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1. Introduction and Preliminaries

The stability problem of functional equations originated from a question of Ulam [1] concerning
the stability of group homomorphisms.

The functional equation f (x + y) = f (x) + f (y) is called the Cauchy equation. In particular, every
solution of the Cauchy equation is said to be an additive mapping. Hyers [2] gave a first affirmative
partial answer to the question of Ulam for Banach spaces. Hyers’ Theorem was generalized by Aoki [3]
for additive mappings and by Rassias [4] for linear mappings by considering an unbounded Cauchy
difference. A generalization of the Rassias theorem was obtained by Găvruta [5] by replacing the
unbounded Cauchy difference by a general control function in the spirit of Rassias’ approach.

Gilányi [6] showed that if f satisfies the functional inequality

‖2 f (x) + 2 f (y)− f (x− y)‖ ≤ ‖ f (x + y)‖ (1)

then f satisfies the Jordan-von Neumann functional equation

2 f (x) + 2 f (y) = f (x + y) + f (x− y).

See also [7]. Fechner [8] and Gilányi [9] proved the Hyers-Ulam stability of the functional
inequality (1).

Park [10,11] defined additive ρ-functional inequalities and proved the Hyers-Ulam stability of
the additive ρ-functional inequalities in Banach spaces and non-Archimedean Banach spaces. The
stability problems of various functional equations and functional inequalities have been extensively
investigated by a number of authors (see [12–20]).

A C∗-ternary algebra is a complex Banach space A, equipped with a ternary product
(x, y, z) 7→ [x, y, z] of A3 into A, which is C-linear in the outer variables, conjugate C-linear in
the middle variable, and associative in the sense that [x, y, [z, w, v]] = [x, [w, z, y], v] = [[x, y, z], w, v],
and satisfies ‖[x, y, z]‖ ≤ ‖x‖ · ‖y‖ · ‖z‖ and ‖[x, x, x]‖ = ‖x‖3 (see [21]).

If a C∗-ternary algebra (A, [·, ·, ·]) has an identity, i.e., an element e ∈ A such that x = [x, e, e] =
[e, e, x] for all x ∈ A, then it is routine to verify that A, endowed with x ◦ y := [x, e, y] and x∗ := [e, x, e],
is a unital C∗-algebra. Conversely, if (A, ◦) is a unital C∗-algebra, then [x, y, z] := x ◦ y∗ ◦ z makes A
into a C∗-ternary algebra.
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Let A and B be C∗-ternary algebras. A C-linear mapping H : A → B is called a C∗-ternary
homomorphism if

H([x, y, z]) = [H(x), H(y), H(z)]

for all x, y, z ∈ A. A C-linear mapping δ : A→ A is called a C∗-ternary derivation if

δ([x, y, z]) = [δ(x), y, z] + [x, δ(y), z] + [x, y, δ(z)]

for all x, y, z ∈ A (see [22,23]).
Bae and Park [24] defined C∗-ternary bihomomorphisms and C∗-ternary biderivations in

C∗-ternary algebras.

Definition 1. [24] Let A and B be C∗-ternary algebras. A C-bilinear mapping H : A× A → B is called a
C∗-ternary bihomomorphism if

H([x, y, z], w) = [H(x, w), H(y, w), H(z, w)], (2)

H(x, [y, z, w]) = [H(x, y), H(x, z), H(x, w)]

for all x, y, z, w ∈ A. A C-bilinear mapping δ : A× A→ A is called a C∗-ternary biderivation if

δ([x, y, z], w) = [δ(x, w), y, z] + [x, δ(y, w), z] + [x, y, δ(z, w)], (3)

δ(x, [y, z, w]) = [δ(x, y), z, w] + [y, δ(x, z), w] + [y, z, δ(x, w)]

for all x, y, z, w ∈ A.

Replacing w by 2w in (2), we get

2H([x, y, z], w) = H([x, y, z], 2w) = [H(x, 2w), H(y, 2w), H(z, 2w)]

= 8[H(x, w), H(y, w), H(z, w)] = 8H([x, y, z], w)

and so H([x, y, z], w) = 0 for all x, y, z, w ∈ A.
Replacing w by iw in (3), we get

iδ([x, y, z], w) = δ([x, y, z], iw) = [δ(x, iw), y, z] + [x, δ(y, iw), z] + [x, y, δ(z, iw)]

= i[δ(x, w), y, z]− i[x, δ(y, w), z] + i[x, y, δ(z, w)] 6= iδ([x, y, z], w)

for all x, y, z, w ∈ A.
Now we correct the above definition as follows.

Definition 2. Let A and B be C∗-ternary algebras. A C-bilinear mapping H : A × A → B is called a
C∗-ternary bihomomorphism if

H([x, y, z], [w, w, w]) = [H(x, w), H(y, w), H(z, w)],

H([x, x, x], [y, z, w]) = [H(x, y), H(x, z), H(x, w)]

for all x, y, z, w ∈ A. A C-bilinear mapping δ : A× A→ A is called a C∗-ternary biderivation if

δ([x, y, z], w) = [δ(x, w), y, z] + [x, δ(y, w∗), z] + [x, y, δ(z, w)],

δ(x, [y, z, w]) = [δ(x, y), z, w] + [y, δ(x∗, z), w] + [y, z, δ(x, w)]

for all x, y, z, w ∈ A.
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In this paper, we prove the Hyers-Ulam stability of C∗-ternary bihomomorphisms and C∗-ternary
bi-derivations in C∗-ternary algebras.

This paper is organized as follows: In Sections 2 and 3, we correct and prove the results
on C∗-ternary bihomomorphisms and C∗-ternary derivations in C∗-ternary algebras, given in [24].
In Sections 4 and 5, we investigate C∗-ternary biderivations and C∗-ternary bihomomorphisms in
C∗-ternary algebras associated with the following bi-additive s-functional inequalities

‖ f (x + y, z− w) + f (x− y, z + w)− 2 f (x, z) + 2 f (y, w)‖ (4)

≤
∥∥∥∥s
(

2 f
(

x + y
2

, z− w
)
+ 2 f

(
x− y

2
, z + w

)
− 2 f (x, z) + 2 f (y, w)

)∥∥∥∥ ,

∥∥∥∥2 f
(

x + y
2

, z− w
)
+ 2 f

(
x− y

2
, z + w

)
− 2 f (x, z) + 2 f (y, w)

∥∥∥∥ (5)

≤ ‖s ( f (x + y, z− w) + f (x− y, z + w)− 2 f (x, z) + 2 f (y, w))‖ ,

where s is a fixed nonzero complex number with |s| < 1.
Throughout this paper, let X be a complex normed space and Y a complex Banach space. Assume

that s is a fixed nonzero complex number with |s| < 1.

2. C∗-Ternary Bihomomorphisms in C∗-Ternary Algebras

In this section, we correct and prove the results on C∗-ternary bihomomorphisms in C∗-ternary
algebras, given in [24].

Throughout this paper, assume that A and B are C∗-ternary algebras.

Lemma 1. ([24], Lemmas 2.1 and 2.2) Let f : X× X → Y be a mapping such that

f (λ(x + y), µ(z− w)) + f (λ(x− y), µ(z + w)) = 2λµ f (x, z)− 2λµ f (y, w)

for all λ, µ ∈ T1 := {ξ ∈ C : |ξ| = 1} and all x, y, z, w ∈ V. Then f : X× X → Y is C-bilinear.

For a given mapping f : A× A→ B, we define

Dλ,µ f (x, y, z, w)

:= f (λ(x + y), µ(z− w)) + f (λ(x− y), µ(z + w))− 2λµ f (x, z) + 2λµ f (y, w)

for all λ, µ ∈ T1 and all x, y, z, w ∈ A.
We prove the Hyers-Ulam stability of C∗-ternary bihomomorphisms in C∗-ternary algebras.

Theorem 1. Let r < 2 and θ be nonnegative real numbers, and let f : A× A → B be a mapping satisfying
f (0, 0) = 0 and

‖Dλ,µ f (x, y, z, w)‖ ≤ θ(‖x‖r + ‖y‖r + ‖z‖r + ‖w‖r), (6)

‖ f ([x, y, z], [w, w, w])− [ f (x, w), f (y, w), f (z, w)]‖ (7)

+‖ f ([x, x, x], [y, z, w])− [ f (x, y), f (x, z), f (x, w)]‖
≤ θ(‖x‖r + ‖y‖r + ‖z‖r + ‖w‖r)
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for all λ, µ ∈ T1 and all x, y, z, w ∈ A. Then there exists a unique C∗-ternary bi-homomorphism H : A× A→
B such that

‖ f (x, z)− H(x, z)‖ ≤ 6θ

4− 2r (‖x‖
r + ‖z‖r) (8)

for all x, z ∈ A.

Proof. By the same reasoning as in the proof of ([24] Theorem 2.3), there exists a unique C-bilinear
mapping H : A× A→ B satisfying (8). The C-bilinear mapping H : A× A→ B is defined by

H(x, z) = lim
n→∞

1
4n f (2nx, 2nz)

for all x, z ∈ A.
It follows from (7) that

‖H([x, y, z], [w, w, w])− [H(x, w), H(y, w), H(z, w)]‖
+‖H([x, x, x], [y, z, w])− [H(x, y), H(x, z), H(x, w)]‖

= lim
n→∞

1
64n ‖ f (8n[x, y, z], 8n[w, w, w])− [ f (2nx, 2nw), f (2ny, 2nw), f (2nz, 2nw)]‖

+ lim
n→∞

1
64n ‖ f (8n[x, x, x], 8n[y, z, w])− [ f (2nx, 2ny), f (2nx, 2nz), f (2nx, 2nw)]‖

≤ lim
n→∞

2rn

64n θ(‖x‖r + ‖y‖r + ‖z‖r + ‖w‖r) = 0

for all x, y, z, w ∈ A. So

H([x, y, z], [w, w, w]) = [H(x, w), H(y, w), H(z, w)],

H([x, x, x], [y, z, w]) = [H(x, y), H(x, z), H(x, w)]

for all x, y, z, w ∈ A, as desired.

Similarly, we can obtain the following.

Theorem 2. Let r > 6 and θ be nonnegative real numbers, and let f : A× A → B be a mapping satisfying
f (0, 0) = 0, (6) and (7). Then there exists a unique C∗-ternary bihomomorphism H : A× A→ B such that

‖ f (x, z)− H(x, z)‖ ≤ 6θ

2r − 4
(‖x‖r + ‖z‖r) (9)

for all x, z ∈ A.

Proof. By the same reasoning as in the proof of ([24] Theorem 2.5), there exists a unique C-bilinear
mapping H : A× A→ B satisfying (9). The C-bilinear mapping H : A× A→ B is defined by

H(x, z) = lim
n→∞

4n f
( x

2n ,
z

2n

)
for all x, z ∈ A.
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It follows from (7) that

‖H([x, y, z], [w, w, w])− [H(x, w), H(y, w), H(z, w)]‖
+‖H([x, x, x], [y, z, w])− [H(x, y), H(x, z), H(x, w)]‖

= lim
n→∞

64n
∥∥∥∥ f
(
[x, y, z]

8n ,
[w, w, w]

8n

)
−
[

f
( x

2n ,
w
2n

)
, f
( y

2n ,
w
2n

)
, f
( z

2n ,
w
2n

)]∥∥∥∥
+ lim

n→∞
64n

∥∥∥∥ f
(
[x, x, x]

8n ,
[y, z, w]

8n

)
−
[

f
( x

2n ,
y
2n

)
, f
( x

2n ,
z

2n

)
, f
( x

2n ,
w
2n

)]∥∥∥∥
≤ lim

n→∞

64n

2rn θ(‖x‖r + ‖y‖r + ‖z‖r + ‖w‖r) = 0

for all x, y, z, w ∈ A. So

H([x, y, z], [w, w, w]) = [H(x, w), H(y, w), H(z, w)],

H([x, x, x], [y, z, w]) = [H(x, y), H(x, z), H(x, w)]

for all x, y, z, w ∈ A, as desired.

Theorem 3. Let r < 1
2 and θ be nonnegative real numbers, and let f : A× A → B be a mapping satisfying

f (0, 0) = 0 and

‖Dλ,µ f (x, y, z, w)‖ ≤ θ · ‖x‖r · ‖y‖r · ‖z‖r · ‖w‖r, (10)

‖ f ([x, y, z], [w, w, w])− [ f (x, w), f (y, w), f (z, w)]‖ (11)

+‖ f ([x, x, x], [y, z, w])− [ f (x, y), f (x, z), f (x, w)]‖
≤ θ · ‖x‖r · ‖y‖r · ‖z‖r · ‖w‖r

for all λ, µ ∈ T1 and all x, y, z, w ∈ A. Then there exists a unique C∗-ternary bihomomorphism H : A× A→ B
such that

‖ f (x, z)− H(x, z)‖ ≤ 2θ

4− 16r (‖x‖
r + ‖z‖r) (12)

for all x, z ∈ A.

Proof. By the same reasoning as in the proof of ([24] Theorem 2.6), there exists a unique C-bilinear
mapping H : A× A→ B satisfying (12). The C-bilinear mapping H : A× A→ B is defined by

H(x, z) = lim
n→∞

1
4n f (2nx, 2nz)

for all x, z ∈ A.
The rest of the proof is similar to the proof of Theorem 1.

Theorem 4. Let r > 3
2 and θ be nonnegative real numbers, and let f : A× A → B be a mapping satisfying

f (0, 0) = 0, (10) and (11). Then there exists a unique C∗-ternary bihomomorphism H : A× A→ B such that

‖ f (x, z)− H(x, z)‖ ≤ 2θ

16r − 4
(‖x‖r + ‖z‖r) (13)

for all x, z ∈ A.
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Proof. By the same reasoning as in the proof of ([24] Theorem 2.7), there exists a unique C-bilinear
mapping H : A× A→ B satisfying (13). The C-bilinear mapping H : A× A→ B is defined by

H(x, z) = lim
n→∞

4n f
( x

2n ,
z

2n

)
for all x, z ∈ A.

The rest of the proof is similar to the proof of Theorem 1.

3. C∗-Ternary Biderivations on C∗-Ternary Algebras

In this section, we correct and prove the results on C∗-ternary biderivations on C∗-ternary algebras,
given in [24].

Throughout this paper, assume that A is a C∗-ternary algebra.

Theorem 5. Let r < 2 and θ be nonnegative real numbers, and let f : A× A → A be a mapping satisfying
f (0, 0) = 0 and

‖Dλ,µ f (x, y, z, w)‖ ≤ θ(‖x‖r + ‖y‖r + ‖z‖r + ‖w‖r), (14)

‖ f ([x, y, z], w)− [ f (x, w), y, z]− [x, f (y, w∗), z]− [x, y, f (z, w)]‖ (15)

+‖ f (x, [y, z, w])− [ f (x, y), z, w]− [y, f (x∗, z), w]− [y, z, f (x, w)]‖
≤ θ(‖x‖r + ‖y‖r + ‖z‖r + ‖w‖r)

for all λ, µ ∈ T1 and all x, y, z, w ∈ A. Then there exists a unique C∗-ternary biderivation δ : A× A → A
such that

‖ f (x, z)− δ(x, z)‖ ≤ 6θ

4− 2r (‖x‖
r + ‖z‖r) (16)

for all x, z ∈ A.

Proof. By the same reasoning as in the proof of ([24] Theorems 2.3 and 3.1), there exists a unique
C-bilinear mapping δ : A × A → A satisfying (16). The C-bilinear mapping δ : A × A → A is
defined by

δ(x, z) = lim
n→∞

1
4n f (2nx, 2nz)

for all x, z ∈ A.
It follows from (15) that

‖δ([x, y, z], w)− [δ(x, w), y, z]− [x, δ(y, w∗), z]− [x, y, δ(z, w)]‖
+‖δ(x, [y, z, w])− [δ(x, y), z, w]− [y, δ(x∗, z), w]− [y, z, δ(x, w)]‖

= lim
n→∞

1
16n (‖ f (8n[x, y, z], 2nw)− [ f (2nx, 2nw), 2ny, 2nw]

−[2nx, f (2ny, 2nw∗), 2nz]− [2nx, 2ny, f (2nz, 2nw)]‖)

+ lim
n→∞

1
16n (‖ f (2nx, 8n[y, z, w])− [ f (2nx, 2ny), 2nz, 2nw]

−[2ny, f (2nx∗, 2nz), 2nw]− [2ny, 2nz, f (2nx, 2nw)]‖)

≤ lim
n→∞

2rn

16n θ(‖x‖r + ‖y‖r + ‖z‖r + ‖w‖r) = 0



Mathematics 2018, 6, 30 7 of 13

for all x, y, z, w ∈ A. So

δ([x, y, z], w) = [δ(x, w), y, z] + [x, δ(y, w∗), z] + [x, y, δ(z, w)],

δ(x, [y, z, w]) = [δ(x, y), z, w] + [y, δ(x∗, z), w] + [y, z, δ(x, w)]

for all x, y, z, w ∈ A, as desired.

Similarly, we can obtain the following.

Theorem 6. Let r > 4 and θ be nonnegative real numbers, and let f : A× A → A be a mapping satisfying
f (0, 0) = 0, (14) and (15). Then there exists a unique C∗-ternary biderivation δ : A× A→ A such that

‖ f (x, z)− δ(x, z)‖ ≤ 6θ

2r − 4
(‖x‖r + ‖z‖r) (17)

for all x, z ∈ A.

Proof. By the same reasoning as in the proof of ([24] Theorem 2.5), there exists a unique C-bilinear
mapping δ : A× A→ A satisfying (17). The C-bilinear mapping δ : A× A→ A is defined by

δ(x, z) = lim
n→∞

4n f
( x

2n ,
z

2n

)
for all x, z ∈ A.

It follows from (15) that

‖δ([x, y, z], w)− [δ(x, w), y, z]− [x, δ(y, w∗), z]− [x, y, δ(z, w)]‖
+‖δ(x, [y, z, w])− [δ(x, y), z, w]− [y, δ(x∗, z), w]− [y, z, δ(x, w)]‖

= lim
n→∞

16n
(∥∥∥∥ f

(
[x, y, z]

8n ,
w
2n

)
−
[

f
( x

2n ,
w
2n

)
,

y
2n ,

w
2n

]
−
[

x
2n , f

(
y
2n ,

w∗

2n

)
,

z
2n

]
−
[ x

2n ,
y
2n , f

( z
2n ,

w
2n

)]∥∥∥∥)
+ lim

n→∞
16n

(∥∥∥∥ f
(

x
2n ,

[y, z, w]

8n

)
−
[

f
( x

2n ,
y
2n

)
,

z
2n ,

w
2n

]
−
[

y
2n , f

(
x∗

2n ,
z

2n

)
,

w
2n

]
−
[ y

2n ,
z

2n , f
( x

2n ,
w
2n

)]∥∥∥∥)
≤ lim

n→∞

16n

2rn θ(‖x‖r + ‖y‖r + ‖z‖r + ‖w‖r) = 0

for all x, y, z, w ∈ A. So

δ([x, y, z], w) = [δ(x, w), y, z] + [x, δ(y, w∗), z] + [x, y, δ(z, w)],

δ(x, [y, z, w]) = [δ(x, y), z, w] + [y, δ(x∗, z), w] + [y, z, δ(x, w)]

for all x, y, z, w ∈ A, as desired.

Theorem 7. Let r < 1
2 and θ be nonnegative real numbers, and let f : A× A→ A be a mapping satisfying

f (0, 0) = 0 and

‖Dλ,µ f (x, y, z, w)‖ ≤ θ · ‖x‖r · ‖y‖r · ‖z‖r · ‖w‖r, (18)
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‖ f ([x, y, z], w)− [ f (x, w), y, z]− [x, f (y, w∗), z]− [x, y, f (z, w)]‖ (19)

+‖ f (x, [y, z, w])− [ f (x, y), z, w]− [y, f (x∗, z), w]− [y, z, f (x, w)]‖
≤ θ · ‖x‖r · ‖y‖r · ‖z‖r · ‖w‖r

for all λ, µ ∈ T1 and all x, y, z, w ∈ A. Then there exists a unique C∗-ternary biderivation δ : A× A → A
such that

‖ f (x, z)− δ(x, z)‖ ≤ 2θ

4− 16r (‖x‖
r + ‖z‖r) (20)

for all x, z ∈ A.

Proof. By the same reasoning as in the proof of ([24] Theorem 2.6), there exists a unique C-bilinear
mapping δ : A× A→ A satisfying (20). The C-bilinear mapping δ : A× A→ A is defined by

δ(x, z) = lim
n→∞

1
4n f (2nx, 2nz)

for all x, z ∈ A.
The rest of the proof is similar to the proof of Theorem 5.

Theorem 8. Let r > 3
2 and θ be nonnegative real numbers, and let f : A× A→ A be a mapping satisfying

f (0, 0) = 0, (18) and (19). Then there exists a unique C∗-ternary biderivation δ : A× A→ A such that

‖ f (x, z)− δ(x, z)‖ ≤ 2θ

16r − 4
(‖x‖r + ‖z‖r) (21)

for all x, z ∈ A.

Proof. By the same reasoning as in the proof of ([24] Theorem 2.7), there exists a unique C-bilinear
mapping δ : A× A→ A satisfying (21). The C-bilinear mapping δ : A× A→ A is defined by

δ(x, z) = lim
n→∞

4n f
( x

2n ,
z

2n

)
for all x, z ∈ A.

The rest of the proof is similar to the proof of Theorem 5.

4. C∗-Ternary Biderivations on C∗-Ternary Algebras Associated with the Bi-Additive Functional
Inequalities (4) and (5)

In [25], Park introduced and investigated the bi-additive s-functional inequalities (4) and (5) in
complex Banach spaces.

Theorem 9. ([25] Theorem 2.2) Let r > 1 and θ be nonnegative real numbers and let f : X2 → Y be a mapping
satisfying f (x, 0) = f (0, z) = 0 and

‖ f (x + y, z− w) + f (x− y, z + w)− 2 f (x, z) + 2 f (y, w)‖ (22)

≤
∥∥∥∥s
(

2 f
(

x + y
2

, z− w
)
+ 2 f

(
x− y

2
, z + w

)
− 2 f (x, z) + 2 f (y, w)

)∥∥∥∥
+θ(‖x‖r + ‖y‖r)(‖z‖r + ‖w‖r)

for all x, y, z, w ∈ X. Then there exists a unique bi-additive mapping A : X2 → Y such that

‖ f (x, z)− A(x, z)‖ ≤ 2θ

2r − 2
‖x‖r‖z‖r (23)
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for all x, z ∈ X.

Theorem 10. ([25] Theorem 2.3) Let r < 1 and θ be nonnegative real numbers and let f : X2 → Y be a
mapping satisfying (22) and f (x, 0) = f (0, z) = 0 for all x, z ∈ X. Then there exists a unique bi-additive
mapping A : X2 → Y such that

‖ f (x, z)− A(x, z)‖ ≤ 2θ

2− 2r ‖x‖
r‖z‖r (24)

for all x, z ∈ X.

Theorem 11. ([25] Theorem 3.2) Let r > 1 and θ be nonnegative real numbers and let f : X2 → Y be a
mapping satisfying f (x, 0) = f (0, z) = 0 and∥∥∥∥2 f

(
x + y

2
, z− w

)
+ 2 f

(
x− y

2
, z + w

)
− 2 f (x, z) + 2 f (y, w)

∥∥∥∥ (25)

≤ ‖s ( f (x + y, z− w) + f (x− y, z + w)− 2 f (x, z) + 2 f (y, w))‖
+θ(‖x‖r + ‖y‖r)(‖z‖r + ‖w‖r)

for all x, y, z, w ∈ X. Then there exists a unique bi-additive mapping A : X2 → Y such that

‖ f (x, z)− A(x, z)‖ ≤ 2r−1θ

2r − 2
‖x‖r‖z‖r (26)

for all x, z ∈ X.

Theorem 12. ([25] Theorem 3.3) Let r < 1 and θ be nonnegative real numbers and let f : X2 → Y be a
mapping satisfying (25) and f (x, 0) = f (0, z) = 0 for all x, z ∈ X. Then there exists a unique bi-additive
mapping A : X2 → Y such that

‖ f (x, z)− A(x, z)‖ ≤ θ

2(2− 2r)
‖x‖r‖z‖r (27)

for all x, z ∈ X.

Now, we investigate C∗-ternary biderivations on C∗-ternary algebras associated with the
bi-additive s-functional inequalities (4) and (5).

From now on, assume that A is a C∗-ternary algebra.

Theorem 13. Let r > 2 and θ be nonnegative real numbers, and let f : A2 → A be a mapping satisfying
f (x, 0) = f (0, z) = 0 and

‖ f (λ(x + y), µ(z− w)) + f (λ(x− y), µ(z + w))− 2λµ f (x, z) + 2λµ f (y, w)‖ (28)

≤
∥∥∥∥s
(

2 f
(

x + y
2

, z− w
)
+ 2 f

(
x− y

2
, z + w

)
− 2 f (x, z) + 2 f (y, w)

)∥∥∥∥
+θ(‖x‖r + ‖y‖r)(‖z‖r + ‖w‖r)

for all λ, µ ∈ T1 and all x, y, z, w ∈ A. Then there exists a unique C-bilinear mapping D : A2 → A such that

‖ f (x, z)− D(x, z)‖ ≤ 2θ

2r − 2
‖x‖r‖z‖r (29)

for all x, z ∈ A.
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If, in addition, the mapping f : A2 → A satisfies f (2x, z) = 2 f (x, z) and

‖ f ([x, y, z], w)− [ f (x, w), y, z]− [x, f (y, w∗), z]− [x, y, f (z, w)]‖
≤ θ(‖x‖r + ‖y‖r)(‖z‖r + ‖z‖r), (30)

‖ f (x, [y, z, w])− [ f (x, y), z, w]− [y, f (x∗, z, w]− [y, z, f (x, w)]‖
≤ θ(‖x‖r + ‖y‖r)(‖z‖r + ‖w‖r) (31)

for all x, y, z, w ∈ A, then the mapping f : A2 → A is a C∗-ternary biderivation.

Proof. Let λ = µ = 1 in (28). By Theorem 9, there is a unique bi-additive mapping D : A2 → A
satisfying (29) defined by

D(x, z) := lim
n→∞

2n f
( x

2n , z
)

for all x, z ∈ A.
Letting y = w = 0 in (28), we get f (λx, µz) = λµ f (x, z) for all x, z ∈ A and all λ, µ ∈ T1.

By Lemma 1, the bi-additive mapping D : A2 → A is C-bilinear.
If f (2x, z) = 2 f (x, z) for all x, z ∈ A, then we can easily show that D(x, z) = f (x, z) for all

x, z ∈ A.
It follows from (30) that

‖D([x, y, z], w)− [D(x, w), y, z]− [x, D(y, w∗), z]− [x, y, D(z, w)]‖

= lim
n→∞

16n
(∥∥∥∥ f

(
[x, y, z]

8n ,
w
2n

)
−
[

f
( x

2n ,
w
2n

)
,

y
2n ,

z
2n

]
−
[

x
2n , f

(
y
2n ,

w∗

2n

)
,

z
2n

]
−
[ x

2n ,
y
2n , f

( z
2n ,

w
2n

)]∥∥∥∥)
≤ lim

n→∞

16nθ

4rn (‖x‖r + ‖y‖r)(‖z‖r + ‖w‖r) = 0

for all x, y, z, w ∈ A. Thus

D([x, y, z], w) = [D(x, w), y, z] + [x, D(y, w∗), z] + [x, y, D(z, w)]

for all x, y, z, w ∈ A.
Similarly, one can show that

D(x, [y, z, w]) = [D(x, y), z, w]− [y, D(x∗, z, w]− [y, z, D(x, w)]

for all x, y, z, w ∈ A. Hence the mapping f : A2 → A is a C∗-ternary biderivation.

Theorem 14. Let r < 1 and θ be nonnegative real numbers, and let f : A2 → A be a mapping satisfying (28)
and f (x, 0) = f (0, z) = 0 for all x, z ∈ A. Then there exists a unique C-bilinear mapping D : A2 → A
such that

‖ f (x, z)− D(x, z)‖ ≤ 2θ

2− 2r ‖x‖
r‖z‖r (32)

for all x, z ∈ A.
If, in addition, the mapping f : A2 → A satisfies (30), (31) and f (2x, z) = 2 f (x, z) for all x, z ∈ A, then

the mapping f : A2 → A is a C∗-ternary biderivation.

Proof. The proof is similar to the proof of Theorem 13.
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Similarly, we can obtain the following results.

Theorem 15. Let r > 2 and θ be nonnegative real numbers, and let f : A2 → A be a mapping satisfying
f (x, 0) = f (0, z) = 0 and∥∥∥∥2 f

(
λ

x + y
2

, µ(z− w)

)
+ 2 f

(
λ

x− y
2

, µ(z + w)

)
− 2λµ f (x, z) + 2λµ f (y, w)

∥∥∥∥
≤ ‖s ( f (x + y, z− w) + f (x− y, z + w)− 2 f (x, z) + 2 f (y, w))‖ (33)

+θ(‖x‖r + ‖y‖r)(‖z‖r + ‖w‖r)

for all λ, µ ∈ T1 and all x, y, z, w ∈ A. Then there exists a unique C-bilinear mapping D : A2 → A such that

‖ f (x, z)− D(x, z)‖ ≤ 2r−1θ

2r − 2
‖x‖r‖z‖r (34)

for all x, z ∈ A.
If, in addition, the mapping f : A2 → A satisfies (30), (31) and f (2x, z) = 2 f (x, z) for all x, z ∈ A, then

the mapping f : A2 → A is a C∗-ternary biderivation.

Theorem 16. Let r < 1 and θ be nonnegative real numbers, and let f : A2 → A be a mapping satisfying (33)
and f (x, 0) = f (0, z) = 0 for all x, z ∈ A. Then there exists a unique C-bilinear mapping D : A2 → A
such that

‖ f (x, z)− D(x, z)‖ ≤ θ

2(2− 2r)
‖x‖r‖z‖r (35)

for all x, z ∈ A.
If, in addition, the mapping f : A2 → A satisfies (30), (31) and f (2x, z) = 2 f (x, z) for all x, z ∈ A, then

the mapping f : A2 → A is a C∗-ternary biderivation.

5. C∗-Ternary Bihomomorphisms in C∗-Ternary Algebras Associated with the Bi-Additive
Functional Inequalities (4) and (5)

In this section, we investigate C∗-ternary bihomomorphisms in C∗-ternary algebras associated
with the bi-additive s-functional inequalities (4) and (5).

Theorem 17. Let r > 3 and θ be nonnegative real numbers, and let f : A2 → B be a mapping satisfying
f (x, 0) = f (0, z) = 0 and (28). Then there exists a unique C-bilinear mapping H : A2 → B satisfying (29),
where D is replaced by H in (29).

If, in addition, the mapping f : A2 → B satisfies f (2x, z) = 2 f (x, z) and

‖ f ([x, y, z], [w, w, w])− [ f (x, w), f (y, w), f (z, w)]‖ ≤ θ(‖x‖r + ‖y‖r)(‖z‖r + ‖w‖r), (36)

‖ f ([x, x, x], [y, z, w])− [ f (x, y), f (x, z), f (x, w)]‖ ≤ θ(‖x‖r + ‖y‖r)(‖z‖r + ‖w‖r) (37)

for all x, y, z, w ∈ A, then the mapping f : A2 → B is a C∗-ternary bihomomorphism.

Proof. By the same reasoning as in the proof of Theorem 13, there is a unique C-bilinear mapping
H : A2 → B, which is defined by

H(x, z) = lim
n→∞

2n f
( x

2n , z
)

for all x, z ∈ A.
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If f (2x, z) = 2 f (x, z) for all x, z ∈ A, then we can easily show that H(x, z) = f (x, z) for all
x, z ∈ A.

It follows from (36) that

‖H([x, y, z], [w, w, w])− [H(x, w), H(y, w), H(z, w)]‖

= lim
n→∞

43n
∥∥∥∥ f
(
[x, y, z]

8n ,
[w, w, w]

8n

)
−
[

f
( x

2n ,
w
2n

)
, f
( y

2n ,
w
2n

)
, f
( z

2n ,
w
2n

)]∥∥∥∥
≤ lim

n→∞

43nθ

4rn (‖x‖r + ‖y‖r)(‖z‖r + ‖w‖r) = 0

for all x, y, z, w ∈ A. Thus

H([x, y, z], [w, w, w]) = [H(x, w), H(y, w), H(z, w)]

for all x, y, z, w ∈ A.
Similarly, one can show that

H([x, x, x], [y, z, w]) = [H(x, y), H(x, z), H(x, w)]

for all x, y, z, w ∈ A. Hence the mapping f : A2 → B is a C∗-ternary bihomomorphism.

Theorem 18. Let r < 1 and θ be nonnegative real numbers, and let f : A2 → B be a mapping satisfying (28)
and f (x, 0) = f (0, z) = 0 for all x, z ∈ A. Then there exists a unique C-bilinear mapping H : A2 → B
satisfying (32), where D is replaced by H in (32).

If, in addition, the mapping f : A2 → B satisfies (36), (37) and f (2x, z) = 2 f (x, z) for all x, z ∈ A, then
the mapping f : A2 → B is a C∗-ternary bihomomorphism.

Proof. The proof is similar to the proof of Theorem 17.

Similarly, we can obtain the following results.

Theorem 19. Let r > 3 and θ be nonnegative real numbers, and let f : A2 → B be a mapping satisfying
f (x, 0) = f (0, z) = 0 and (33). Then there exists a unique C-bilinear mapping H : A2 → B satisfying (34),
where D is replaced by H in (34).

If, in addition, the mapping f : A2 → B satisfies (36), (37) and f (2x, z) = 2 f (x, z) for all x, z ∈ A, then
the mapping f : A2 → B is a C∗-ternary bihomomorphism.

Theorem 20. Let r < 1 and θ be nonnegative real numbers, and let f : A2 → B be a mapping satisfying (33)
and f (x, 0) = f (0, z) = 0 for all x, z ∈ A. Then there exists a unique C-bilinear mapping H : A2 → B
satisfying (35), where D is replaced by H in (35).

If, in addition, the mapping f : A2 → B satisfies (36), (37) and f (2x, z) = 2 f (x, z) for all x, z ∈ A, then
the mapping f : A2 → B is a C∗-ternary bihomomorphism.
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