Article

C^{*}-Ternary Biderivations and C^{*}-Ternary Bihomomorphisms

Choonkil Park ${ }^{\text {(1) }}$
Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea; baak@hanyang.ac.kr; Tel.: +82-2-2220-0892; Fax: +82-2-2281-0019

Received: 4 January 2018; Accepted: 14 February 2018; Published: 26 February 2018

Abstract

In this paper, we investigate C^{*}-ternary biderivations and C^{*}-ternary bihomomorphism in C^{*}-ternary algebras, associated with bi-additive s-functional inequalities.

Keywords: C^{*}-ternary biderivation; C^{*}-ternary algebra; C^{*}-ternary bihomomorphism; Hyers-Ulam stability; bi-additive s-functional inequality

1. Introduction and Preliminaries

The stability problem of functional equations originated from a question of Ulam [1] concerning the stability of group homomorphisms.

The functional equation $f(x+y)=f(x)+f(y)$ is called the Cauchy equation. In particular, every solution of the Cauchy equation is said to be an additive mapping. Hyers [2] gave a first affirmative partial answer to the question of Ulam for Banach spaces. Hyers' Theorem was generalized by Aoki [3] for additive mappings and by Rassias [4] for linear mappings by considering an unbounded Cauchy difference. A generalization of the Rassias theorem was obtained by Găvruta [5] by replacing the unbounded Cauchy difference by a general control function in the spirit of Rassias' approach.

Gilányi [6] showed that if f satisfies the functional inequality

$$
\begin{equation*}
\|2 f(x)+2 f(y)-f(x-y)\| \leq\|f(x+y)\| \tag{1}
\end{equation*}
$$

then f satisfies the Jordan-von Neumann functional equation

$$
2 f(x)+2 f(y)=f(x+y)+f(x-y)
$$

See also [7]. Fechner [8] and Gilányi [9] proved the Hyers-Ulam stability of the functional inequality (1).

Park $[10,11]$ defined additive ρ-functional inequalities and proved the Hyers-Ulam stability of the additive ρ-functional inequalities in Banach spaces and non-Archimedean Banach spaces. The stability problems of various functional equations and functional inequalities have been extensively investigated by a number of authors (see [12-20]).

A C^{*}-ternary algebra is a complex Banach space A, equipped with a ternary product $(x, y, z) \mapsto[x, y, z]$ of A^{3} into A, which is \mathbb{C}-linear in the outer variables, conjugate \mathbb{C}-linear in the middle variable, and associative in the sense that $[x, y,[z, w, v]]=[x,[w, z, y], v]=[[x, y, z], w, v]$, and satisfies $\|[x, y, z]\| \leq\|x\| \cdot\|y\| \cdot\|z\|$ and $\|[x, x, x]\|=\|x\|^{3}$ (see [21]).

If a C^{*}-ternary algebra $(A,[\cdot, \cdot \cdot])$ has an identity, i.e., an element $e \in A$ such that $x=[x, e, e]=$ $[e, e, x]$ for all $x \in A$, then it is routine to verify that A, endowed with $x \circ y:=[x, e, y]$ and $x^{*}:=[e, x, e]$, is a unital C^{*}-algebra. Conversely, if (A, \circ) is a unital C^{*}-algebra, then $[x, y, z]:=x \circ y^{*} \circ z$ makes A into a C^{*}-ternary algebra.

Let A and B be C^{*}-ternary algebras. A \mathbb{C}-linear mapping $H: A \rightarrow B$ is called a C^{*}-ternary homomorphism if

$$
H([x, y, z])=[H(x), H(y), H(z)]
$$

for all $x, y, z \in A$. A \mathbb{C}-linear mapping $\delta: A \rightarrow A$ is called a C^{*}-ternary derivation if

$$
\delta([x, y, z])=[\delta(x), y, z]+[x, \delta(y), z]+[x, y, \delta(z)]
$$

for all $x, y, z \in A$ (see $[22,23]$).
Bae and Park [24] defined C^{*}-ternary bihomomorphisms and C^{*}-ternary biderivations in C^{*}-ternary algebras.

Definition 1. [24] Let A and B be C^{*}-ternary algebras. $A \mathbb{C}$-bilinear mapping $H: A \times A \rightarrow B$ is called a C*-ternary bihomomorphism if

$$
\begin{align*}
H([x, y, z], w) & =[H(x, w), H(y, w), H(z, w)] \tag{2}\\
H(x,[y, z, w]) & =[H(x, y), H(x, z), H(x, w)]
\end{align*}
$$

for all $x, y, z, w \in A . A \mathbb{C}$-bilinear mapping $\delta: A \times A \rightarrow A$ is called a C^{*}-ternary biderivation if

$$
\begin{align*}
& \delta([x, y, z], w)=[\delta(x, w), y, z]+[x, \delta(y, w), z]+[x, y, \delta(z, w)] \tag{3}\\
& \delta(x,[y, z, w])=[\delta(x, y), z, w]+[y, \delta(x, z), w]+[y, z, \delta(x, w)]
\end{align*}
$$

for all $x, y, z, w \in A$.
Replacing w by $2 w$ in (2), we get

$$
\begin{aligned}
2 H([x, y, z], w) & =H([x, y, z], 2 w)=[H(x, 2 w), H(y, 2 w), H(z, 2 w)] \\
& =8[H(x, w), H(y, w), H(z, w)]=8 H([x, y, z], w)
\end{aligned}
$$

and so $H([x, y, z], w)=0$ for all $x, y, z, w \in A$.
Replacing w by $i w$ in (3), we get

$$
\begin{aligned}
i \delta([x, y, z], w) & =\delta([x, y, z], i w)=[\delta(x, i w), y, z]+[x, \delta(y, i w), z]+[x, y, \delta(z, i w)] \\
& =i[\delta(x, w), y, z]-i[x, \delta(y, w), z]+i[x, y, \delta(z, w)] \neq i \delta([x, y, z], w)
\end{aligned}
$$

for all $x, y, z, w \in A$.
Now we correct the above definition as follows.
Definition 2. Let A and B be C^{*}-ternary algebras. $A \mathbb{C}$-bilinear mapping $H: A \times A \rightarrow B$ is called a C*-ternary bihomomorphism if

$$
\begin{aligned}
H([x, y, z],[w, w, w]) & =[H(x, w), H(y, w), H(z, w)] \\
H([x, x, x],[y, z, w]) & =[H(x, y), H(x, z), H(x, w)]
\end{aligned}
$$

for all $x, y, z, w \in A . A \mathbb{C}$-bilinear mapping $\delta: A \times A \rightarrow A$ is called a C^{*}-ternary biderivation if

$$
\begin{aligned}
\delta([x, y, z], w) & =[\delta(x, w), y, z]+\left[x, \delta\left(y, w^{*}\right), z\right]+[x, y, \delta(z, w)] \\
\delta(x,[y, z, w]) & =[\delta(x, y), z, w]+\left[y, \delta\left(x^{*}, z\right), w\right]+[y, z, \delta(x, w)]
\end{aligned}
$$

for all $x, y, z, w \in A$.

In this paper, we prove the Hyers-Ulam stability of C^{*}-ternary bihomomorphisms and C^{*}-ternary bi-derivations in C^{*}-ternary algebras.

This paper is organized as follows: In Sections 2 and 3, we correct and prove the results on C^{*}-ternary bihomomorphisms and C^{*}-ternary derivations in C^{*}-ternary algebras, given in [24]. In Sections 4 and 5, we investigate C^{*}-ternary biderivations and C^{*}-ternary bihomomorphisms in C^{*}-ternary algebras associated with the following bi-additive s-functional inequalities

$$
\begin{align*}
& \|f(x+y, z-w)+f(x-y, z+w)-2 f(x, z)+2 f(y, w)\| \tag{4}\\
& \quad \leq\left\|s\left(2 f\left(\frac{x+y}{2}, z-w\right)+2 f\left(\frac{x-y}{2}, z+w\right)-2 f(x, z)+2 f(y, w)\right)\right\| \\
& \left\|2 f\left(\frac{x+y}{2}, z-w\right)+2 f\left(\frac{x-y}{2}, z+w\right)-2 f(x, z)+2 f(y, w)\right\| \tag{5}\\
& \quad \leq\|s(f(x+y, z-w)+f(x-y, z+w)-2 f(x, z)+2 f(y, w))\|
\end{align*}
$$

where s is a fixed nonzero complex number with $|s|<1$.
Throughout this paper, let X be a complex normed space and Y a complex Banach space. Assume that s is a fixed nonzero complex number with $|s|<1$.

2. C^{*}-Ternary Bihomomorphisms in C^{*}-Ternary Algebras

In this section, we correct and prove the results on C^{*}-ternary bihomomorphisms in C^{*}-ternary algebras, given in [24].

Throughout this paper, assume that A and B are C^{*}-ternary algebras.
Lemma 1. ([24], Lemmas 2.1 and 2.2) Let $f: X \times X \rightarrow Y$ be a mapping such that

$$
f(\lambda(x+y), \mu(z-w))+f(\lambda(x-y), \mu(z+w))=2 \lambda \mu f(x, z)-2 \lambda \mu f(y, w)
$$

for all $\lambda, \mu \in \mathbb{T}^{1}:=\{\xi \in \mathbb{C}:|\xi|=1\}$ and all $x, y, z, w \in V$. Then $f: X \times X \rightarrow Y$ is \mathbb{C}-bilinear.
For a given mapping $f: A \times A \rightarrow B$, we define

$$
\begin{aligned}
& D_{\lambda, \mu} f(x, y, z, w) \\
& :=f(\lambda(x+y), \mu(z-w))+f(\lambda(x-y), \mu(z+w))-2 \lambda \mu f(x, z)+2 \lambda \mu f(y, w)
\end{aligned}
$$

for all $\lambda, \mu \in \mathbb{T}^{1}$ and all $x, y, z, w \in A$.
We prove the Hyers-Ulam stability of C^{*}-ternary bihomomorphisms in C^{*}-ternary algebras.
Theorem 1. Let $r<2$ and θ be nonnegative real numbers, and let $f: A \times A \rightarrow B$ be a mapping satisfying $f(0,0)=0$ and

$$
\begin{align*}
& \left\|D_{\lambda, \mu} f(x, y, z, w)\right\| \leq \theta\left(\|x\|^{r}+\|y\|^{r}+\|z\|^{r}+\|w\|^{r}\right) \tag{6}\\
& \|f([x, y, z],[w, w, w])-[f(x, w), f(y, w), f(z, w)]\| \tag{7}\\
& +\|f([x, x, x],[y, z, w])-[f(x, y), f(x, z), f(x, w)]\| \\
& \leq \theta\left(\|x\|^{r}+\|y\|^{r}+\|z\|^{r}+\|w\|^{r}\right)
\end{align*}
$$

for all $\lambda, \mu \in \mathbb{T}^{1}$ and all $x, y, z, w \in A$. Then there exists a unique C^{*}-ternary bi-homomorphism $H: A \times A \rightarrow$ B such that

$$
\begin{equation*}
\|f(x, z)-H(x, z)\| \leq \frac{6 \theta}{4-2^{r}}\left(\|x\|^{r}+\|z\|^{r}\right) \tag{8}
\end{equation*}
$$

for all $x, z \in A$.
Proof. By the same reasoning as in the proof of ([24] Theorem 2.3), there exists a unique \mathbb{C}-bilinear mapping $H: A \times A \rightarrow B$ satisfying (8). The \mathbb{C}-bilinear mapping $H: A \times A \rightarrow B$ is defined by

$$
H(x, z)=\lim _{n \rightarrow \infty} \frac{1}{4^{n}} f\left(2^{n} x, 2^{n} z\right)
$$

for all $x, z \in A$.
It follows from (7) that

$$
\begin{aligned}
& \|H([x, y, z],[w, w, w])-[H(x, w), H(y, w), H(z, w)]\| \\
& +\|H([x, x, x],[y, z, w])-[H(x, y), H(x, z), H(x, w)]\| \\
& =\lim _{n \rightarrow \infty} \frac{1}{64^{n}}\left\|f\left(8^{n}[x, y, z], 8^{n}[w, w, w]\right)-\left[f\left(2^{n} x, 2^{n} w\right), f\left(2^{n} y, 2^{n} w\right), f\left(2^{n} z, 2^{n} w\right)\right]\right\| \\
& +\lim _{n \rightarrow \infty} \frac{1}{64^{n}}\left\|f\left(8^{n}[x, x, x], 8^{n}[y, z, w]\right)-\left[f\left(2^{n} x, 2^{n} y\right), f\left(2^{n} x, 2^{n} z\right), f\left(2^{n} x, 2^{n} w\right)\right]\right\| \\
& \leq \lim _{n \rightarrow \infty} \frac{2^{r n}}{64^{n}} \theta\left(\|x\|^{r}+\|y\|^{r}+\|z\|^{r}+\|w\|^{r}\right)=0
\end{aligned}
$$

for all $x, y, z, w \in A$. So

$$
\begin{aligned}
H([x, y, z],[w, w, w]) & =[H(x, w), H(y, w), H(z, w)] \\
H([x, x, x],[y, z, w]) & =[H(x, y), H(x, z), H(x, w)]
\end{aligned}
$$

for all $x, y, z, w \in A$, as desired.
Similarly, we can obtain the following.
Theorem 2. Let $r>6$ and θ be nonnegative real numbers, and let $f: A \times A \rightarrow B$ be a mapping satisfying $f(0,0)=0$, (6) and (7). Then there exists a unique C^{*}-ternary bihomomorphism $H: A \times A \rightarrow B$ such that

$$
\begin{equation*}
\|f(x, z)-H(x, z)\| \leq \frac{6 \theta}{2^{r}-4}\left(\|x\|^{r}+\|z\|^{r}\right) \tag{9}
\end{equation*}
$$

for all $x, z \in A$.
Proof. By the same reasoning as in the proof of ([24] Theorem 2.5), there exists a unique \mathbb{C}-bilinear mapping $H: A \times A \rightarrow B$ satisfying (9). The \mathbb{C}-bilinear mapping $H: A \times A \rightarrow B$ is defined by

$$
H(x, z)=\lim _{n \rightarrow \infty} 4^{n} f\left(\frac{x}{2^{n}}, \frac{z}{2^{n}}\right)
$$

for all $x, z \in A$.

It follows from (7) that

$$
\begin{aligned}
& \|H([x, y, z],[w, w, w])-[H(x, w), H(y, w), H(z, w)]\| \\
& +\|H([x, x, x],[y, z, w])-[H(x, y), H(x, z), H(x, w)]\| \\
& =\lim _{n \rightarrow \infty} 64^{n}\left\|f\left(\frac{[x, y, z]}{8^{n}}, \frac{[w, w, w]}{8^{n}}\right)-\left[f\left(\frac{x}{2^{n}}, \frac{w}{2^{n}}\right), f\left(\frac{y}{2^{n}}, \frac{w}{2^{n}}\right), f\left(\frac{z}{2^{n}}, \frac{w}{2^{n}}\right)\right]\right\| \\
& +\lim _{n \rightarrow \infty} 64^{n}\left\|f\left(\frac{[x, x, x]}{8^{n}}, \frac{[y, z, w]}{8^{n}}\right)-\left[f\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}\right), f\left(\frac{x}{2^{n}}, \frac{z}{2^{n}}\right), f\left(\frac{x}{2^{n}}, \frac{w}{2^{n}}\right)\right]\right\| \\
& \leq \lim _{n \rightarrow \infty} \frac{64^{n}}{2^{r n}} \theta\left(\|x\|^{r}+\|y\|^{r}+\|z\|^{r}+\|w\|^{r}\right)=0
\end{aligned}
$$

for all $x, y, z, w \in A$. So

$$
\begin{aligned}
H([x, y, z],[w, w, w]) & =[H(x, w), H(y, w), H(z, w)] \\
H([x, x, x],[y, z, w]) & =[H(x, y), H(x, z), H(x, w)]
\end{aligned}
$$

for all $x, y, z, w \in A$, as desired.
Theorem 3. Let $r<\frac{1}{2}$ and θ be nonnegative real numbers, and let $f: A \times A \rightarrow B$ be a mapping satisfying $f(0,0)=0$ and

$$
\begin{align*}
& \left\|D_{\lambda, \mu} f(x, y, z, w)\right\| \leq \theta \cdot\|x\|^{r} \cdot\|y\|^{r} \cdot\|z\|^{r} \cdot\|w\|^{r}, \tag{10}\\
& \|f([x, y, z],[w, w, w])-[f(x, w), f(y, w), f(z, w)]\| \tag{11}\\
& +\|f([x, x, x],[y, z, w])-[f(x, y), f(x, z), f(x, w)]\| \\
& \leq \theta \cdot\|x\|^{r} \cdot\|y\|^{r} \cdot\|z\|^{r} \cdot\|w\|^{r}
\end{align*}
$$

for all $\lambda, \mu \in \mathbb{T}^{1}$ and all $x, y, z, w \in A$. Then there exists a unique C^{*}-ternary bihomomorphism $H: A \times A \rightarrow B$ such that

$$
\begin{equation*}
\|f(x, z)-H(x, z)\| \leq \frac{2 \theta}{4-16^{r}}\left(\|x\|^{r}+\|z\|^{r}\right) \tag{12}
\end{equation*}
$$

for all $x, z \in A$.
Proof. By the same reasoning as in the proof of ([24] Theorem 2.6), there exists a unique \mathbb{C}-bilinear mapping $H: A \times A \rightarrow B$ satisfying (12). The \mathbb{C}-bilinear mapping $H: A \times A \rightarrow B$ is defined by

$$
H(x, z)=\lim _{n \rightarrow \infty} \frac{1}{4^{n}} f\left(2^{n} x, 2^{n} z\right)
$$

for all $x, z \in A$.
The rest of the proof is similar to the proof of Theorem 1.
Theorem 4. Let $r>\frac{3}{2}$ and θ be nonnegative real numbers, and let $f: A \times A \rightarrow B$ be a mapping satisfying $f(0,0)=0,(10)$ and (11). Then there exists a unique C^{*}-ternary bihomomorphism $H: A \times A \rightarrow B$ such that

$$
\begin{equation*}
\|f(x, z)-H(x, z)\| \leq \frac{2 \theta}{16^{r}-4}\left(\|x\|^{r}+\|z\|^{r}\right) \tag{13}
\end{equation*}
$$

for all $x, z \in A$.

Proof. By the same reasoning as in the proof of ([24] Theorem 2.7), there exists a unique \mathbb{C}-bilinear mapping $H: A \times A \rightarrow B$ satisfying (13). The \mathbb{C}-bilinear mapping $H: A \times A \rightarrow B$ is defined by

$$
H(x, z)=\lim _{n \rightarrow \infty} 4^{n} f\left(\frac{x}{2^{n}}, \frac{z}{2^{n}}\right)
$$

for all $x, z \in A$.
The rest of the proof is similar to the proof of Theorem 1.

3. C^{*}-Ternary Biderivations on C^{*}-Ternary Algebras

In this section, we correct and prove the results on C^{*}-ternary biderivations on C^{*}-ternary algebras, given in [24].

Throughout this paper, assume that A is a C^{*}-ternary algebra.
Theorem 5. Let $r<2$ and θ be nonnegative real numbers, and let $f: A \times A \rightarrow A$ be a mapping satisfying $f(0,0)=0$ and

$$
\begin{align*}
& \quad\left\|D_{\lambda, \mu} f(x, y, z, w)\right\| \leq \theta\left(\|x\|^{r}+\|y\|^{r}+\|z\|^{r}+\|w\|^{r}\right) \tag{14}\\
& \left\|f([x, y, z], w)-[f(x, w), y, z]-\left[x, f\left(y, w^{*}\right), z\right]-[x, y, f(z, w)]\right\| \tag{15}\\
& +\left\|f(x,[y, z, w])-[f(x, y), z, w]-\left[y, f\left(x^{*}, z\right), w\right]-[y, z, f(x, w)]\right\| \\
& \quad \leq \theta\left(\|x\|^{r}+\|y\|^{r}+\|z\|^{r}+\|w\|^{r}\right)
\end{align*}
$$

for all $\lambda, \mu \in \mathbb{T}^{1}$ and all $x, y, z, w \in A$. Then there exists a unique C^{*}-ternary biderivation $\delta: A \times A \rightarrow A$ such that

$$
\begin{equation*}
\|f(x, z)-\delta(x, z)\| \leq \frac{6 \theta}{4-2^{r}}\left(\|x\|^{r}+\|z\|^{r}\right) \tag{16}
\end{equation*}
$$

for all $x, z \in A$.
Proof. By the same reasoning as in the proof of ([24] Theorems 2.3 and 3.1), there exists a unique \mathbb{C}-bilinear mapping $\delta: A \times A \rightarrow A$ satisfying (16). The \mathbb{C}-bilinear mapping $\delta: A \times A \rightarrow A$ is defined by

$$
\delta(x, z)=\lim _{n \rightarrow \infty} \frac{1}{4^{n}} f\left(2^{n} x, 2^{n} z\right)
$$

for all $x, z \in A$.
It follows from (15) that

$$
\begin{aligned}
& \left\|\delta([x, y, z], w)-[\delta(x, w), y, z]-\left[x, \delta\left(y, w^{*}\right), z\right]-[x, y, \delta(z, w)]\right\| \\
& +\left\|\delta(x,[y, z, w])-[\delta(x, y), z, w]-\left[y, \delta\left(x^{*}, z\right), w\right]-[y, z, \delta(x, w)]\right\| \\
& =\lim _{n \rightarrow \infty} \frac{1}{16^{n}}\left(\| f\left(8^{n}[x, y, z], 2^{n} w\right)-\left[f\left(2^{n} x, 2^{n} w\right), 2^{n} y, 2^{n} w\right]\right. \\
& \left.\quad-\left[2^{n} x, f\left(2^{n} y, 2^{n} w^{*}\right), 2^{n} z\right]-\left[2^{n} x, 2^{n} y, f\left(2^{n} z, 2^{n} w\right)\right] \|\right) \\
& +\lim _{n \rightarrow \infty} \frac{1}{16^{n}}\left(\| f\left(2^{n} x, 8^{n}[y, z, w]\right)-\left[f\left(2^{n} x, 2^{n} y\right), 2^{n} z, 2^{n} w\right]\right. \\
& \left.\quad-\left[2^{n} y, f\left(2^{n} x^{*}, 2^{n} z\right), 2^{n} w\right]-\left[2^{n} y, 2^{n} z, f\left(2^{n} x, 2^{n} w\right)\right] \|\right) \\
& \leq \lim _{n \rightarrow \infty} \frac{2^{r n}}{16^{n}} \theta\left(\|x\|^{r}+\|y\|^{r}+\|z\|^{r}+\|w\|^{r}\right)=0
\end{aligned}
$$

for all $x, y, z, w \in A$. So

$$
\begin{aligned}
\delta([x, y, z], w) & =[\delta(x, w), y, z]+\left[x, \delta\left(y, w^{*}\right), z\right]+[x, y, \delta(z, w)] \\
\delta(x,[y, z, w]) & =[\delta(x, y), z, w]+\left[y, \delta\left(x^{*}, z\right), w\right]+[y, z, \delta(x, w)]
\end{aligned}
$$

for all $x, y, z, w \in A$, as desired.
Similarly, we can obtain the following.
Theorem 6. Let $r>4$ and θ be nonnegative real numbers, and let $f: A \times A \rightarrow A$ be a mapping satisfying $f(0,0)=0$, (14) and (15). Then there exists a unique C^{*}-ternary biderivation $\delta: A \times A \rightarrow A$ such that

$$
\begin{equation*}
\|f(x, z)-\delta(x, z)\| \leq \frac{6 \theta}{2^{r}-4}\left(\|x\|^{r}+\|z\|^{r}\right) \tag{17}
\end{equation*}
$$

for all $x, z \in A$.
Proof. By the same reasoning as in the proof of ([24] Theorem 2.5), there exists a unique \mathbb{C}-bilinear mapping $\delta: A \times A \rightarrow A$ satisfying (17). The \mathbb{C}-bilinear mapping $\delta: A \times A \rightarrow A$ is defined by

$$
\delta(x, z)=\lim _{n \rightarrow \infty} 4^{n} f\left(\frac{x}{2^{n}}, \frac{z}{2^{n}}\right)
$$

for all $x, z \in A$.
It follows from (15) that

$$
\begin{aligned}
& \left\|\delta([x, y, z], w)-[\delta(x, w), y, z]-\left[x, \delta\left(y, w^{*}\right), z\right]-[x, y, \delta(z, w)]\right\| \\
& +\left\|\delta(x,[y, z, w])-[\delta(x, y), z, w]-\left[y, \delta\left(x^{*}, z\right), w\right]-[y, z, \delta(x, w)]\right\| \\
& =\lim _{n \rightarrow \infty} 16^{n}\left(\| f\left(\frac{[x, y, z]}{8^{n}}, \frac{w}{2^{n}}\right)-\left[f\left(\frac{x}{2^{n}}, \frac{w}{2^{n}}\right), \frac{y}{2^{n}}, \frac{w}{2^{n}}\right]\right. \\
& \left.\quad-\left[\frac{x}{2^{n}}, f\left(\frac{y}{2^{n}}, \frac{w^{*}}{2^{n}}\right), \frac{z}{2^{n}}\right]-\left[\frac{x}{2^{n}}, \frac{y}{2^{n}}, f\left(\frac{z}{2^{n}}, \frac{w}{2^{n}}\right)\right] \|\right) \\
& +\lim _{n \rightarrow \infty} 16^{n}\left(\| f\left(\frac{x}{2^{n}}, \frac{[y, z, w]}{8^{n}}\right)-\left[f\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}\right), \frac{z}{2^{n}}, \frac{w}{2^{n}}\right]\right. \\
& \left.\quad-\left[\frac{y}{2^{n}}, f\left(\frac{x^{*}}{2^{n}}, \frac{z}{2^{n}}\right), \frac{w}{2^{n}}\right]-\left[\frac{y}{2^{n}}, \frac{z}{2^{n}}, f\left(\frac{x}{2^{n}}, \frac{w}{2^{n}}\right)\right] \|\right) \\
& \leq \lim _{n \rightarrow \infty} \frac{16^{n}}{2^{r n}} \theta\left(\|x\|^{r}+\|y\|^{r}+\|z\|^{r}+\|w\|^{r}\right)=0
\end{aligned}
$$

for all $x, y, z, w \in A$. So

$$
\begin{aligned}
\delta([x, y, z], w) & =[\delta(x, w), y, z]+\left[x, \delta\left(y, w^{*}\right), z\right]+[x, y, \delta(z, w)] \\
\delta(x,[y, z, w]) & =[\delta(x, y), z, w]+\left[y, \delta\left(x^{*}, z\right), w\right]+[y, z, \delta(x, w)]
\end{aligned}
$$

for all $x, y, z, w \in A$, as desired.
Theorem 7. Let $r<\frac{1}{2}$ and θ be nonnegative real numbers, and let $f: A \times A \rightarrow A$ be a mapping satisfying $f(0,0)=0$ and

$$
\begin{equation*}
\left\|D_{\lambda, \mu} f(x, y, z, w)\right\| \leq \theta \cdot\|x\|^{r} \cdot\|y\|^{r} \cdot\|z\|^{r} \cdot\|w\|^{r} \tag{18}
\end{equation*}
$$

$$
\begin{align*}
& \left\|f([x, y, z], w)-[f(x, w), y, z]-\left[x, f\left(y, w^{*}\right), z\right]-[x, y, f(z, w)]\right\| \tag{19}\\
& +\left\|f(x,[y, z, w])-[f(x, y), z, w]-\left[y, f\left(x^{*}, z\right), w\right]-[y, z, f(x, w)]\right\| \\
& \leq \theta \cdot\|x\|^{r} \cdot\|y\|^{r} \cdot\|z\|^{r} \cdot\|w\|^{r}
\end{align*}
$$

for all $\lambda, \mu \in \mathbb{T}^{1}$ and all $x, y, z, w \in A$. Then there exists a unique C^{*}-ternary biderivation $\delta: A \times A \rightarrow A$ such that

$$
\begin{equation*}
\|f(x, z)-\delta(x, z)\| \leq \frac{2 \theta}{4-16^{r}}\left(\|x\|^{r}+\|z\|^{r}\right) \tag{20}
\end{equation*}
$$

for all $x, z \in A$.
Proof. By the same reasoning as in the proof of ([24] Theorem 2.6), there exists a unique \mathbb{C}-bilinear mapping $\delta: A \times A \rightarrow A$ satisfying (20). The \mathbb{C}-bilinear mapping $\delta: A \times A \rightarrow A$ is defined by

$$
\delta(x, z)=\lim _{n \rightarrow \infty} \frac{1}{4^{n}} f\left(2^{n} x, 2^{n} z\right)
$$

for all $x, z \in A$.
The rest of the proof is similar to the proof of Theorem 5.
Theorem 8. Let $r>\frac{3}{2}$ and θ be nonnegative real numbers, and let $f: A \times A \rightarrow A$ be a mapping satisfying $f(0,0)=0$, (18) and (19). Then there exists a unique C^{*}-ternary biderivation $\delta: A \times A \rightarrow A$ such that

$$
\begin{equation*}
\|f(x, z)-\delta(x, z)\| \leq \frac{2 \theta}{16^{r}-4}\left(\|x\|^{r}+\|z\|^{r}\right) \tag{21}
\end{equation*}
$$

for all $x, z \in A$.
Proof. By the same reasoning as in the proof of ([24] Theorem 2.7), there exists a unique \mathbb{C}-bilinear mapping $\delta: A \times A \rightarrow A$ satisfying (21). The \mathbb{C}-bilinear mapping $\delta: A \times A \rightarrow A$ is defined by

$$
\delta(x, z)=\lim _{n \rightarrow \infty} 4^{n} f\left(\frac{x}{2^{n}}, \frac{z}{2^{n}}\right)
$$

for all $x, z \in A$.
The rest of the proof is similar to the proof of Theorem 5.

4. C^{*}-Ternary Biderivations on C^{*}-Ternary Algebras Associated with the Bi-Additive Functional Inequalities (4) and (5)

In [25], Park introduced and investigated the bi-additive s-functional inequalities (4) and (5) in complex Banach spaces.

Theorem 9. ([25] Theorem 2.2) Let $r>1$ and θ be nonnegative real numbers and let $f: X^{2} \rightarrow Y$ be a mapping satisfying $f(x, 0)=f(0, z)=0$ and

$$
\begin{align*}
& \|f(x+y, z-w)+f(x-y, z+w)-2 f(x, z)+2 f(y, w)\| \tag{22}\\
& \quad \leq\left\|s\left(2 f\left(\frac{x+y}{2}, z-w\right)+2 f\left(\frac{x-y}{2}, z+w\right)-2 f(x, z)+2 f(y, w)\right)\right\| \\
& \quad+\theta\left(\|x\|^{r}+\|y\|^{r}\right)\left(\|z\|^{r}+\|w\|^{r}\right)
\end{align*}
$$

for all $x, y, z, w \in X$. Then there exists a unique bi-additive mapping $A: X^{2} \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x, z)-A(x, z)\| \leq \frac{2 \theta}{2^{r}-2}\|x\|^{r}\|z\|^{r} \tag{23}
\end{equation*}
$$

for all $x, z \in X$.
Theorem 10. ([25] Theorem 2.3) Let $r<1$ and θ be nonnegative real numbers and let $f: X^{2} \rightarrow Y$ be a mapping satisfying (22) and $f(x, 0)=f(0, z)=0$ for all $x, z \in X$. Then there exists a unique bi-additive mapping $A: X^{2} \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x, z)-A(x, z)\| \leq \frac{2 \theta}{2-2^{r}}\|x\|^{r}\|z\|^{r} \tag{24}
\end{equation*}
$$

for all $x, z \in X$.
Theorem 11. ([25] Theorem 3.2) Let $r>1$ and θ be nonnegative real numbers and let $f: X^{2} \rightarrow Y$ be a mapping satisfying $f(x, 0)=f(0, z)=0$ and

$$
\begin{align*}
& \left\|2 f\left(\frac{x+y}{2}, z-w\right)+2 f\left(\frac{x-y}{2}, z+w\right)-2 f(x, z)+2 f(y, w)\right\| \tag{25}\\
& \quad \leq\|s(f(x+y, z-w)+f(x-y, z+w)-2 f(x, z)+2 f(y, w))\| \\
& \quad+\theta\left(\|x\|^{r}+\|y\|^{r}\right)\left(\|z\|^{r}+\|w\|^{r}\right)
\end{align*}
$$

for all $x, y, z, w \in X$. Then there exists a unique bi-additive mapping $A: X^{2} \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x, z)-A(x, z)\| \leq \frac{2^{r-1} \theta}{2^{r}-2}\|x\|^{r}\|z\|^{r} \tag{26}
\end{equation*}
$$

for all $x, z \in X$.
Theorem 12. ([25] Theorem 3.3) Let $r<1$ and θ be nonnegative real numbers and let $f: X^{2} \rightarrow Y$ be a mapping satisfying (25) and $f(x, 0)=f(0, z)=0$ for all $x, z \in X$. Then there exists a unique bi-additive mapping $A: X^{2} \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x, z)-A(x, z)\| \leq \frac{\theta}{2\left(2-2^{r}\right)}\|x\|^{r}\|z\|^{r} \tag{27}
\end{equation*}
$$

for all $x, z \in X$.
Now, we investigate C^{*}-ternary biderivations on C^{*}-ternary algebras associated with the bi-additive s-functional inequalities (4) and (5).

From now on, assume that A is a C^{*}-ternary algebra.
Theorem 13. Let $r>2$ and θ be nonnegative real numbers, and let $f: A^{2} \rightarrow A$ be a mapping satisfying $f(x, 0)=f(0, z)=0$ and

$$
\begin{align*}
& \|f(\lambda(x+y), \mu(z-w))+f(\lambda(x-y), \mu(z+w))-2 \lambda \mu f(x, z)+2 \lambda \mu f(y, w)\| \tag{28}\\
& \leq\left\|s\left(2 f\left(\frac{x+y}{2}, z-w\right)+2 f\left(\frac{x-y}{2}, z+w\right)-2 f(x, z)+2 f(y, w)\right)\right\| \\
& \quad+\theta\left(\|x\|^{r}+\|y\|^{r}\right)\left(\|z\|^{r}+\|w\|^{r}\right)
\end{align*}
$$

for all $\lambda, \mu \in \mathbb{T}^{1}$ and all $x, y, z, w \in A$. Then there exists a unique \mathbb{C}-bilinear mapping $D: A^{2} \rightarrow A$ such that

$$
\begin{equation*}
\|f(x, z)-D(x, z)\| \leq \frac{2 \theta}{2^{r}-2}\|x\|^{r}\|z\|^{r} \tag{29}
\end{equation*}
$$

for all $x, z \in A$.

If, in addition, the mapping $f: A^{2} \rightarrow A$ satisfies $f(2 x, z)=2 f(x, z)$ and

$$
\begin{align*}
& \left\|f([x, y, z], w)-[f(x, w), y, z]-\left[x, f\left(y, w^{*}\right), z\right]-[x, y, f(z, w)]\right\| \\
& \quad \leq \theta\left(\|x\|^{r}+\|y\|^{r}\right)\left(\|z\|^{r}+\|z\|^{r}\right) \tag{30}\\
& \| f(x,[y, z, w])-[f(x, y), z, w]-\left[y, f\left(x^{*}, z, w\right]-[y, z, f(x, w)] \|\right. \\
& \quad \leq \theta\left(\|x\|^{r}+\|y\|^{r}\right)\left(\|z\|^{r}+\|w\|^{r}\right) \tag{31}
\end{align*}
$$

for all $x, y, z, w \in A$, then the mapping $f: A^{2} \rightarrow A$ is a C^{*}-ternary biderivation.
Proof. Let $\lambda=\mu=1$ in (28). By Theorem 9, there is a unique bi-additive mapping $D: A^{2} \rightarrow A$ satisfying (29) defined by

$$
D(x, z):=\lim _{n \rightarrow \infty} 2^{n} f\left(\frac{x}{2^{n}}, z\right)
$$

for all $x, z \in A$.
Letting $y=w=0$ in (28), we get $f(\lambda x, \mu z)=\lambda \mu f(x, z)$ for all $x, z \in A$ and all $\lambda, \mu \in \mathbb{T}^{1}$. By Lemma 1 , the bi-additive mapping $D: A^{2} \rightarrow A$ is \mathbb{C}-bilinear.

If $f(2 x, z)=2 f(x, z)$ for all $x, z \in A$, then we can easily show that $D(x, z)=f(x, z)$ for all $x, z \in A$.

It follows from (30) that

$$
\begin{gathered}
\left\|D([x, y, z], w)-[D(x, w), y, z]-\left[x, D\left(y, w^{*}\right), z\right]-[x, y, D(z, w)]\right\| \\
=\lim _{n \rightarrow \infty} 16^{n}\left(\| f\left(\frac{[x, y, z]}{8^{n}}, \frac{w}{2^{n}}\right)-\left[f\left(\frac{x}{2^{n}}, \frac{w}{2^{n}}\right), \frac{y}{2^{n}}, \frac{z}{2^{n}}\right]\right. \\
\left.-\left[\frac{x}{2^{n}}, f\left(\frac{y}{2^{n}}, \frac{w^{*}}{2^{n}}\right), \frac{z}{2^{n}}\right]-\left[\frac{x}{2^{n}}, \frac{y}{2^{n}}, f\left(\frac{z}{2^{n}}, \frac{w}{2^{n}}\right)\right] \|\right) \\
\quad \leq \lim _{n \rightarrow \infty} \frac{16^{n} \theta}{4^{r n}}\left(\|x\|^{r}+\|y\|^{r}\right)\left(\|z\|^{r}+\|w\|^{r}\right)=0
\end{gathered}
$$

for all $x, y, z, w \in A$. Thus

$$
D([x, y, z], w)=[D(x, w), y, z]+\left[x, D\left(y, w^{*}\right), z\right]+[x, y, D(z, w)]
$$

for all $x, y, z, w \in A$.
Similarly, one can show that

$$
D(x,[y, z, w])=[D(x, y), z, w]-\left[y, D\left(x^{*}, z, w\right]-[y, z, D(x, w)]\right.
$$

for all $x, y, z, w \in A$. Hence the mapping $f: A^{2} \rightarrow A$ is a C^{*}-ternary biderivation.
Theorem 14. Let $r<1$ and θ be nonnegative real numbers, and let $f: A^{2} \rightarrow A$ be a mapping satisfying (28) and $f(x, 0)=f(0, z)=0$ for all $x, z \in A$. Then there exists a unique \mathbb{C}-bilinear mapping $D: A^{2} \rightarrow A$ such that

$$
\begin{equation*}
\|f(x, z)-D(x, z)\| \leq \frac{2 \theta}{2-2^{r}}\|x\|^{r}\|z\|^{r} \tag{32}
\end{equation*}
$$

for all $x, z \in A$.
If, in addition, the mapping $f: A^{2} \rightarrow A$ satisfies (30), (31) and $f(2 x, z)=2 f(x, z)$ for all $x, z \in A$, then the mapping $f: A^{2} \rightarrow A$ is a C^{*}-ternary biderivation.

Proof. The proof is similar to the proof of Theorem 13.

Similarly, we can obtain the following results.
Theorem 15. Let $r>2$ and θ be nonnegative real numbers, and let $f: A^{2} \rightarrow A$ be a mapping satisfying $f(x, 0)=f(0, z)=0$ and

$$
\begin{align*}
& \left\|2 f\left(\lambda \frac{x+y}{2}, \mu(z-w)\right)+2 f\left(\lambda \frac{x-y}{2}, \mu(z+w)\right)-2 \lambda \mu f(x, z)+2 \lambda \mu f(y, w)\right\| \\
& \leq\|s(f(x+y, z-w)+f(x-y, z+w)-2 f(x, z)+2 f(y, w))\| \tag{33}\\
& \quad+\theta\left(\|x\|^{r}+\|y\|^{r}\right)\left(\|z\|^{r}+\|w\|^{r}\right)
\end{align*}
$$

for all $\lambda, \mu \in \mathbb{T}^{1}$ and all $x, y, z, w \in A$. Then there exists a unique \mathbb{C}-bilinear mapping $D: A^{2} \rightarrow A$ such that

$$
\begin{equation*}
\|f(x, z)-D(x, z)\| \leq \frac{2^{r-1} \theta}{2^{r}-2}\|x\|^{r}\|z\|^{r} \tag{34}
\end{equation*}
$$

for all $x, z \in A$.
If, in addition, the mapping $f: A^{2} \rightarrow A$ satisfies (30), (31) and $f(2 x, z)=2 f(x, z)$ for all $x, z \in A$, then the mapping $f: A^{2} \rightarrow A$ is a C^{*}-ternary biderivation.

Theorem 16. Let $r<1$ and θ be nonnegative real numbers, and let $f: A^{2} \rightarrow A$ be a mapping satisfying (33) and $f(x, 0)=f(0, z)=0$ for all $x, z \in A$. Then there exists a unique \mathbb{C}-bilinear mapping $D: A^{2} \rightarrow A$ such that

$$
\begin{equation*}
\|f(x, z)-D(x, z)\| \leq \frac{\theta}{2\left(2-2^{r}\right)}\|x\|^{r}\|z\|^{r} \tag{35}
\end{equation*}
$$

for all $x, z \in A$.
If, in addition, the mapping $f: A^{2} \rightarrow A$ satisfies (30), (31) and $f(2 x, z)=2 f(x, z)$ for all $x, z \in A$, then the mapping $f: A^{2} \rightarrow A$ is a C^{*}-ternary biderivation.

5. C*-Ternary Bihomomorphisms in C*-Ternary Algebras Associated with the Bi-Additive Functional Inequalities (4) and (5)

In this section, we investigate C^{*}-ternary bihomomorphisms in C^{*}-ternary algebras associated with the bi-additive s-functional inequalities (4) and (5).

Theorem 17. Let $r>3$ and θ be nonnegative real numbers, and let $f: A^{2} \rightarrow B$ be a mapping satisfying $f(x, 0)=f(0, z)=0$ and (28). Then there exists a unique \mathbb{C}-bilinear mapping $H: A^{2} \rightarrow B$ satisfying (29), where D is replaced by H in (29).

If, in addition, the mapping $f: A^{2} \rightarrow B$ satisfies $f(2 x, z)=2 f(x, z)$ and

$$
\begin{align*}
& \|f([x, y, z],[w, w, w])-[f(x, w), f(y, w), f(z, w)]\| \leq \theta\left(\|x\|^{r}+\|y\|^{r}\right)\left(\|z\|^{r}+\|w\|^{r}\right) \tag{36}\\
& \|f([x, x, x],[y, z, w])-[f(x, y), f(x, z), f(x, w)]\| \leq \theta\left(\|x\|^{r}+\|y\|^{r}\right)\left(\|z\|^{r}+\|w\|^{r}\right) \tag{37}
\end{align*}
$$

for all $x, y, z, w \in A$, then the mapping $f: A^{2} \rightarrow B$ is a C^{*}-ternary bihomomorphism.
Proof. By the same reasoning as in the proof of Theorem 13 , there is a unique \mathbb{C}-bilinear mapping $H: A^{2} \rightarrow B$, which is defined by

$$
H(x, z)=\lim _{n \rightarrow \infty} 2^{n} f\left(\frac{x}{2^{n}}, z\right)
$$

for all $x, z \in A$.

If $f(2 x, z)=2 f(x, z)$ for all $x, z \in A$, then we can easily show that $H(x, z)=f(x, z)$ for all $x, z \in A$.

It follows from (36) that

$$
\begin{aligned}
& \|H([x, y, z],[w, w, w])-[H(x, w), H(y, w), H(z, w)]\| \\
& =\lim _{n \rightarrow \infty} 4^{3 n}\left\|f\left(\frac{[x, y, z]}{8^{n}}, \frac{[w, w, w]}{8^{n}}\right)-\left[f\left(\frac{x}{2^{n}}, \frac{w}{2^{n}}\right), f\left(\frac{y}{2^{n}}, \frac{w}{2^{n}}\right), f\left(\frac{z}{2^{n}}, \frac{w}{2^{n}}\right)\right]\right\| \\
& \leq \lim _{n \rightarrow \infty} \frac{4^{3 n} \theta}{4^{r n}}\left(\|x\|^{r}+\|y\|^{r}\right)\left(\|z\|^{r}+\|w\|^{r}\right)=0
\end{aligned}
$$

for all $x, y, z, w \in A$. Thus

$$
H([x, y, z],[w, w, w])=[H(x, w), H(y, w), H(z, w)]
$$

for all $x, y, z, w \in A$.
Similarly, one can show that

$$
H([x, x, x],[y, z, w])=[H(x, y), H(x, z), H(x, w)]
$$

for all $x, y, z, w \in A$. Hence the mapping $f: A^{2} \rightarrow B$ is a C^{*}-ternary bihomomorphism.
Theorem 18. Let $r<1$ and θ be nonnegative real numbers, and let $f: A^{2} \rightarrow B$ be a mapping satisfying (28) and $f(x, 0)=f(0, z)=0$ for all $x, z \in A$. Then there exists a unique \mathbb{C}-bilinear mapping $H: A^{2} \rightarrow B$ satisfying (32), where D is replaced by H in (32).

If, in addition, the mapping $f: A^{2} \rightarrow B$ satisfies (36), (37) and $f(2 x, z)=2 f(x, z)$ for all $x, z \in A$, then the mapping $f: A^{2} \rightarrow B$ is a C^{*}-ternary bihomomorphism.

Proof. The proof is similar to the proof of Theorem 17.
Similarly, we can obtain the following results.
Theorem 19. Let $r>3$ and θ be nonnegative real numbers, and let $f: A^{2} \rightarrow B$ be a mapping satisfying $f(x, 0)=f(0, z)=0$ and (33). Then there exists a unique \mathbb{C}-bilinear mapping $H: A^{2} \rightarrow B$ satisfying (34), where D is replaced by H in (34).

If, in addition, the mapping $f: A^{2} \rightarrow B$ satisfies (36), (37) and $f(2 x, z)=2 f(x, z)$ for all $x, z \in A$, then the mapping $f: A^{2} \rightarrow B$ is a C^{*}-ternary bihomomorphism.

Theorem 20. Let $r<1$ and θ be nonnegative real numbers, and let $f: A^{2} \rightarrow B$ be a mapping satisfying (33) and $f(x, 0)=f(0, z)=0$ for all $x, z \in A$. Then there exists a unique \mathbb{C}-bilinear mapping $H: A^{2} \rightarrow B$ satisfying (35), where D is replaced by H in (35).

If, in addition, the mapping $f: A^{2} \rightarrow B$ satisfies (36), (37) and $f(2 x, z)=2 f(x, z)$ for all $x, z \in A$, then the mapping $f: A^{2} \rightarrow B$ is a C^{*}-ternary bihomomorphism.

Acknowledgments: Choonkil Park was supported by Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (NRF-2017R1D1A1B04032937).
Conflicts of Interest: The author declares no conflicts of interest.

References

1. Ulam, S.M. A Collection of the Mathematical Problems; Interscience Publishers: New York, NY, USA, 1960.
2. Hyers, D.H. On the stability of the linear functional equation. Proc. Nat. Acad. Sci. USA 1941, 27, 222-224.
3. Aoki, T. On the stability of the linear transformation in Banach spaces. J. Math. Soc. Jpn. 1950, 2, 64-66.
4. Rassias, T.M. On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 1978, 72, 297-300.
5. Gǎvruta, P. A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J. Math. Anal. Appl. 1994, 184, 431-436.
6. Gilányi, A. Eine zur Parallelogrammgleichung äquivalente Ungleichung. Aequ. Math. 2001, 62, 303-309.
7. Rätz, J. On inequalities associated with the Jordan-von Neumann functional equation. Aequ. Math. 2003, 66, 191-200.
8. Fechner, W. Stability of a functional inequalities associated with the Jordan-von Neumann functional equation. Aequ. Math. 2006, 71, 149-161.
9. Gilányi, A. On a problem by K. Nikodem. Math. Inequal. Appl. 2002, 5, 707-710.
10. Park, C. Additive ρ-functional inequalities and equations. J. Math. Inequal. 2015, 9, 17-26.
11. Park, C. Additive ρ-functional inequalities in non-Archimedean normed spaces. J. Math. Inequal. 2015, 9, 397-407.
12. Cho, Y.; Jang, S.; Kwon, S.; Park, C.; Park, W. Approximate bi-homomorphisms and bi-derivations in C^{*}-ternary algebras: revisited. Korean J. Math. 2013, 21, 161-170.
13. Gordji, M.E.; Fazeli, A.; Park, C. 3-Lie multipliers on Banach 3-Lie algebras. Int. J. Geom. Meth. Mod. Phys. 2012, 9, 1250052.
14. Gordji, M.E.; Ghaemi, M.B.; Alizadeh, B. A fixed point method for perturbation of higher ring derivationsin non-Archimedean Banach algebras. Int. J. Geom. Meth. Mod. Phys. 2011, 8, 1611-1625.
15. Gordji, M.E.; Ghobadipour, N. Stability of (α, β, γ)-derivations on Lie C^{*}-algebras. Int. J. Geom. Meth. Mod. Phys. 2010, 7, 1097-1102.
16. Jung, S.; Lee, Y. A fixed point approach to the stability of a mean value type functional equation. Mathematics 2017, 5, 78.
17. Lee, Y. Stability of a monomial functional equation on a restricted domain. Mathematics 2017, 5, 53.
18. Shin, D.; Park, C.; Farhadabadi, S. On the superstability of ternary Jordan C*-homomorphisms. J. Comput. Anal. Appl. 2014, 16, 964-973.
19. Shin, D.; Park, C.; Farhadabadi, S. Stability and superstability of J^{*}-homomorphisms and J^{*}-derivations for a generalized Cauchy-Jensen equation. J. Comput. Anal. Appl. 2014, 17, 125-134.
20. Amyari, M.; Baak, C.; Moslehian, M. Nearly ternary derivations. Taiwan. J. Math. 2007, 11, 1417-1424.
21. Zettl, H. A characterization of ternary rings of operators. Adv. Math. 1983, 48, 117-143.
22. Moslehian, M.S. Almost derivations on C*-ternary rings. Bull. Belg. Math. Soc. Simon Stevin 2006, 14, 135-142.
23. Amyari, M.; Moslehian, M.S. Approximate homomorphisms of ternary semigroups. Lett. Math. Phys. 2006, 77, 1-9.
24. Bae, J.; Park, W. Approximate bi-homomorphisms and bi-derivations in C^{*}-ternary algebras. Bull. Korean Math. Soc. 2010, 47, 195-209.
25. Park, C. Bi-additive s-functional inequalities and quasi-multipliers on Banach algebras. Unpublished. (preprint)
