles between any spacelike and any timelike directions—angles involving
directions of one or both causal characters alike—will always refer to this common interpretation as
central Minkowskian angles.

The main purpose of the present paper is to moreover well define Minkowskian angles and
pseudo-angles between the two null directions and between a null direction and any non-null direction,
respectively. Moreover, in a kind of way that will be tried to be made clear at the end of the paper,
these new sorts of angles and pseudo-angles can similarly to the previously known angles be seen
as (combinations of) Minkowskian lengths of arcs on a Minkowskian unit circle together with Minkowskian
pseudo-lengths of parts of the straight null lines.

While all above central Minkowskian angles are invariant under Minkowskian rotations, the central
Minkowskian pseudo-angles are not. However, in all cases—at least in the author’s opinion—all of
these Minkowskian angles and pseudo-angles may turn out not to be without some uses in geometry
and in applications of geometry. In this respect, for instance: (i) they may give some geometrical
interpretations of the so far merely algebraical or analytical conditions that did occur in some articles
on geometry and its applications; (ii) they may lead to extensions of several theories about Riemannian
submanifolds in which Euclidean angles play a role to corresponding theories in pseudo-Riemannian
geometry; (iii) they may be studied by working out a corresponding trigonometry; (iv) they may
be extended to suitable notions for angles and pseudo-angles between higher-dimensional linear
subspaces of various causal natures in general pseudo-Euclidean spaces; etcetera.

For related literature on geometry and its applications, see, e.g., also [10–26].
The point of departure of this paper is the definition of the pseudo-angles or “angles" between any

two vectors in a Minkowskian plane as given by Garry Helzer in his relativistic version of the formula of
Gauss-Bonnet [27].

In the present paper, like in several of his other recent papers, when it seems to the author of real
importance for a better understanding of the text, he included a number of handmade figures. In his
experience, so much more than artificially made illustrations, such figures do essentially contribute to
the readability of the paper. This is very related to the real value of the drawings made on blackboards
during proper lectures on mathematics and on the exact sciences. The author is very grateful for the
editors of the journal Mathematics having been so kind to include the scans of ten handmade figures
in the present paper.

2. The Pseudo-Angles of Helzer

Let E2
1 be the Minkowskian plane (R2, g) fixed by the (+,−) metric

g(−→v ,−→w ) = v1w1 − v2w2 (1)

on the standard two-dimensional real vector space R2, whereby −→v = (v1, v2) and −→w = (w1, w2)

here denote arbitrary vectors in R2 expanded with respect to the standard oriented orthonormal basis
B = {−→e1 ,−→e2 }. Next, let ϕB be the real valued function which is defined on the set S of the unit vectors and of
the null vectors in E2

1, that is, on the set of the vectors −→z = z1
−→e1 + z2

−→e2 for which z2
1 − z2

2 = ±1 (i.e.,
on the two Euclidean unit orthogonal hyperbola’s H1 : z2

1 − z2
2 = 1 and H2 : z2

1 − z2
2 = −1) and on the

vectors −→z = z1
−→e1 + z2

−→e2 6= −→o for which z2
1 − z2

2 = 0 (i.e., on the first and second diagonals or Euclidean
bisectrices D1 : z1 − z2 = 0 and D2 : z1 + z2 = 0, "minus" the origin O), by



Mathematics 2018, 6, 52 3 of 17

ϕB(
−→z ) =

{
ln |z1 + z2|, when z1 + z2 6= 0,
− ln |z1 − z2|, when z1 + z2 = 0.

(2)

And finally, let ψB be the real valued function which is defined on the pairs of vectors from S, say−→v and −→w , by

ψB(
−→v ,−→w ) = ϕB(

−→w )− ϕB(
−→v ). (3)

when similarly defining functions ϕB′ and ψB′ corresponding to any other ordered orthonormal basis B′

of E2
1, then ψB′ = ψB or ψB′ = −ψB, depending on B′ and B having the same or opposite orientations,

respectively; (as a kind of intermediate step in this having ϕB′(
−→z ) = ϕB(

−→z ) + ϕB′(
−→e 1) and

ϕB′(
−→z ) = −ϕB(

−→z ) + ϕB′(
−→e 1), respectively).

Therefore, the following makes good sense indeed: the oriented pseudo-angle ψ(−→v ,−→w ) of Helzer [27]
from −→v to −→w , (−→v ,−→w ∈ S), is defined by

ψ(−→v ,−→w ) = ψB(
−→v ,−→w ). (4)

According to this definition, clearly

ψ(−→v ,−→w ) = ψ(−−→v ,−→w ) = ψ(−→v ,−−→w ) = ψ(−−→v ,−−→w ). (5)

And for any number k of unit or null vectors −→v1 ,−→v2 , . . . ,−→vk in E2
1, one has

ψ(−→v1 ,−→v2 ) + ψ(−→v2 ,−→v3 ) + · · ·+ ψ(−→v k−1,−→vk ) + ψ(−→vk ,−→v1 ) = 0. (6)

3. The Minkowskian Angles between Spacelike and Timelike Directions

The following result shows that for unit spacelike or timelike vectors −→v and −→w in a Minkowskian plane
E2

1 the oriented pseudo-angle ψ(−→v ,−→w ) of Helzer is equal to what O’Neill in [5] called the oriented Lorentz
angle between two spacelike unit vectors −→v and −→w , or is equal to what Birman and Nomizu in [28,29] simply
called the oriented angle between two timelike unit vectors −→v and −→w , or is equal to what in [30,31] was called
the oriented hyperbolic angle between a spacelike unit vector −→v and a timelike unit vector −→w , depending on the
causal characters of −→v and −→w .

Before giving the formulation and a proof of this result, I would like to make the following
proposal concerning terminology: let us use the term “Minkowskian angles” when dealing with the
above kind of angles between unit vectors, and also between their directions in a Minkowskian
plane, (rather than just “angles”, since angles as such are commonly used for the common angles of
Euclidean geometry, and rather than “Lorentzian angles”, since also on Lorentzian surfaces the angles
are essentially defined in the tangent planes to such surfaces and these are Minkowskian planes,
and also rather than “hyperbolic angles”, which seem better to be reserved for use in the geometry of
Lobachevsky-Bolyai; see also Section 7 concerning this matter).

Theorem 1. Let −→v and −→w be unit vectors in a Minkowskian plane E2
1 and let ψ(−→v ,−→w ) be the oriented

pseudo-angle of Helzer from −→v to −→w . Then, when (v1, v2) and (w1, w2) are the co-ordinates of −→v and −→w with
respect to the standard basis B in E2

1 and when D is the Euclidean reflection in the first diagonal of B, in terms
of the hyperbolic functions cosh and sinh, this pseudo-angle ψ is related to the Minkowskian metric g in the
following way:
(i) if −→v and −→w are both spacelike,

cosh ψ(−→v ,−→w ) =

{
−g(−→v ,−→w ) when sgn v1 6= sgn w1

g(−→v ,−→w ) when sgn v1 = sgn w1,
(7)

sinh ψ(−→v ,−→w ) =

{
−g(−→v , D−→w ) when sgn v1 6= sgn w1

g(−→v , D−→w ) when sgn v1 = sgn w1;
(8)
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(ii) if −→v and −→w are both timelike,

cosh ψ(−→v ,−→w ) =

{
g(−→v ,−→w ) when sgn v2 6= sgn w2

−g(−→v ,−→w ) when sgn v2 = sgn w2,
(9)

sinh ψ(−→v ,−→w ) =

{
g(−→v , D−→w ) when sgn v2 6= sgn w2,
−g(−→v , D−→w ) when sgn v2 = sgn w2;

(10)

(iii) if −→v is spacelike and −→w is timelike,

cosh ψ(−→v ,−→w ) =

{
−g(−→v , D−→w ) when sgn v1 6= sgn w2

g(−→v , D−→w ) when sgn v1 = sgn w2,
(11)

sinh ψ(−→v ,−→w ) =

{
−g(−→v ,−→w ) when sgn v1 6= sgn w2

g(−→v ,−→w ) when sgn v1 = sgn w2.
(12)

Proof. For any pair of unit vectors −→v = (v1, v2) and −→w = (w1, w2) according to (1)–(4),

ψ(−→v ,−→w ) = ln |w1 + w2| − ln |v1 + v2|

= ln |w1 + w2

v1 + v2
|

= ln | (w1 + w2)(v1 − v2)

v2
1 − v2

2
|

= ln |(w1 + w2)(v1 − v2)|
= ln |v1w1 − v2w2 + v1w2 − v2w1|,

and, so, since D−→w = D(w1, w2) = (w2, w1),

ψ(−→v ,−→w ) = ln |g(−→v ,−→w ) + g(−→v , D−→w )|. (13)

Hence, by the very definitions of the functions cosinushyperbolicus and sinushyperbolicus,

cosh ψ(−→v ,−→w ) =
[g(−→v ,−→w ) + g(−→v , D−→w )]2 + 1

2|g(−→v ,−→w ) + g(−→v , D−→w )|
(14)

and

sinh ψ(−→v ,−→w ) =
[g(−→v ,−→w ) + g(−→v , D−→w )]2 − 1

2|g(−→v ,−→w ) + g(−→v , D−→w )|
. (15)

In the cases (i) and (ii), i.e., if −→v and −→w either are both spacelike (i) or are both timelike (ii),

g(−→v ,−→w )2 − g(−→v , D−→w )2 = 1, (16)

which combined with (14) and (15), yields

cosh ψ(−→v ,−→w ) = ε g(−→v ,−→w ) (17)

and
sinh ψ(−→v ,−→w ) = ε g(−→v , D−→w ), (18)

whereby ε = sgn[g(−→v ,−→w ) + g(−→v , D−→w )]. In addition, then formulae (7) and (8) and formulae (9)
and (10) follow from formulae (17) and (18) since, when −→v and −→w are both spacelike, ε = 1 when
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sgn v1 = sgn w1 and ε = −1 when sgn v1 6= sgn w1, and when −→v and −→w are both timelike, ε = 1 when
sgn v2 6= sgn w2 and ε = −1 when sgn v2 = sgn w2.

Finally, in case (iii), i.e., if −→v and −→w do have different causal characters, say if −→v is spacelike and −→w
is timelike,

g(−→v ,−→w )2 − g(−→v , D−→w )2 = −1, (19)

which, combined with (14) and (15), now yields

cosh ψ(−→v ,−→w ) = ε g(−→v , D−→w ) (20)

and
sinh ψ(−→v ,−→w ) = ε g(−→v ,−→w ). (21)

In addition, then formulae (11) and (12) follow from formulae (20) and (21) since, for a spacelike
unit vector −→v and a timelike unit vector −→w , ε = −1 when sgn v1 6= sgn w2 and ε = 1 when sgn v1 =

sgn w2.

From here on, we agree to systematically use the notation θ(−→v ,−→w ) for the oriented Minkowskian
angles between unit vectors −→v and −→w for any causal characters, (rather than the former ψ(−→v ,−→w ), keeping
on the use of ψ though for the pseudo-angles of Helzer in general, cfr. definition (3)).

In the Minkowskian geometry on a plane, unit vectors −→v and −→w for which g(−→v ,−→w ) = 0,
apart from pairs of vectors ±−→e1 and ±−→e2 , are not at all orthogonal or perpendicular to each other in
accordance with our common visual senses, or, still, in accordance with the Euclidean geometry on
this plane. However, such unit vectors in a Minkowskian plane, i.e., unit vectors in E2

1 with vanishing
Minkowskian scalar product, nevertheless, conventionally often remain said to be mutually orthogonal.
All in all, this terminology may not be so recommendable (but, unfortunately, it is to be expected
that this terminology will continue to be used, like; for instance, one has been going on to speak of
“the orthogonal group” when speaking of “the orthonormal group”...). Actually, such vectors are
each other’s Euclidean reflections in the first or second diagonals D = D1 and D2 of the standard
orthonormal basis B = {−→e1 ,−→e2 }, or, put otherwise, such vectors are pairs of vectors lying on the
Euclidean orthogonal hyperbola’s H : u2

1 − u2
2 = ±1 with Euclidean unit axes and which are bisected

either by the first or second diagonals or bisectrices D1 and D2 (cfr. Figure 2). It could be observed here in
passing, and it will become more clear later on, that the just used expressions that refer to bisecting,
however, do enjoy their proper meanings in the sense of the angles in the geometries of Euclid and of
Minkowski alike. In any case, based on Theorem 1, one has the following.

Corollary 1. While in a Minkowskian plane any two unit vectors with the same causal character can never be
mutually orthogonal, a timelike and a spacelike unit vector are mutually orthogonal if and only if their oriented
Minkowskian angle is zero.

For two arbitrary (non-null) vectors −→a = (a1, a2) and
−→
b = (b1, b2) of Minkowskian lengths ||−→a || =

|g(−→a ,−→a )| 12 ( 6= 0) and ||
−→
b || = |g(

−→
b ,
−→
b )| 12 ( 6= 0), from−→a to

−→
b the oriented Minkowskian angle θ(−→a ,

−→
b )

is defined as the oriented Minkowskian angle of their normalised corresponding unit vectors −→v = −→a /||−→a ||
and −→w =

−→
b /||
−→
b ||; θ(−→a ,

−→
b ) = θ(−→v ,−→w ) , (cfr. Figure 3). Thus, according to (13), in terms of the

Minkowskian scalar product:

θ(−→a ,
−→
b ) = ln | g(

−→a ,
−→
b ) + g(−→a , D

−→
b )

||−→a || · ||
−→
b ||

|. (22)

Further, based on relations (1)–(6), for all pairs of arbitrary non-null vectors −→a and
−→
b we recover

the following formulae which relate these oriented Minkowskian angles θ(−→a ,
−→
b ) to the Minkowskian metric by

means of the hyperbolic functions, (cfr. [28]).
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Figure 2. “Orthogonality”.

Figure 3. Angles between non-null vectors.
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Theorem 2. (i) If −→a and
−→
b are both spacelike,

cosh θ(−→a ,
−→
b ) =


− g(−→a ,

−→
b )

||−→a || · ||
−→
b ||

when sgn a1 6= sgn b1

g(−→a ,
−→
b )

||−→a || · ||
−→
b ||

when sgn a1 = sgn b1,

(23)

sinh θ(−→a ,
−→
b ) =


− g(−→a , D

−→
b )

||−→a || · ||
−→
b ||

when sgn a1 6= sgn b1

g(−→a , D
−→
b )

||−→a || · ||
−→
b ||

when sgn a1 = sgn b1;

(24)

(ii) if −→a and
−→
b are both timelike,

cosh θ(−→a ,
−→
b ) =


g(−→a ,

−→
b )

||−→a || · ||
−→
b ||

when sgn a2 6= sgn b2

− g(−→a ,
−→
b )

||−→a || · ||
−→
b ||

when sgn a2 = sgn b2,

(25)

sinh θ(−→a ,
−→
b ) =


g(−→a , D

−→
b )

||−→a || · ||
−→
b ||

when sgn a2 6= sgn b2

− g(−→a , D
−→
b )

||−→a || · ||
−→
b ||

when sgn a2 = sgn b2;

(26)

(iii) if −→a is spacelike and
−→
b is timelike,

cosh θ(−→a ,
−→
b ) =


− g(−→a , D

−→
b )

||−→a || · ||
−→
b ||

when sgn a1 6= sgn b2

g(−→a , D
−→
b )

||−→a || · ||
−→
b ||

when sgn a1 = sgn b2,

(27)

sinh θ(−→a ,
−→
b ) =


− g(−→a ,

−→
b )

||−→a || · ||
−→
b ||

when sgn a1 6= sgn b2

g(−→a ,
−→
b )

||−→a || · ||
−→
b ||

when sgn a1 = sgn b2.

(28)

Based on the definitions given above for the oriented Minkowskian angles between any two
spacelike or timelike vectors, and also in view of (5), the oriented Minkowskian angle θ(L1, L2) between any
two non-null directions or between any non-null lines L1 and L2 passing through the origin of a Minkowskian
plane E2

1 may be well defined as the oriented Minkowskian angle θ(
−→
l1 ,
−→
l2 ) between a unit vector

−→
l1

on the line L1 and a unit vector
−→
l2 on the line L2; θ(L1, L2) = θ(

−→
l1 ,
−→
l2 ).

As a kind of transition to the definition of Minkowskian angles involving one or two null vectors
and also in a way continuing the former comment on perpendicular vectors in a Minkowskian plane,
now, (hereby somewhat following O’Neill [5], p. 48, Figure 3), one may visualise, for instance, the
following pair of vectors that are mutually orthogonal in E2

1: {(n, m), D(n, m) = (m, n)|n ∈ R+
0 , m ∈]0, n[}.

A null vector like −→v = (n, n) may thus be seen to originate as the limit of the pair of the mutually
orthogonal vectors formed by the spacelike vector (n, m) and the timelike vector (m, n) for m going to
n: (n, n) = limm→n(n, m) = limm→n(m, n), this limit thus yielding a non-trivial vector −→n that is



Mathematics 2018, 6, 52 8 of 17

perpendicular to itself; (cfr. Figure 4). And of course, similarly one may think of the null vectors
of the second diagonal too as non-trivial auto-orthogonal vectors.

--
~' ... :

'1- ----

- -_.__._-_._-----------------. __ .._---------_.-------------_ ..__ ._---_.__._-----_._-----

." .,'. - ,~,.--

Figure 4. Auto-orthogonal vectors.

4. The Minkowskian Pseudo-Angles between A Null Direction and Any Spacelike or
Timelike Direction

Any spacelike or timelike vector −→a = (a1, a2) has a well determined Minkowskian
length or norm ||−→a || = |a2

1 − a2
2|

1
2 which is essentially non-zero and thus such a vector

can be normalised to the corresponding unit spacelike or timelike vector −→v = −→a /||−→a ||.
For null vectors −→n1 = (n, n) of D1 and −→n2 = (−n, n) of D2, (n ∈ R0), this kind of
normalisation of course is not possible, since actually ||−→n1 ||2 = ||−→n2 ||2 = |n2 − n2| = 0.
Then, for null vectors in a Minkowskian plane choosing as a way of standardi-
sation the individual normalisation of their two components, from now on, we propose to consider,
respectively

−→
d1 = (1, 1) = −→n1 /|n| in case n > 0 and −

−→
d1 = (−1,−1) = −→n1 /|n| in case n < 0, and

−→
d2 = (−1, 1) = −→n2 /|n| in case n > 0 and −

−→
d2 = (1,−1) = −→n1 /|n| in case n < 0, as the normalised

null vectors corresponding to given null vectors −→n1 and −→n2 ; (cfr. Figures 5 and 6). And while for spacelike
and timelike vectors −→a = (a1, a2) their norm equals their length ||−→a ||, for null vectors −→n1 = (n, n) and
−→n2 = (−n, n), n ∈ R0, their lengths ||−→n1 || and ||−→n2 || being zero, we propose to define their pseudo-norms
|−→n1 | and |−→n2 | to be equal to the absolute value |n| = | − n| 6= 0 of their co-ordinates: |−→n1 | = |−→n2 | = |n|.
Thus, we have the normalisations

−→
di = ±−→ni /|−→ni |, + or − depending on n being positive or

negative, respectively.
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r." "".

Figure 5. Two normalised null vectors.

.~. " •. ':i ....~.'-.' .....; - •...

-

Figure 6. The two other normalised null vectors.

The oriented Minkowskian pseudo-angles θ between unit spacelike or timelike vectors −→u = (u1, u2),
(u2

1 − u2
2 = ±1), and normalised null vectors ±

−→
d1 or ±

−→
d2 are defined to be given by their pseudo-angles ψ of

Helzer. In order to establish the formulae for these angles in terms of the hyperbolic functions, next the
angles θ(−→u ,

−→
d1 ) and θ(

−→
d2 ,−→u ) will be dealt with explicitly; (thereby, in view of (5) and (6), essentially
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all possibilities are taken care of). The oriented Minkowskian pseudo-angle θ(−→u ,
−→
d1 ) from−→u to

−→
d1 is defined

to be given by the pseudo-angle ψ(−→u ,
−→
d1 ) from −→u to

−→
d1 such that according to (1)–(4),

θ(−→u ,
−→
d1 ) = ln 2− ln |u1 + u2|

= ln | 2
u1+u2

|

= ln | 2(u1−u2)

u2
1−u2

2
|

= ln |2(u1 − u2)|

= ln |2g(−→u ,
−→
d1 )|

(= ln |g(−→u ,
−→
d1 ) + g(−→u , D

−→
d1 )|).

(29)

And, the oriented Minkowskian pseudo-angle θ(
−→
d2 ,−→u ) from

−→
d2 to−→u is defined to be given by the pseudo-angle

ψ(
−→
d2 ,−→u ) from

−→
d2 to −→u such that, according to (1)–(4),

θ(
−→
d2 ,−→u ) = ln |u1 + u2|+ ln 2

= ln |2(u1 + u2)|

= ln |2g(
−→
d2 ,−→u )|

(= ln |g(
−→
d2 ,−→u ) + g(

−→
d2 , D−→u )|).

(30)

Hence, in analogy with Theorem 1, from (29) and (30), one has the following.

Theorem 3. Let θ(−→u ,
−→
d1 ) and θ(

−→
d2 ,−→u ) be the oriented Minkowskian pseudo-angles from a unit vector −→u to

the normalised null vector
−→
d1 and from the normalised null vector

−→
d2 to a unit vector −→u , respectively. Then,

cosh θ(−→u ,
−→
d1 ) =


1 + 4g(−→u ,

−→
d1 )

2

4g(−→u ,
−→
d1 )

when u1 − u2 > 0

−1 + 4g(−→u ,
−→
d1 )

2

4g(−→u ,
−→
d1 )

when u1 − u2 < 0,

(31)

sinh θ(−→u ,
−→
d1 ) =


1− 4g(−→u ,

−→
d1 )

2

4g(−→u ,
−→
d1 )

when u1 − u2 < 0

−1− 4g(−→u ,
−→
d1 )

2

4g(−→u ,
−→
d1 )

when u1 − u2 > 0;

(32)

cosh θ(
−→
d2 ,−→u ) =


1 + 4g(

−→
d2 ,−→u )2

4g(
−→
d2 ,−→u )

when u1 + u2 > 0

−1 + 4g(
−→
d2 ,−→u )2

4g(
−→
d2 ,−→u )

when u1 + u2 < 0,

(33)

sinh θ(
−→
d2 ,−→u ) =


1− 4g(

−→
d2 ,−→u )2

4g(
−→
d2 ,−→u )

when u1 + u2 < 0

−1− 4g(
−→
d2 ,−→u )2

4g(
−→
d2 ,−→u )

when u1 + u2 > 0.

(34)

In connection with a general comment made in the Introduction concerning potential applications
of the contents of this paper in semi-Riemannian geometry, based on Theorems 1 and 3, it may be good
to explicitly formulate the following.



Mathematics 2018, 6, 52 11 of 17

Corollary 2. For any two different normalised spacelike, timelike or null vector fields, their Minkowskian scalar
product is constant if and only if their Minkowskian angle or pseudo-angle is constant.

For any spacelike or timelike vector −→a of Minkowskian length ||−→a ||, −→u = −→a /||−→a || is the
corresponding normalised spacelike or timelike vector, and for any null vector −→n1 = (n, n) or
−→n 2 = (−n, n), (n ∈ R0), ±

−→
d1 = −→n1 /|−→n1 | or ±

−→
d2 = −→n2 /|−→n2 |, (+ when n > 0 and − when n < 0)

is the corresponding normalised null vector, and the oriented Minkowskian pseudo-angles between such
vectors−→a and−→ni , (i = 1, 2), are defined as the oriented Minkowskian pseudo-angles between their corresponding
normalised vectors −→u and ±

−→
di ; θ(−→a ,−→ni ) = θ(−→u ,±

−→
di ). In addition, following this definition, the above

expressions (31)–(34) may readily be adapted to corresponding formulae involving the Minkowskian
scalar products g(−→a ,−→ni ) as follows.

Theorem 4. Let θ(−→a ,−→n1) and θ(−→n2 ,−→a ) be the oriented Minkowskian pseudo-angles from a non-null vector
−→a = (a1, a2) of arbitrary length ||−→a || 6= 0 to an arbitrary null vector −→n1 = (n, n), n ∈ R0 and from an
arbitrary null vector −→n2 = (−n, n) to a non-null vector −→a , respectively. Then,

cosh θ(−→a ,−→n1) =


|n|2||−→a ||2 + 4g(−→a ,−→n1)

2

4|n|||−→a ||g(−→a ,−→n1)
when n(a1 − a2) > 0

−|n|
2||−→a ||2 + 4g(−→a ,−→n1)

2

4|n|||−→a ||g(−→a ,−→n1)
when n(a1 − a2) < 0,

(35)

sinh θ(−→a ,−→n1) =


|n|2||−→a ||2 − 4g(−→a ,−→n1)

2

4|n|||−→a ||g(−→a ,−→n1)
when n(a1 − a2) < 0

−|n|
2||−→a ||2 − 4g(−→a ,−→n1)

2

4|n|||−→a ||g(−→a ,−→n1)
when n(a1 − a2) > 0;

(36)

cosh θ(−→n2 ,−→a ) =


|n|2||−→a ||2 + 4g(−→a ,−→n2)

2

4|n|||−→a ||g(−→a ,−→n2)
when n(a1 + a2) > 0

−|n|
2||−→a ||2 + 4g(−→a ,−→n2)

2

4|n|||−→a ||g(−→a ,−→n2)
when n(a1 + a2) < 0,

(37)

sinh θ(−→n2 ,−→a ) =


|n|2||−→a ||2 − 4g(−→a ,−→n2)

2

4|n|||−→a ||g(−→a ,−→n2)
when n(a1 + a2) < 0

−|n|
2||−→a ||2 − 4g(−→a ,−→n2)

2

4|n|||−→a ||g(−→a ,−→n2)
when n(a1 + a2) > 0.

(38)

Based on the definitions given above for the oriented Minkowskian pseudo-angles between any
null vector and any spacelike or timelike vector, and also in view of (5), the oriented Minkowskian
pseudo-angle θ(Di, L) between a null direction and any spacelike or timelike direction or between one of the
null lines D1, D2 and any non-null line L passing through the origin of a Minkowskian plane E2

1 , may be well

defined as the oriented Minkowskian pseudo-angle θ(
−→
d i,
−→
l ), whereby

−→
l is a unit vector on the line

L; θ(Di, L) = θ(
−→
d i,
−→
l ).

5. The Minkowskian Angles between Null Directions

Finally, to deal with the situation involving two null vectors, of course, two cases are to be
considered: (i) the null vectors are co-linear and (ii) they are not. To begin with, for the normalised null
vectors ±

−→
d i, the oriented Minkowskian angles θ(±

−→
d i,±

−→
d j), (i, j ∈ {1, 2}) , are defined to be given by

their pseudo-angles ψ(±
−→
d i,±

−→
d j) of Helzer. In addition, based on (5) and (6), it then suffices to look at

the angles θ(
−→
d 1,
−→
d 1), θ(

−→
d 2,
−→
d 2) and θ(

−→
d 2,
−→
d 1). (i) In the case of normalised null vectors on the same

diagonal, since ψ(−→v ,−→v ) = 0 for all −→v 6= −→o ,

θ(
−→
d 1,
−→
d 1) = θ(

−→
d 2,
−→
d 2) = 0. (39)
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(ii) In the case of normalised null vectors on different diagonals,

θ(
−→
d 2,
−→
d 1) = ln 2 + ln 2 = 2 ln 2. (40)

In case (i), matters are well in agreement with what we commonly expect to be natural enough the
way it is, while, later on, there will follow some geometrical comments that may make the value 2 ln 2
occurring in case (ii) not to appear as too unnatural after all. For the time being and for the sake of
more easy reference, (39) and (40) will be put together in the following.

Theorem 5. For the normalised null vectors
−→
d1 = (1, 1) and

−→
d2 = (−1, 1) their oriented Minkowskian angles

are given by θ(
−→
d1 ,
−→
d1 ) = θ(

−→
d2 ,
−→
d2 ) = 0 and θ(

−→
d2 ,
−→
d1 ) = 2 ln 2.

At this stage, without further expanding on it, since (29) and (30) in particular imply that

θ(±
−→
di ,±−→ei ) = ± ln 2, (41)

we may conclude the following.

Proposition 1. In a Minkowskian plane E2
1 the standard basic vectors {±−→e1 ,±−→e2 } are the only unit vectors

which bisect the null vectors {±
−→
d1 ,±

−→
d2}.

Next, for an arbitrary pair of null vectors, their oriented Minkowskian angle is defined as to
be given by the oriented Minkowskian angle between their normalised null vectors. In addition,
for any pair of null directions or diagonals Di and Dj, their Minkowskian angle is defined to be the

Minkowskian angle between their normalised vectors
−→
d i and

−→
d j; θ(Di, Dj) = θ(

−→
di ,
−→
dj ).

6. The Unoriented Minkowskian Angles and Pseudo-Angles

For two vectors −→v and −→w of any causal characters each and in whatever combination together,
let θ(−→v ,−→w ) be their oriented Minkowskian angle when both −→v and −→w are non-null vectors or when
both are null vectors (cfr. Sections 3 and 5) or their oriented Minkowskian pseudo-angle when one of the
vectors −→v and −→w is null and the other one is non-null (cfr. Section 4). In any case, from (6), it follows
that θ(−→w ,−→v ) = −θ(−→v ,−→w ), so that it makes sense to define θ(−→v ,−→w ) = |θ(−→v ,−→w )| = |θ(−→w ,−→v )| as
the unoriented or absolute Minkowskian angle or Minkowskian pseudo-angle between these vectors. And, the
unoriented or absolute Minkowskian angles between two non-null directions and between two null directions
and the unoriented or absolute Minkowskian pseudo-angles between one null and one non-null direction are
likewise defined.

In a Minkowskian plane E2
1 , geometrically, the two most distinguished directions may very well

be the null directions D1 and D2; their absolute Minkowskian angle is given by θ(D1, D2) = 2 ln 2. The
absolute Minkowskian pseudo-angles between the co-ordinate axes A1 and A2 (spanned respectively by the
standard unit vectors ±−→e1 and ±−→e2 ) and the null diagonals D1 and D2 (spanned by ±

−→
d1 and ±

−→
d2 ) being

given by θ(Ai, Dj) = ln 2, (i, j ∈ {1, 2}), and, further also taking into account (29) and (30), in a way,
Proposition 1 may be reformulated as follows.

Proposition 2. In a Minkowskian plane E2
1 , the co-ordinate axes A1 and A2 are geometrically characterised as

the only two bisectrices of the null lines D1 and D2.

7. A Geometrical Meaning of the Minkowskian Angles and Pseudo-Angles

Let us recall that the Minkowskian arclengths L on the unit Minkowskian circle H : z2
1 − z2

2 = ±1, say,
for simplicity, from e1 = (1, 0) to the points −→p = (p1, p2) on its upper branch H+

2 : z2 = (z2
1 − 1)

1
2 , z1 ≥ 1,

are given by
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L(−→e 1,−→p ) =
∫ p1

1 |1− (dz2/dz1)
2|−1/2dz1

=
∫ p1

1 (z2
1 − 1)−1/2dz1

= ln{z1 + (z2
1 − 1)1/2}

∣∣p1
1

= ln(p1 + p2),

(42)

cfr. Figure 7; (the readers likely will have thought about this already when observing the former
formulae (2) and (3), from Helzer). And for geometrical interpretations of oriented Minkowskian angles
and pseudo-angles, it is good “to count" Minkowskian lengths on and of arcs on the Euclidean hyperbola’s H
taking into account their orientations as indicated in Figure 8.

Figure 7. Arclengths on the unit circle.

Next, Minkowskian pseudo-distances d̃ between two points on the same half straight null line
z2 = ±z1, z1 > 0 or z1 < 0, and the Minkowskian pseudo-lengths of the corresponding parts on the diagonals
D1 and D2 are defined by the Minkowskian lengths of arcs on H that are determined thereupon by the Euclidean
orthogonal projections of these points on D1 or D2. To be more concrete, say, for points −→q = (q, q) and
−→r = (r, r), (q, r ∈ R+

0 ), on D1 : z2 = z1, z1 > 0, their Minkowskian pseudo-distance d̃(−→q ,−→r ) is
defined by the Minkowskian arclength L(−̃→q , −̃→r ) on H+

1 between the Euclidean projections −̃→q and −̃→r
on H+

1 of the points −→q and −→r of D1 orthogonal in the Euclidean sense to D1, cfr. Figure 9:

d̃(−→q ,−→r ) = L(−̃→q , −̃→r )

= θ(−̃→q , −̃→r ).
(43)

And, finally, let us—in maybe too primitive a way—think C = H ∪ {±
−→
d 1,±

−→
d 2} as a closed central

curve, centered at the origin O of the Minkowskian plane E2
1 , having precisely one point in each radial

direction going out of O. Then, any pair of directions in this plane well determines a pair of points on
C. In addition, the oriented Minkowskian angles or pseudo-angles between these directions then correspond to
the oriented arclengths on H and the oriented pseudo-lengths of parts of the null lines D1 and D2, whereby these
pseudo-lengths come about in an oriented way as suggested in Figure 10. By way of examples, here are
the Minkowskian angles or pseudo-angles θ between some unit spacelike or timelike vectors and
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some normalised null vectors as well, whereby −→u 1 = ( 5
4 , 3

4 ),
−→u 2 = ( 3

4 , 5
4 ),
−→u 3 = (−3

4 , 5
4 ) and −→u 4 =

(−5
4 , 3

4 ) : θ(−→e 1,
−→
d 1) = ln 2, θ(−→u 1,

−→
d 1) = 0, θ(

−→
d 1,
−→
d 2) = −2 ln 2, θ(−→e 1,−→u 2) = ln 2, θ(−→e 1,−→e 2) =

0, θ(−→e 1,−→u 3) = − ln 2, θ(
−→
d 1,−→u 2) = 0, θ(

−→
d 1,−→u 3) = −2 ln 2, θ(−→e 1,−→u 4) = − ln 2, θ(−→e 1,−→p ) =

ln(p1 + p2), θ(−→e 1,−→u 1) = ln 2, θ(−→u 1,−→p 1) = ln(p1 + p2)− ln 2 ; (cfr. Figure 11).

Figure 8. On orienting the unit circle.

Figure 9. Minkowskian pseudo-lengths.
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Figure 10. The central angles basic curve.

Figure 11. Some examples.

8. Conclusions

The 4D physical space-time of Minkowski with co-ordinates (x, y, z; t) is the 4D pseudo-Euclidean
geometrical space that is the product of a negative definite Euclidean line (R,−dt2) and a
positive definite 3D Euclidean space (R3, dx2 + dy2 + dz2), whereby the time-space scaling
“i seconds = 300 000 kilometers” is taken into account. At any given moment of time t, the angles
between any two directions in the physical 3D Euclidean (x, y, z) space at that moment are their
standard original Euclidean angles; they are algebraically determined in terms of the group of the
Euclidean rotations in a plane around a same point in this plane and they are geometrically measured
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by the Euclidean lengths of corresponding arcs on a Euclidean unit circle. From a natural scientific
point of view there has been no immediate need to be occupied with looking for meaningful angles
between two directions with arbitrary causal characters in planes of Minkowski. However, for two
spacelike directions and geometrically equivalently for two timelike directions in a Minkowskian plane
that belong to a same branch of the Minkowskian unit circle -an Euclidean orthogonal hyperbola-,
their Minkowskian angles classically have been determined algebraically and measured geometrically
by the straightforward adaptation of the traditional Euclidean approaches, now making use of the
Minkowskian rotations with a same center and with Minkowskian lengths of corresponding arcs on a
Minkowskian unit circle.

On the other hand, the algebraical definition in Minkowskian geometry of a proper notion of
angle in the Euclidean way fails for directions that from a center point toward different branches of a
Minkowskian unit circle with this center and also fails when null directions are involved. In the present
paper, a geometrical generalisation of the Euclidean measure of angles between any two directions
as the Euclidean lengths of corresponding arcs on a Euclidean unit circle is given for any two
directions with arbitrary causal characters in a Minkowskian plane, by a well-defined notion of the
Minkowskian angles or pseudo-angles of these two directions. This notion bases on the measurements
of Minkowskian lengths and pseudo-lengths of corresponding parts of a Minkowskian unit circle
and of parts of the asymptotes of this Euclidean orthogonal hyperbola. However imperfect that this
extension of Euclidean angles to Minkowskian angles and pseudo-angles cannot help to be, it does
have qualities of generality and of geometrical naturalness (up to an eventual change of calibration
related to the choice of normalisation of the null vectors). And, of course, the classical Minkowskian
angles between any two spacelike directions and between any two timelike directions within a same
branch of the Minkowskian unit circle do properly fit in well into the above given notion of central
Minkowskian angles and pseudo-angles.
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