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Abstract: Fuzzy graph theory is a conceptual framework to study and analyze the units that are
intensely or frequently connected in a network. It is used to study the mathematical structures
of pairwise relations among objects. An m-polar fuzzy (mF, for short) set is a useful notion in
practice, which is used by researchers or modelings on real world problems that sometimes involve
multi-agents, multi-attributes, multi-objects, multi-indexes and multi-polar information. In this paper,
we apply the concept of mF sets to hypergraphs, and present the notions of regular mF hypergraphs
and totally regular mF hypergraphs. We describe the certain properties of regular mF hypergraphs
and totally regular mF hypergraphs. We discuss the novel applications of mF hypergraphs in
decision-making problems. We also develop efficient algorithms to solve decision-making problems.

Keywords: regular mF hypergraph; totally regular mF hypergraph; decision-making; algorithm;
time complexity

1. Introduction

Graph theory has interesting applications in different fields of real life problems to deal with the
pairwise relations among the objects. However, this information fails when more than two objects
satisfy a certain common property or not. In several real world applications, relationships are more
problematic among the objects. Therefore, we take into account the use of hypergraphs to represent
the complex relationships among the objects. In case of a set of multiarity relations, hypergraphs are
the generalization of graphs, in which a hypergraph may have more than two vertices. Hypergraphs
have many applications in different fields including biological science, computer science, declustering
problems and discrete mathematics.

In 1994, Zhang [1] proposed the concept of bipolar fuzzy set as a generalization of fuzzy set [2].
In many problems, bipolar information are used, for instance, common efforts and competition, common
characteristics and conflict characteristics are the two-sided knowledge. Chen et al. [3] introduced the
concept of m-polar fuzzy (mF, for short) set as a generalization of a bipolar fuzzy set and it was shown that
2-polar and bipolar fuzzy set are cryptomorphic mathematical notions. The framework of this theory is
that “multipolar information” (unlike the bipolar information which gives two-valued logic) arise because
information for a natural world are frequently from n factors (n ≥ 2). For example, ‘Pakistan is a good
country’. The truth value of this statement may not be a real number in [0, 1]. Being a good country may
have several properties: good in agriculture, good in political awareness, good in regaining macroeconomic
stability etc. Each component may be a real number in [0, 1]. If n is the number of such components
under consideration, then the truth value of the fuzzy statement is a n-tuple of real numbers in [0, 1],
that is, an element of [0, 1]n. The perception of fuzzy graphs based on Zadeh’s fuzzy relations [4] was
introduced by Kauffmann [5]. Rosenfeld [6] described the fuzzy graphs structure. Later, some remarks
were given by Bhattacharya [7] on fuzzy graphs. Several concepts on fuzzy graphs were introduced by
Mordeson and Nair [8]. In 2011, Akram introduced the notion of bipolar fuzzy graphs in [9]. Li et al. [10]
considered different algebraic operations on mF graphs.
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In 1977, Kauffmann [5] proposed the fuzzy hypergraphs. Chen [11] studied the interval-valued
fuzzy hypergraph. Generalization and redefinition of the fuzzy hypergraph were explained by
Lee-Kwang and Keon-Myung [12]. Parvathi et al. [13] introduced the concept of intuitionistic fuzzy
hypergraphs. Samanta and Pal [14] dealt with bipolar fuzzy hypergraphs. Later on, Akram et al. [15]
considered certain properties of the bipolar fuzzy hypergraph. Bipolar neutrosophic hypergraphs with
applications were presented by Akram and Luqman [16]. Sometimes information is multipolar, that is,
a communication channel may have various signal strengths from the others due to various reasons
including atmosphere, device distribution, mutual interference of satellites etc. The accidental mixing
of various chemical substances could cause toxic gases, fire or explosion of different degrees. All these
are components of multipolar knowledge which are fuzzy in nature. This idea motivated researchers to
study mF hypergraphs [17]. Akram and Sarwar [18] considered transversals of mF hypergraphs
with applications. In this research paper, we introduce the idea of regular and totally regular
mF hypergraphs and investigate some of their properties. We discuss the new applications of mF
hypergraphs in decision-making problems. We develop efficient algorithms to solve decision-making
problems and compute the time complexity of algorithms. For other notations, terminologies and
applications not mentioned in the paper, the readers are referred to [19–31].

In this paper, we will use the notations defined in Table 1.

Table 1. Notations.

Symbol Definition

H∗ = (A∗, B∗) Crisp hypergraph
H = (A, B) mF hypergraph

HD = (A∗, B∗) Dual mF hypergraph
N(x) Open neighourhood degree of a vertex in H
N[x] Closed neighourhood degree of a vertex in H

γ(x1, x2) Adjacent level of two vertices
σ(T1, T2) Adjacent level of two hyperedges

2. Notions of mF Hypergraph

Definition 1. An mF set on a non-empty crisp set X is a function A : X → [0, 1]m. The degree of each element
x ∈ X is denoted by A(x) = (P1oA(x), P2oA(x), ..., PmoA(x)), where PioA : [0, 1]m → [0, 1] is the i-th
projection mapping [3].

Note that [0, 1]m (m-th-power of [0, 1]) is considered as a poset with the point-wise order ≤, where m is
an arbitrary ordinal number (we make an appointment that m = {n|n < m} when m > 0), ≤ is defined by
x < y⇔ pi(x) ≤ pi(y) for each i ∈ m (x, y ∈ [0, 1]m), and Pi : [0, 1]m → [0, 1] is the i-th projection mapping
(i ∈ m). 1 = (1, 1, ..., 1) is the greatest value and 0 = (0, 0, ..., 0) is the smallest value in [0, 1]m.

Definition 2. Let A be an mF subset of a non-empty fuzzy subset of a non-empty set X. An mF relation on A
is an mF subset B of X× X defined by the mapping B : X× X → [0, 1]m such that for all x, y ∈ X

PioB(xy) ≤ inf{PioA(x), PioA(y)}

1 ≤ i ≤ m, where PioA(x) denotes the i-th degree of membership of a vertex x and PioB(xy) denotes the i-th
degree of membership of the edge xy.

Definition 3. An mF graph is a pair G = (A, B), where A : X → [0, 1]m is an mF set in X and B : X× X →
[0, 1]m is an mF relation on X such that

PioB(xy) ≤ inf{PioA(x), PioA(y)}
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1 ≤ i ≤ m, for all x, y ∈ X and PioB(xy) = 0 for all xy ∈ X × X − E for all i = 1, 2, ..., m. A is called the
mF vertex set of G and B is called the mF edge set of G, respectively [3].

Definition 4. An mF hypergraph on a non-empty set X is a pair H = (A, B) [17], where
A = {ζ1, ζ2, ζ3, ..., ζr} is a family of mF subsets on X and B is an mF relation on the mF subsets ζ j such that

1. B(Ej) = B({x1, x2, ..., xr}) ≤ inf{ζ j(x1), ζ j(x2), ..., ζ j(xs)}, for all x1, x2, ..., xs ∈ X.
2.

⋃
k supp(ζk) = X, for all ζk ∈ A.

Example 1. Let A = {ζ1, ζ2, ζ3, ζ4, ζ5} be a family of 4-polar fuzzy subsets on X = {a, b, c, d, e, f , g} given
in Table 2. Let B be a 4-polar fuzzy relation on ζ

′
js, 1 ≤ j ≤ 5, given as, B({a, c, e}) = (0.2, 0.4, 0.1, 0.3),

B({b, d, f }) = (0.2, 0.1, 0.1, 0.1), B({a, b}) = (0.3, 0.1, 0.1, 0.6), B({e, f }) = (0.2, 0.4, 0.3, 0.2),
B({b, e, g}) = (0.2, 0.1, 0.2, 0.4). Thus, the 4-polar fuzzy hypergraph is shown in Figure 1.

Table 2. 4-polar fuzzy subsets.

x ∈ X ζ1 ζ2 ζ3 ζ4 ζ5

a (0.3,0.4,0.5,0.6) (0,0,0,0) (0.3,0.4,0.5,0.6) (0,0,0,0) (0,0,0,0)
b (0,0,0,0) (0.4,0.1,0.1,0.6) (0.4,0.1,0.1,0.6) (0,0,0,0) (0.4,0.1,0.1,0.6)
c (0.3,0.5,0.1,0.3) (0,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0)
d (0,0,0,0) (0.4,0.2,0.5,0.1) (0,0,0,0) (0,0,0,0) (0,0,0,0)
e (0.2,0.4,0.6,0.8) (0,0,0,0) (0,0,0,0) (0.2,0.4,0.6,0.8) (0.2,0.4,0.6,0.8)
f (0,0,0,0) (0.2,0.5,0.3,0.2) (0,0,0,0) (0.2,0.5,0.3,0.2) (0,0,0,0)
g (0,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0) (0.3,0.5,0.1,0.4)

b b
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Figure 2.1: 4-polar fuzzy hypergraph

Example 2.6. Consider a 5-polar fuzzy hypergraph with vertex set {a, b, c, d, e, f, g} whose degrees of

membership are given in Table. 2 and three hyperedges {a,b,c}, {b,d,e}, {b,f,g} such that B({a, b, c}) =

(0.2, 0.1, 0.3, 0.1, 0.2), B({b, d, e}) = (0.1, 0.2, 0.3, 0.4, 0.2), B({b, f, g}) = (0.2, 0.2, 0.3, 0.3, 0.2). Hence, the

5-polar fuzzy hypergraph is shown in Fig. 2.2.

Table 2:
x ∈ X ζ1 ζ2 ζ3

a (0.2,0.1,0.3,0.1,0.3) (0,0,0,0,0) (0,0,0,0,0)

b (0.2,0.3,0.5,0.6,0.2) (0.2,0.3,0.5,0.6,0.2) (0.2,0.3,0.5,0.6,0.2)

c (0.3,0.2,0.4,0.5,0.2) (0,0,0,0,0) (0,0,0,0,0)

d (0,0,0,0,0) (0.6,0.2,0.2,0.3,0.3) (0,0,0,0,0)

e (0,0,0,0,0) (0.4,0.5,0.6,0.7,0.3) (0,0,0,0,0)

f (0,0,0,0,0) (0,0,0,0,0) (0.1,0.2,0.3,0.4,0.4)

g (0,0,0,0,0) (0,0,0,0,0) (0.2,0.4,0.6,0.8,0.4)

4

Figure 1. 4-Polar fuzzy hypergraph.

Example 2. Consider a 5-polar fuzzy hypergraph with vertex set {a, b, c, d, e, f, g} whose degrees of membership
are given in Table 3 and three hyperedges {a,b,c}, {b,d,e}, {b,f,g} such that B({a, b, c}) = (0.2, 0.1, 0.3, 0.1, 0.2),
B({b, d, e}) = (0.1, 0.2, 0.3, 0.4, 0.2), B({b, f , g}) = (0.2, 0.2, 0.3, 0.3, 0.2). Hence, the 5-polar fuzzy
hypergraph is shown in Figure 2.

Table 3. 5-polar fuzzy subsets.

x ∈ X ζ1 ζ2 ζ3

a (0.2,0.1,0.3,0.1,0.3) (0,0,0,0,0) (0,0,0,0,0)
b (0.2,0.3,0.5,0.6,0.2) (0.2,0.3,0.5,0.6,0.2) (0.2,0.3,0.5,0.6,0.2)
c (0.3,0.2,0.4,0.5,0.2) (0,0,0,0,0) (0,0,0,0,0)
d (0,0,0,0,0) (0.6,0.2,0.2,0.3,0.3) (0,0,0,0,0)
e (0,0,0,0,0) (0.4,0.5,0.6,0.7,0.3) (0,0,0,0,0)
f (0,0,0,0,0) (0,0,0,0,0) (0.1,0.2,0.3,0.4,0.4)
g (0,0,0,0,0) (0,0,0,0,0) (0.2,0.4,0.6,0.8,0.4)
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Figure 2.2: 5-polar fuzzy hypergraph

Definition 2.7. [3] Let H = (A,B) be an mF hypergraph on a non-empty set X . The dual mF hypergraph

of H , denoted by HD = (A∗, B∗), is defined as

1. A∗ = B is the mF set of vertices of HD.

2. If |X | = n then, B∗ is an mF set on the family of hyperedges {X1, X2, ..., Xn} such that, Xi={Ej | xj ∈
Ej , Ej is a hyperedge of H}, i.e., Xi is the mF set of those hyperedges which share the common vertex

xi and B∗(Xi) = inf{Ej | xj ∈ Ej}.

Example 2.8. Consider the example of a 3-polar fuzzy hypergraph H = (A,B) given in Fig. 2.3, where

X = {x1, x2, x3, x4, x5, x6} and E = {E1, E2, E3, E4}. The dual 3-polar fuzzy hypergraph is shown in Fig.

2.4 with dashed lines with vertex set E = {E1, E2, E3, E4} and set of hyperedges {X1, X2, X3, X4, X5, X6}
such that X1 = X3.
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Figure 2. 5-Polar fuzzy hypergraph.

Definition 5. Let H = (A, B) be an mF hypergraph on a non-empty set X [17]. The dual mF hypergraph of
H, denoted by HD = (A∗, B∗), is defined as

1. A∗ = B is the mF set of vertices of HD.
2. If |X| = n then, B∗ is an mF set on the family of hyperedges {X1, X2, ..., Xn} such that, Xi={Ej | xj ∈

Ej, Ej is a hyperedge of H}, i.e., Xi is the mF set of those hyperedges which share the common vertex xi
and B∗(Xi) = inf{Ej | xj ∈ Ej}.

Example 3. Consider the example of a 3-polar fuzzy hypergraph H = (A, B) given in Figure 3, where
X = {x1, x2, x3, x4, x5, x6} and E = {E1, E2, E3, E4}. The dual 3-polar fuzzy hypergraph is shown in Figure 4
with dashed lines with vertex set E = {E1, E2, E3, E4} and set of hyperedges {X1, X2, X3, X4, X5, X6} such
that X1 = X3.
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Figure 2.4: dual 3-polar fuzzy hypergraph

Definition 2.9. The open neighourhood of a vertex x in the mF hypergraph is the set of adjacent vertices

of x excluding that vertex and it is denoted by N(x).

Example 2.10. Consider the 3-polar fuzzy hypergraph H = (A,B), where A = {ζ1, ζ2, ζ3, ζ4} is a family of

3-polar fuzzy subsets on X = {a, b, c, d, e} and B is a 3-polar fuzzy relation on the 3-polar fuzzy subsets ζi,

where ζ1 = {(a, 0.3, 0.4, 0.5), (b, 0.2, 0.4, 0.6)}, ζ2 = {(c, 0.2, 0.1, 0.4), (d, 0.5, 0.1, 0.1), (e, 0.2, 0.3, 0.1)}, ζ3 =

{(b, 0.1, 0.2, 0.4), (c, 0.4, 0.5, 0.6)}, ζ4 = {(a, 0.1, 0.3, 0.2), (d, 0.3, 0.4, 0.4)}. In this example, open neighour-

hood of the vertex a is b and d as shown in Fig. 2.5.
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Figure 3. 3-Polar fuzzy hypergraph.
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Definition 2.9. The open neighourhood of a vertex x in the mF hypergraph is the set of adjacent vertices

of x excluding that vertex and it is denoted by N(x).

Example 2.10. Consider the 3-polar fuzzy hypergraph H = (A,B), where A = {ζ1, ζ2, ζ3, ζ4} is a family of

3-polar fuzzy subsets on X = {a, b, c, d, e} and B is a 3-polar fuzzy relation on the 3-polar fuzzy subsets ζi,

where ζ1 = {(a, 0.3, 0.4, 0.5), (b, 0.2, 0.4, 0.6)}, ζ2 = {(c, 0.2, 0.1, 0.4), (d, 0.5, 0.1, 0.1), (e, 0.2, 0.3, 0.1)}, ζ3 =

{(b, 0.1, 0.2, 0.4), (c, 0.4, 0.5, 0.6)}, ζ4 = {(a, 0.1, 0.3, 0.2), (d, 0.3, 0.4, 0.4)}. In this example, open neighour-

hood of the vertex a is b and d as shown in Fig. 2.5.
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Figure 4. Dual 3-polar fuzzy hypergraph.

Definition 6. The open neighourhood of a vertex x in the mF hypergraph is the set of adjacent vertices of x
excluding that vertex and it is denoted by N(x).

Example 4. Consider the 3-polar fuzzy hypergraph H = (A, B), where A = {ζ1, ζ2, ζ3, ζ4} is a family of
3-polar fuzzy subsets on X = {a, b, c, d, e} and B is a 3-polar fuzzy relation on the 3-polar fuzzy subsets
ζi, where ζ1 = {(a, 0.3, 0.4, 0.5), (b, 0.2, 0.4, 0.6)}, ζ2 = {(c, 0.2, 0.1, 0.4), (d, 0.5, 0.1, 0.1), (e, 0.2, 0.3, 0.1)},
ζ3 = {(b, 0.1, 0.2, 0.4), (c, 0.4, 0.5, 0.6)}, ζ4 = {(a, 0.1, 0.3, 0.2), (d, 0.3, 0.4, 0.4)}. In this example, open
neighourhood of the vertex a is b and d, as shown in Figure 5.
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Figure 2.5: 3-polar fuzzy hypergraph

Definition 2.11. The closed neighourhood of a vertex x in the mF hypergraph is the set of adjacent vertices

of x including that vertex and it is denoted by N [x].

Example 2.12. Consider the 3-polar fuzzy hypergraph H = (A,B), where A = {ζ1, ζ2, ζ3, ζ4} is a family

of 3-polar fuzzy subsets on X = {a, b, c, d, e} and B is a 3-polar fuzzy relation on the 3-polar fuzzy sub-

sets ζi, where ζ1 = {(a, 0.3, 0.4, 0.5), (b, 0.2, 0.4, 0.6)}, ζ2 = {(c, 0.2, 0.1, 0.4), (d, 0.5, 0.1, 0.1), (e, 0.2, 0.3, 0.1)},
ζ3 = {(b, 0.1, 0.2, 0.4), (c, 0.4, 0.5, 0.6)}, ζ4 = {(a, 0.1, 0.3, 0.2), (d, 0.3, 0.4, 0.4)}. In this example, closed

neighourhood of the vertex a is a, b and d as shown in Fig. 2.5.

Definition 2.13. Let H = (A,B) be an mF hypergraph on crisp hypergraph H∗ = (A∗, B∗). If all vertices

in A have the same open neighbourhood degree n, then H is called n-regular mF hypergraph.

Definition 2.14. The open neighbourhood degree of a vertex x in H is denoted by deg(x) and defined by

deg(x) =
∑

x∈N(x) ζj(x). That is,
∑

x∈N(x) Pioζj(x), 1 ≤ i ≤ m.

Example 2.15. Consider the 3-polar fuzzy hypergraph H = (A,B), where A = {ζ1, ζ2, ζ3, ζ4} is a family of

3-polar fuzzy subsets on X = {a, b, c, d, e} and B is a 3-polar fuzzy relation on the 3-polar fuzzy subsets ζi,

where ζ1 = {(a, 0.3, 0.4, 0.5), (b, 0.2, 0.4, 0.6)}, ζ2 = {(c, 0.2, 0.1, 0.4), (d, 0.5, 0.1, 0.1), (e, 0.2, 0.3, 0.1)}, ζ3 =

{(b, 0.1, 0.2, 0.4), (c, 0.4, 0.5, 0.6)}, ζ4 = {(a, 0.1, 0.3, 0.2), (d, 0.3, 0.4, 0.4)}. The open neighbourhood degree

of a vertex a is deg(a) = (0.5, 0.8, 1).

Definition 2.16. Let H = (A,B) be an mF hypergraph on crisp hypergraph H∗ = (A∗, B∗). If all vertices

in A have the same closed neighbourhood degree m, then H is called m-totally regular mF hypergraph.

Definition 2.17. The closed neighbourhood degree of a vertex x in H is denoted by deg[x] and defined by

deg[x] = deg(x) + ∧jPioζj(x).

Example 2.18. Consider the 3-polar fuzzy hypergraph H = (A,B), where A = {ζ1, ζ2, ζ3, ζ4} is a family of

3-polar fuzzy subsets on X = {a, b, c, d, e} and B is a 3-polar fuzzy relation on the 3-polar fuzzy subsets ζi,

where ζ1 = {(a, 0.3, 0.4, 0.5), (b, 0.2, 0.4, 0.6)}, ζ2 = {(c, 0.2, 0.1, 0.4), (d, 0.5, 0.1, 0.1), (e, 0.2, 0.3, 0.1)}, ζ3 =

7

Figure 5. 3-Polar fuzzy hypergraph.

Definition 7. The closed neighourhood of a vertex x in the mF hypergraph is the set of adjacent vertices of x
including that vertex and it is denoted by N[x].

Example 5. Consider the 3-polar fuzzy hypergraph H = (A, B), where A = {ζ1, ζ2, ζ3, ζ4} is a family of
3-polar fuzzy subsets on X = {a, b, c, d, e} and B is a 3-polar fuzzy relation on the 3-polar fuzzy subsets
ζ j, where ζ1 = {(a, 0.3, 0.4, 0.5), (b, 0.2, 0.4, 0.6)}, ζ2 = {(c, 0.2, 0.1, 0.4), (d, 0.5, 0.1, 0.1), (e, 0.2, 0.3, 0.1)},
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ζ3 = {(b, 0.1, 0.2, 0.4), (c, 0.4, 0.5, 0.6)}, ζ4 = {(a, 0.1, 0.3, 0.2), (d, 0.3, 0.4, 0.4)}. In this example, closed
neighourhood of the vertex a is a, b and d, as shown in Figure 5.

Definition 8. Let H = (A, B) be an mF hypergraph on crisp hypergraph H∗ = (A∗, B∗). If all vertices in A
have the same open neighbourhood degree n, then H is called n-regular mF hypergraph.

Definition 9. The open neighbourhood degree of a vertex x in H is denoted by deg(x) and defined by
deg(x) = (deg(1)(x), deg(2)(x), deg(3)(x), . . . , deg(m)(x)), where

deg(1)(x) = Σx∈N(x)P1 ◦ ζ j(x),

deg(2)(x) = Σx∈N(x)P2 ◦ ζ j(x),

deg(3)(x) = Σx∈N(x)P3 ◦ ζ j(x),

...

deg(m)(x) = Σx∈N(x)Pm ◦ ζ j(x).

Example 6. Consider the 3-polar fuzzy hypergraph H = (A, B), where A = {ζ1, ζ2, ζ3, ζ4} is a family of
3-polar fuzzy subsets on X = {a, b, c, d, e} and B is a 3-polar fuzzy relation on the 3-polar fuzzy subsets
ζ j, where ζ1 = {(a, 0.3, 0.4, 0.5), (b, 0.2, 0.4, 0.6)}, ζ2 = {(c, 0.2, 0.1, 0.4), (d, 0.5, 0.1, 0.1), (e, 0.2, 0.3, 0.1)},
ζ3 = {(b, 0.1, 0.2, 0.4), (c, 0.4, 0.5, 0.6)}, ζ4 = {(a, 0.1, 0.3, 0.2), (d, 0.3, 0.4, 0.4)}. The open neighbourhood
degree of a vertex a is deg(a) = (0.5, 0.8, 1).

Definition 10. Let H = (A, B) be an mF hypergraph on crisp hypergraph H∗ = (A∗, B∗). If all vertices in A
have the same closed neighbourhood degree m, then H is called m-totally regular mF hypergraph.

Definition 11. The closed neighbourhood degree of a vertex x in H is denoted by deg[x] and defined by deg[x] =
(deg(1)[x], deg(2)[x], deg(3)[x], . . . , deg(m)[x]), where

deg(1)[x] = deg(1)(x) + ∧jP1 ◦ ζ j(x),

deg(2)[x] = deg(2)(x) + ∧jP2 ◦ ζ j(x),

deg(3)[x] = deg(3)(x) + ∧jP3 ◦ ζ j(x),

...

deg(m)[x] = d(m)
G (x) + ∧jPm ◦ ζ j(x).

Example 7. Consider the 3-polar fuzzy hypergraph H = (A, B), where A = {ζ1, ζ2, ζ3, ζ4} is a family of
3-polar fuzzy subsets on X = {a, b, c, d, e} and B is a 3-polar fuzzy relation on the 3-polar fuzzy subsets
ζ j, where ζ1 = {(a, 0.3, 0.4, 0.5), (b, 0.2, 0.4, 0.6)}, ζ2 = {(c, 0.2, 0.1, 0.4), (d, 0.5, 0.1, 0.1), (e, 0.2, 0.3, 0.1)},
ζ3 = {(b, 0.1, 0.2, 0.4), (c, 0.4, 0.5, 0.6)}, ζ4 = {(a, 0.1, 0.3, 0.2), (d, 0.3, 0.4, 0.4)}. The closed neighbourhood
degree of a vertex a is deg[a] = (0.6, 1.1, 1.2).

Example 8. Consider the 3-polar fuzzy hypergraph H = (A, B), where A = {ζ1, ζ2, ζ3} is a family of 3-polar
fuzzy subsets on X = {a, b, c, d, e} and B is a 3-polar fuzzy relation on the 3-polar fuzzy subsets ζ j, where

ζ1{(a, 0.5, 0.4, 0.1), (b, 0.3, 0.4, 0.1), (c, 0.4, 0.4, 0.3)},

ζ2 = {(a, 0.3, 0.1, 0.1), (d, 0.2, 0.3, 0.2), (e, 0.4, 0.6, 0.1)},
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ζ3 = {(b, 0.3, 0.4, 0.3), (d, 0.4, 0.3, 0.4), (e, 0.4, 0.3, 0.1)}.

By routine calculations, we can show that the above 3-polar fuzzy hypergraph is neither regular nor totally regular.

Example 9. Consider the 4-polar fuzzy hypergraph H = (A, B); define X = {a, b, c, d, e, f , g, h, i} and
A = {ζ1, ζ2, ζ3, ζ4, ζ5, ζ6}, where

ζ1 = {(a, 0.4, 0.4, 0.4, 0.4), (b, 0.4, 0.4, 0.4, 0.4), (c, 0.4, 0.4, 0.4, 0.4)},

ζ2 = {(d, 0.4, 0.4, 0.4, 0.4), (e, 0.4, 0.4, 0.4, 0.4), ( f , 0.4, 0.4, 0.4, 0.4)},

ζ3 = {(g, 0.4, 0.4, 0.4, 0.4), (h, 0.4, 0.4, 0.4, 0.4), (i, 0.4, 0.4, 0.4, 0.4)},

ζ4 = {(a, 0.4, 0.4, 0.4, 0.4), (d, 0.4, 0.4, 0.4, 0.4), (g, 0.4, 0.4, 0.4, 0.4)},

ζ5 = {(b, 0.4, 0.4, 0.4, 0.4), (e, 0.4, 0.4, 0.4, 0.4), (h, 0.4, 0.4, 0.4, 0.4)},

ζ6 = {(c, 0.4, 0.4, 0.4, 0.4), ( f , 0.4, 0.4, 0.4, 0.4), (i, 0.4, 0.4, 0.4, 0.4)}.

By routine calculations, we see that the 4-polar fuzzy hypergraph as shown in Figure 6 is both regular and
totally regular.

{(b, 0.1, 0.2, 0.4), (c, 0.4, 0.5, 0.6)}, ζ4 = {(a, 0.1, 0.3, 0.2), (d, 0.3, 0.4, 0.4)}. The closed neighbourhood degree

of a vertex a is deg[a] = (0.6, 1.1, 1.2).

Example 2.19. Consider the 3-polar fuzzy hypergraph H = (A,B), where A = {ζ1, ζ2, ζ3} is a family of

3-polar fuzzy subsets on X = {a, b, c, d, e} and B is a 3-polar fuzzy relation on the 3-polar fuzzy subsets ζi,

where ζ1={(a, 0.5, 0.4, 0.1), (b, 0.3, 0.4, 0.1), (c, 0.4, 0.4, 0.3)},
ζ2={(a, 0.3, 0.1, 0.1), (d, 0.2, 0.3, 0.2), (e, 0.4, 0.6, 0.1)},
ζ3={(b, 0.3, 0.4, 0.3), (d, 0.4, 0.3, 0.4), (e, 0.4, 0.3, 0.1)}. By routine calculations, we can show that the above

3-polar fuzzy hypergraph is neither regular nor totally regular.

Example 2.20. Consider the 4-polar fuzzy hypergraph H = (A,B); define X = {a, b, c, d, e, f, g, h, i} and

A = {ζ1, ζ2, ζ3, ζ4, ζ5, ζ6}, where ζ1={(a, 0.4, 0.4, 0.4, 0.4), (b, 0.4, 0.4, 0.4, 0.4), (c, 0.4, 0.4, 0.4, 0.4)},
ζ2={(d, 0.4, 0.4, 0.4, 0.4), (e, 0.4, 0.4, 0.4, 0.4), (f, 0.4, 0.4, 0.4, 0.4)},
ζ3 = {(g, 0.4, 0.4, 0.4, 0.4), (h, 0.4, 0.4, 0.4, 0.4), (i, 0.4, 0.4, 0.4, 0.4)},
ζ4 = {(a, 0.4, 0.4, 0.4, 0.4), (d, 0.4, 0.4, 0.4, 0.4), (g, 0.4, 0.4, 0.4, 0.4)},
ζ5 = {(b, 0.4, 0.4, 0.4, 0.4), (e, 0.4, 0.4, 0.4, 0.4), (h, 0.4, 0.4, 0.4, 0.4)},
ζ6 = {(c, 0.4, 0.4, 0.4, 0.4), (f, 0.4, 0.4, 0.4, 0.4), (i, 0.4, 0.4, 0.4, 0.4)}.
By routine calculations, we see that the 4-polar fuzzy hypergraph is both regular and totally regular.

b

b
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b b
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b(0.4, 0.4, 0.4, 0.4)

c(0.4, 0.4, 0.4, 0.4)

d(0.4, 0.4, 0.4, 0.4) e(0.4, 0.4, 0.4, 0.4)
f(0.4, 0.4, 0.4, 0.4)

g(0.4, 0.4, 0.4, 0.4)
h(0.4, 0.4, 0.4, 0.4)

i(0.4, 0.4, 0.4, 0.4)

Figure 2.6: 4-polar regular and totally regular fuzzy hypergraph

Remark. (a) For an mF hypergraph H = (A,B) to be both regular and totally regular, the number of

vertices in each hyperedge Bi must be same. Suppose that |Bi| = k for every i, then H is said to be

k-uniform.

(b) Each vertex lies in exactly same number of hyperedges.

Definition 2.21. Let H = (A,B) be a regular mF hypergraph. The order of a regular fuzzy hypergraph

H is O(H) =
∑

x∈X ∧jζj(x) for every x ∈ X . The size of a regular mF hypergraph is S(H) =
∑

j S(Bj),

where S(Bj) = (
∑

x∈Bj
Pioζj(x)).

Example 2.22. Consider the 4-polar fuzzy hypergraph H = (A,B); define X = {a, b, c, d, e, f, g, h, i} and

A = {ζ1, ζ2, ζ3, ζ4, ζ5, ζ6}, where ζ1={(a, 0.4, 0.4, 0.4, 0.4), (b, 0.4, 0.4, 0.4, 0.4), (c, 0.4, 0.4, 0.4, 0.4)},
ζ2={(d, 0.4, 0.4, 0.4, 0.4), (e, 0.4, 0.4, 0.4, 0.4), (f, 0.4, 0.4, 0.4, 0.4)},
ζ3 = {(g, 0.4, 0.4, 0.4, 0.4), (h, 0.4, 0.4, 0.4, 0.4), (i, 0.4, 0.4, 0.4, 0.4)},
ζ4 = {(a, 0.4, 0.4, 0.4, 0.4), (d, 0.4, 0.4, 0.4, 0.4), (g, 0.4, 0.4, 0.4, 0.4)},
ζ5 = {(b, 0.4, 0.4, 0.4, 0.4), (e, 0.4, 0.4, 0.4, 0.4), (h, 0.4, 0.4, 0.4, 0.4)},
ζ6 = {(c, 0.4, 0.4, 0.4, 0.4), (f, 0.4, 0.4, 0.4, 0.4), (i, 0.4, 0.4, 0.4, 0.4)}.
The order of H is, O(H) = (3.6, 3.6, 3.6, 3.6) and S(H) = (7.2, 7.2, 7.2, 7.2).
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Figure 6. 4-Polar regular and totally regular fuzzy hypergraph.

Remark 1. 1. For an mF hypergraph H = (A, B) to be both regular and totally regular, the number of
vertices in each hyperedge Bj must be the same. Suppose that |Bj| = k for every j, then H is said to
be k-uniform.

2. Each vertex lies in exactly the same number of hyperedges.

Definition 12. Let H = (A, B) be a regular mF hypergraph. The order of a regular fuzzy hypergraph H is

O(H) = (Σx∈X ∧ P1 ◦ ζ j(x), Σx∈X ∧ P2 ◦ ζ j(x), · · · , Σx∈X ∧ Pm ◦ ζ j(x)),

for every x ∈ X. The size of a regular mF hypergraph is S(H) = ∑j S(Bj), where

S(Bj) = (Σx∈Bj P1 ◦ ζ j(x), Σx∈Bj P2 ◦ ζ j(x), · · · , Σx∈Bj Pm ◦ ζ j(x)).

Example 10. Consider the 4-polar fuzzy hypergraph H = (A, B); define X = {a, b, c, d, e, f , g, h, i} and
A = {ζ1, ζ2, ζ3, ζ4, ζ5, ζ6}, where

ζ1 = {(a, 0.4, 0.4, 0.4, 0.4), (b, 0.4, 0.4, 0.4, 0.4), (c, 0.4, 0.4, 0.4, 0.4)},

ζ2 = {(d, 0.4, 0.4, 0.4, 0.4), (e, 0.4, 0.4, 0.4, 0.4), ( f , 0.4, 0.4, 0.4, 0.4)},

ζ3 = {(g, 0.4, 0.4, 0.4, 0.4), (h, 0.4, 0.4, 0.4, 0.4), (i, 0.4, 0.4, 0.4, 0.4)},

ζ4 = {(a, 0.4, 0.4, 0.4, 0.4), (d, 0.4, 0.4, 0.4, 0.4), (g, 0.4, 0.4, 0.4, 0.4)},
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ζ5 = {(b, 0.4, 0.4, 0.4, 0.4), (e, 0.4, 0.4, 0.4, 0.4), (h, 0.4, 0.4, 0.4, 0.4)},

ζ6 = {(c, 0.4, 0.4, 0.4, 0.4), ( f , 0.4, 0.4, 0.4, 0.4), (i, 0.4, 0.4, 0.4, 0.4)}.

The order of H is, O(H) = (3.6, 3.6, 3.6, 3.6) and S(H) = (7.2, 7.2, 7.2, 7.2).

We state the following propositions without proof.

Proposition 1. The size of a n-regular mF hypergraph is nk
2 , |X| = k.

Proposition 2. If H is both n-regular and m-totally regular mF hypergraph , then O(H) = k(m− n), where
|X| = K.

Proposition 3. If H is both m-totally regular mF hypergraph , then 2S(H) + O(H) = mk, |X| = K.

Theorem 1. Let H = (A, B) be an mF hypergraph of a crisp hypergraph H∗. Then A : X −→ [0, 1]m is a
constant function if and only if the following are equivalent:
(a) H is a regular mF hypergraph,
(b) H is a totally regular mF hypergraph.

Proof. Suppose that A : X −→ [0, 1]m, where A = {ζ1, ζ2, ..., ζr} is a constant function. That is,
Pioζ j(x) = ci for all x ∈ ζ j, 1 ≤ i ≤ m, 1 ≤ j ≤ r.

(a)⇒ (b): Suppose that H is n-regular mF hypergraph. Then deg(x) = ni, for all x ∈ ζ j. By using
definition 11, deg[x] = ni + ki for all x ∈ ζ j. Hence, H is a totally regular mF hypergraph.

(b)⇒ (a): Suppose that H is a m-totally regular mF hypergraph. Then deg[x] = ki, for all x ∈ ζ j,
1 ≤ j ≤ r.

⇒ deg(x) + ∧jPioζ j(x) = ki for all x ∈ ζ j,

⇒ deg(x) + ci = ki for all x ∈ ζ j,

⇒ deg(x) = ki − ci for all x ∈ ζ j.

Thus, H is a regular mF hypergraph. Hence (1) and (2) are equivalent.
Conversely, suppose that (1) and (2) are equivalent, i.e. H is regular if and only if H is totally

regular. On contrary, suppose that A is not constant, that is, Pioζ j(x) 6= Pioζ j(y) for some x and y in A.
Let H = (A, B) be a n-regular mF hypergraph; then

deg(x) = ni for all x ∈ ζ j(x).

Consider,

deg[x] = deg(x) + ∧jPioζ j(x) = ni + ∧jPioζ j(x),

deg[y] = deg(y) + ∧jPioζ j(y) = ni + ∧jPioζ j(y).

Since Pioζ j(x) and Pioζ j(y) are not equal for some x and y in X, hence deg[x] and deg[y] are not
equal, thus H is not a totally regular m-poalr fuzzy hypergraph, which is again a contradiction to our
assumption.

Next, let H be a totally regulr mF hypergraph, then deg[x] = deg[y].
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That is,

deg(x) + ∧jPioζ j(x) = deg(y) + ∧jPioζ j(y),

deg(x)− deg(y) = ∧jPioζ j(y)−∧jPioζ j(x).

Since the right hand side of the above equation is nonzero, the left hand side of the above equation is
also nonzero. Thus deg(x) and deg(y) are not equal, so H is not a regular mF hypergraph, which is
again contradiction to our assumption. Hence, A must be constant and this completes the proof.

Theorem 2. If an mF hypergraph is both regular and totally regular, then A : X −→ [0, 1]m is
constant function.

Proof. Let H be a regular and totally regular mF hypergraph. Then

deg(x) = ni for all x ∈ ζ j(x),

and

deg[x] = ki for all x ∈ ζ j(x),

⇔ deg(x) + ∧jPioζ j(x) = ki, for all x ∈ ζ j(x),

⇔ n1 + ∧jPioζ j(x) = ki, for all x ∈ ζ j(x),

⇔ ∧jPioζ j(x) = ki − ni, for all x ∈ ζ j(x),

⇔ Pioζ j(x) = ki − ni, for all x ∈ ζ j(x).

Hence, A : X −→ [0, 1]m is a constant function.

Remark 2. The converse of Theorem 1 may not be true, in general. Consider a 3-polar fuzzy hypergraph
H = (A, B), define X = {a, b, c, d, e},

ζ1 = {(a, 0.2, 0, 2, 0.2), (b, 0.2, 0.2, 0.2), (c, 0.2, 0.2, 0.2)},

ζ2 = {(a, 0.2, 0, 2, 0.2), (d, 0.2, 0.2, 0.2)},

ζ3 = {(b, 0.2, 0.2, 0.2), (e, 0.2, 0.2, 0.2)},

ζ4 = {(c, 0.2, 0.2, 0.2), (e, 0.2, 0.2, 0.2)}.

Then A : X −→ [0, 1]m, where A = {ζ1, ζ2, ..., ζr} is a constant function. But deg(a) = (0.6, 0.6, 0.6) 6=
(0.4, 0.4, 0.4) = deg(e). Also (deg[a] = (0.8, 0.8, 0.8) 6= (0.6, 0.6, 0.6) = deg[e]). So H is neither regular nor
totally regular mF hypergraph.

Definition 13. An mF hypergraph H = (A, B) is called complete if for every x ∈ X, N(x) = {x | x ∈ X− x}
that is, N(x) contains all the remaining vertices of X except x.

Example 11. Consider a 3-polar fuzzy hypergraph H = (A, B) as shown in Figure 7, where
X = {a, b, c, d} and A = {ζ1, ζ2, ζ3}, where ζ1 = {(a, 0.3, 0.4, 0.6), (c, 0.3, 0.4, 0.6)}, ζ2 =

{(a, 0.3, 0.4, 0.6), (b, 0.3, 0.4, 0.6), (d, 0.3, 0.4, 0.6)}, ζ3 = {(b, 0.3, 0.4, 0.6), (c, 0.3, 0.4, 0.6), (d, 0.3, 0.4, 0.6)}.
Then N(a) = {b, c, d}, N(b) = {a, c, d}, N(c) = {a, b, d}.
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Theorem 2.27. If an mF hypergraph is both regular and totally regular, then A : X −→ [0, 1]m is constant

function.

Proof. Let H be a regular and totally regular mF hypergraph. Then

deg(x) = n1 for all x ∈ ζj(x),

and

deg[x] = k1 for all x ∈ ζj(x),

⇔ deg(x) + ∧jPioζj(x) = k1, for all x ∈ ζj(x),

⇔ n1 + ∧jPioζj(x) = k1, for all x ∈ ζj(x),

⇔ ∧jPioζj(x) = k1 − n1, for all x ∈ ζj(x),

⇔ Pioζj(x) = k1 − n1, for all x ∈ ζj(x).

Hence, A : X −→ [0, 1]m is a constant function.

Remark. The converse of Theorem 2.27 may not be true, in general.

Consider a 3-polar fuzzy hypergraph H = (A,B), define X = {a, b, c, d, e},
ζ1 = {(a, 0.2, 0, 2, 0.2), (b, 0.2, 0.2, 0.2), (c, 0.2, 0.2, 0.2)},
ζ2 = {(a, 0.2, 0, 2, 0.2), (d, 0.2, 0.2, 0.2)},
ζ3 = {(b, 0.2, 0.2, 0.2), (e, 0.2, 0.2, 0.2)},
ζ4 = {(c, 0.2, 0.2, 0.2), (e, 0.2, 0.2, 0.2)}. Then A : X −→ [0, 1]m, where A = {ζ1, ζ2, ..., ζr} is a constant func-

tion. But deg(a) = (0.6, 0.6, 0.6) 6= (0.4, 0.4, 0.4) = deg(e). Also (deg[a] = (0.8, 0.8, 0.8) 6= (0.6, 0.6, 0.6) =

deg[e]). So H is neither regular nor totally regular mF hypergraph.

Definition 2.28. An mF hypergraph H = (A,B) is called complete if for every x ∈ X,N(x) = {x | x ∈
X − x} that is, N(x) contains all the remaining vertices of X except x.

Example 2.29. Consider a 3-polar fuzzy hypergraphH = (A,B), defineX = {a, b, c, d} andA = {ζ1, ζ2, ζ3},
where ζ1 = {(a, 0.3, 0.4, 0.6), (c, 0.3, 0.4, 0.6)}, ζ2 = {(a, 0.3, 0.4, 0.6), (b, 0.3, 0.4, 0.6), (d, 0.3, 0.4, 0.6)}, ζ3 =

{(b, 0.3, 0.4, 0.6), (c, 0.3, 0.4, 0.6), (d, 0.3, 0.4, 0.6)}. Then N(a) = {b, c, d}, N(b) = {a, c, d}, N(c) = {a, b, d}.

b
b

b

b

a(0.3, 0.4, 0.6)

b(0.3, 0.4, 0.6)

c(0.3, 0.4, 0.6)

d
(0
.3
, 0

.4
, 0
.6
)

(0.3, 0.4, 0.6)

(0.3, 0.4, 0.6)(0.3, 0.4, 0.6)

Figure 2.7: 3-polar fuzzy hypergraph
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Figure 7. 3-Polar fuzzy hypergraph.

Remark 3. For a complete mF hypergraph, the cardinality of N(x) is the same for every vertex.

Theorem 3. Every complete mF hyprgraph is a totally regular mF hypergraph.

Proof. Since given mF hypergraph H is complete, each vertex lies in exactly the same number of
hyperedges and each vertex has the same closed neighborhood degree m. That is, deg[x1] = deg[x2]

for all x1, x2 ∈ X. Hence H is m-totally regular.

3. Applications to Decision-Making Problems

Analysis of human nature and its culture has been entangled with the assessment of social
networks for many years. Such networks are refined by designating one or more relations on the set of
individuals and the relations can be taken from efficacious relationships, facets of some management
and from a large range of others means. For super-dyadic relationships between the nodes, network
models represented by simple graph are not sufficient. Natural presence of hyperedges can be found in
co-citation, e-mail networks, co-authorship, web log networks and social networks etc. Representation
of these models as hypergraphs maintain the dyadic relationships.

3.1. Super-Dyadic Managements in Marketing Channels

In marketing channels, dyadic correspondence organization has been a basic implementation.
Marketing researchers and managers have realized that their common engagement in marketing
channels is a central key for successful marketing and to yield benefits for the company. mF
hypergraphs consist of marketing managers as vertices and hyperedges show their dyadic
communication involving their parallel thoughts, objectives, plans, and proposals. The more powerful
close relation in the research is more beneficial for the marketing strategies and the production of
an organization. A 3-polar fuzzy network model showing the dyadic communications among the
marketing managers of an organization is given in Figure 8.
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The membership degrees of each person symbolize the percentage of its dyadic behaviour towards the

other persons of the same dyad group. Adjacent level between any pair of vertices illustrates that how much

their dyadic relationship is proficient. The adjacent levels are given in Table. 3.

Table 3:
Dyad pairs Adjacent level Dyad pairs Adjacent level

γ(Kadeen, Kashif) (0.2,0.3,0.3) γ(Kaarim, Kaazhim) (0.2,0.3,0.3)

γ(Kadeen, Kaamil) (0.2,0.3,0.3) γ(Kaarim, Kaab) (0.1,0.2,0.3)

γ(Kadeen, Kaarim) (0.2,0.3,0.3) γ(Kaarim, Kadar) (0.2,0.3,0.3)

γ(Kadeen, Kaazhim) (0.2,0.3,0.3) γ(Kaab, Kadar) (0.1,0.2,0.3)

γ(Kashif, Kaamil) (0.2,0.3,0.4) γ(Kaab, Kabeer) (0.1,0.1,0.3)

γ(Kashif, Kaab) (0.1,0.2,0.3) γ(Kadar, Kabaark) (0.1,0.3,0.2)

γ(Kashif, Kabeer) (0.1,0.1,0.3) γ(Kaazhim, Kabeer) (0.1,0.1,0.3)

γ(Kaamil, Kadar)) (0.2,0.2,0.3) γ(Kaazhim, Kabaark) (0.1,0.3,0.2)

γ(Kaamil, Kabaark) (0.1,0.3,0.2) γ(Kabeer, Kabaark) (0.1,0.1,0.2)

It can be seen that the most capable dyadic pair is (Kashif, Kaamil). 3-polar fuzzy hyperedges are taken

as the different digital marketing strategies adopted by the different dyadic groups of the same organiztion.

The vital goal of this model is to figure out the most potent dyad of digital marketing techniques. The six
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Figure 8. Super-dyadic managements in marketing channels.

The membership degrees of each person symbolize the percentage of its dyadic behaviour towards
the other people of the same dyad group. The adjacent level between any pair of vertices illustrates
how proficient their dyadic relationship is. The adjacent levels are given in Table 4.

Table 4. Adjacent levels.

Dyad pairs Adjacent level Dyad pairs Adjacent level

γ(Kadeen, Kashif) (0.2,0.3,0.3) γ(Kaarim, Kaazhim) (0.2,0.3,0.3)
γ(Kadeen, Kaamil) (0.2,0.3,0.3) γ(Kaarim, Kaab) (0.1,0.2,0.3)
γ(Kadeen, Kaarim) (0.2,0.3,0.3) γ(Kaarim, Kadar) (0.2,0.3,0.3)

γ(Kadeen, Kaazhim) (0.2,0.3,0.3) γ(Kaab, Kadar) (0.1,0.2,0.3)
γ(Kashif, Kaamil) (0.2,0.3,0.4) γ(Kaab, Kabeer) (0.1,0.1,0.3)
γ(Kashif, Kaab) (0.1,0.2,0.3) γ(Kadar, Kabaark) (0.1,0.3,0.2)

γ(Kashif, Kabeer) (0.1,0.1,0.3) γ(Kaazhim, Kabeer) (0.1,0.1,0.3)
γ(Kaamil, Kadar)) (0.2,0.2,0.3) γ(Kaazhim, Kabaark) (0.1,0.3,0.2)

γ(Kaamil, Kabaark) (0.1,0.3,0.2) γ(Kabeer, Kabaark) (0.1,0.1,0.2)

It can be seen that the most capable dyadic pair is (Kashif, Kaamil). 3-polar fuzzy hyperedges
are taken as different digital marketing strategies adopted by the different dyadic groups of the
same organization. The vital goal of this model is to determine the most potent dyad of digital
marketing techniques. The six different groups are made by the marketing managers and the digital
marketing strategies adopted by these six groups are represented by hyperedges. i.e., the 3-polar fuzzy
hyperedges {T1, T2, T3, T4, T5, T6} show the following strategies {Product pricing, Product planning,
Environment analysis and marketing research, Brand name, Build the relationships, Promotions},
respectively. The exclusive effects of membership degrees of each marketing strategy towards the
achievements of an organization are given in Table 5.
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Table 5. Effects of marketing strategies.

Marketing Strategy Profitable growth Instruction manual Create longevity
for company success of the business

Product pricing 0.1 0.2 0.3
Product planning 0.2 0.3 0.3

Environment analysis and marketing research 0.1 0.2 0.2
Brand name 0.1 0.3 0.3

Build the relationships 0.1 0.3 0.2
Promotions 0.2 0.3 0.3

Effective dyads of market strategies enhance the performance of an organization and discover the
better techniques to be adopted. The adjacency of all dyadic communication managements is given in
Table 6.

Table 6. Adjacency of all dyadic communication managements.

Dyadic strategies Effects

σ(Product pricing, Product planning) (0.1,0.2,0.3)
σ(Product pricing, Environment analysis and marketing research) (0.1,0.2,0.2)

σ(Product pricing, Brand name) (0.1,0.2,0.3)
σ(Product pricing, Build the relationships) (0.1,0.2,0.2)

σ(Product pricing, Promotions) (0.1,0.2,0.3)
σ(Product planning, Environment analysis and marketing research) (0.1,0.2,0.2)

σ(Product planning, Brand name) (0.1,0.3,0.3)
σ(Product planning, Build the relationships) (0.1,0.3,0.2)

σ(Product planning, Promotions) (0.2,0.3,0.3)
σ(Environment analysis and marketing research, Brand name) (0.1,0.2,0.2)

σ(Environment analysis and marketing research, Build the relationships) (0.1,0.2,0.2)
σ(Environment analysis and marketing research, Promotions) (0.1,0.2,0.2)

σ(Brand name, Build the relationships) (0.1,0.3,0.2)
σ(Brand name, Promotions) (0.1,0.3,0.3)

σ(Build the relationships, Promotions) (0.1,0.3,0.2)

The most dominant and capable marketing strategies adopted mutually are Product planning
and Promotions. Thus, to increase the efficiency of an organization, dyadic managements should make
powerful planning for products and use the promotions skill to attract customers to purchase their
products. The membership degrees of this dyad is (0.2, 0.3, 0.3) which shows that the amalgamated
effect of this dyad will increase the profitable growth of an organization up to 20%, instruction manual
for company success up to 30%, create longevity of the business up to 30% . Thus, to promote
the performance of an organization, super dyad marketing communications are more energetic.
The method of determining the most effective dyads is explained in the following algorithm.

Algorithm 1
1. Input: The membership values A(xi) of all nodes (marketing managers) x1, x2, ..., xn.
2. Input: The membership values B(Ti) of all hyperedges T1, T2, ..., Tr.
3. Find the adjacent level between nodes xi and xj as,
4. do i from 1→ n− 1
5. do j from i + 1→ n
6. do k from 1→ r
7. if xi, xj ∈ Ek then
8. γ(xi, xj) = maxk inf{A(xi), A(xj)}.
9. end if

10. end do
11. end do
12. end do
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13. Find the best capable dyadic pair as maxi,j γ(xi, xj).
14. do i from 1→ r− 1
15. do j from i + 1→ r
16. do k from 1→ r
17. if xk ∈ Ti ∩ Tj then
18. σ(Ti, Tj) = maxk inf{B(Ti), B(Tj)}.
19. end if
20. end do
21. end do
22. end do
23. Find the best effective super dyad management as maxi,j σ(Ti, Tj).

Description of Algorithm 1: Lines 1 and 2 pass the input of m-polar fuzzy set A on n vertices
x1, x2, . . . , xn and m-polar fuzzy relation B on r edges T1, T2, ..., Tr. Lines 3 to 12 calculate the adjacent
level between each pair of nodes. Line 14 calculates the best capable dyadic pair. The loop initializes by
taking the value i = 1 of do loop which is always true, i.e., the loop runs for the first iteration. For any
ith iteration of do loop on line 3, the do loop on line 4 runs n− i times and, the do loop on line 5 runs
r times. If there exists a hyperedge Ek containing xi and xj then, line 7 is executed otherwise the if
conditional terminates. For every ith iteration of the loop on line 3, this process continues n times and
then increments i for the next iteration maintaining the loop throughout the algorithm. For i = n− 1,
the loop calculates the adjacent level for every pair of distinct vertices and terminates successfully at
line 12. Similarly, the loops on lines 13, 14 and 15 maintain and terminate successfully.

3.2. m-Polar Fuzzy Hypergraphs in Work Allotment Problem

In customer care centers, availability of employees plays a vital role in solving customer problems.
Such a department should ensure that the system has been managed carefully to overcome practical
difficulties. A lot of customers visit such centers to find a solution of their problems. In this part, focus
is given to alteration of duties for the employees taking leave. The problem is that employees are
taking leave without proper intimation and alteration. We now show the importance of m-polar fuzzy
hypergraphs for the allocation of duties to avoid any difficulties.

Consider the example of a customer care center consisting of 30 employees. Assuming that six
workers are necessary to be available at their duties. We present the employees as vertices and the
degree of membership of each employee represents the work load, percentage of available time and
number of workers who are also aware of the employee’s work type. The range of values for present
time and the workers, knowing the type of work is given in Tables 7 and 8.

Table 7. Range of membership values of table time.

Time Membership value

5 h 0.40
6 h 0.50
8 h 0.70

10 h 0.90

Table 8. Workers knowing the work type.

Workers Membership value

3 0.40
4 0.60
5 0.80
6 0.90
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The degree of membership of each edge represents the common work load, percentage of available
time and number of workers who are also aware of the employee’s work type. This phenomenon can
be represented by a 3-polar fuzzy graph as shown in Figure 9.

Table 7: Workers knowing the work type

Workers Membership value

3 0.40

4 0.60

5 0.80

6 0.90

The degree of membership of each edge represents the common work load, percentage of available time

and number of workers who are also aware of the employee’s work type. This phenomenon can be represented

by a 3−polar fuzzy graph as shown in Fig. 3.2. Using Algorithm 2, the strength of allocation and alteration
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of duties among employees is given in Table. 8.

Table 8: Alteration of duties
Workers A(ai, aj) S(ai, aj)

a1, a2 (0.7,0.8,0.8) 0.77

a1, a3 (0.7,0.9,0.8) 0.80

a2, a3 (0.5,0.7,0.7) 0.63

a3, a4 (0.7,0.6,0.8) 0.70

a3, a5 (0.7,0.9,0.8) 0.80

a4, a5 (0.9,0.9,0.9) 0.90

a5, a6 (0.7,0.8,0.8) 0.77

a5, a1 (0.5,0.6,0.7) 0.60

a1, a6 (0.6,0.8,0.5) 0.63

Column 3 in Table. 8 shows the percentage of alteration of duties. For example, in case of leave, duties
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Figure 9. 3-Polar fuzzy graph.

Using Algorithm 2, the strength of allocation and alteration of duties among employees is given
in Table 9.

Table 9. Alteration of duties.

Workers A(ai, aj) S(ai, aj)

a1, a2 (0.7,0.8,0.8) 0.77
a1, a3 (0.7,0.9,0.8) 0.80
a2, a3 (0.5,0.7,0.7) 0.63
a3, a4 (0.7,0.6,0.8) 0.70
a3, a5 (0.7,0.9,0.8) 0.80
a4, a5 (0.9,0.9,0.9) 0.90
a5, a6 (0.7,0.8,0.8) 0.77
a5, a1 (0.5,0.6,0.7) 0.60
a1, a6 (0.6,0.8,0.5) 0.63

Column 3 in Table 9 shows the percentage of alteration of duties. For example, in case of leave,
duties of a1 can be given to a3 and similarly for other employees.

The method for the calculation of alteration of duties is given in Algorithm 2.

Algorithm 2
1. Input: The n number of employees a1, a2, . . . , an.
2. Input: The number of edges E1, E2, . . . , Er.
3. Input: The incident matrix Bij where, 1 ≤ i ≤ n, 1 ≤ j ≤ r.
4. Input the membership values of edges ξ1, ξ2, . . . , ξr
5. do i from 1→ n
6. do j from 1→ n
7. do k from 1→ r
8. if ai, aj ∈ Ek then
9. do t from 1→ m

10. Pt ◦ A(ai, aj) = |Pt ◦ Bik − Pt ◦ Bjk|+ Pt ◦ ξk
11. end do
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12. end if
13. end do
14. end do
15. end do
16. do i from 1→ n
17. do j from 1→ n
18. if A(ai, aj) > 0 then

19. S(ai, aj) =
P1 ◦ A(ai, aj) + P2 ◦ A(ai, aj) + . . . + Pm ◦ A(ai, aj)

m
20. end if
21. end do
22. end do

Description of Algorithm 2: Lines 1, 2, 3 and 4 pass the input of membership values of vertices,
hyperedges and an m-polar fuzzy adjacency matrix Bij. The nested loops on lines 5 to 15 calculate
the rth, 1 ≤ r ≤ m, strength of allocation and alteration of duties between each pair of employees.
The nested loops on lines 16 to 22 calculate the strength of allocation and alteration of duties between
each pair of employees. The net time complexity of the algorithm is O(n2rm).

3.3. Availability of Books in Library

A library in a college is a collection of sources of information and similar resources, made
accessible to the student community for reference and examination preparation. A student preparing
for a given examination will use the knowledge sources such as

1. Prescribed textbooks (A)
2. Reference books in syllabus (B)
3. Other books from library (C)
4. Knowledgeable study materials (D)
5. E-gadgets and internet (E)

It is important to consider the maximum availability of the sources which students mostly use.
This phenomenon can be discussed using m-polar fuzzy hypergraphs. We now calculate the importance
of each source in the student community.

Consider the example of five library resources {A, B, C, D, E} in a college. We represent these
sources as vertices in a 3-polar fuzzy hypergraph. The degree of membership of each vertex represents
the percentage of students using a particular source for exam preparation, percentage of faculty
members using the sources and number of sources available. The degree of membership of each edge
represents the common percentage. The 3-polar fuzzy hypergraph is shown in Figure 10.
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Time Complexity: The net time complexity of the algorithm is O(n2rm).

3. Availability of books in library

A library in college is a collection of sources of information and similar resources, made accessible to

student community for reference and examination preparation. A student preparing for some examination

will use the knowledge sources such as

1. Prescribed textbooks (A)

2. Reference books in syllabus (B)

3. Other books from library (C)

4. Knowledgeable study materials (D)

5. E-gadgets and internet (E)

The important thing is to consider the maximum availability of the sources which students mostly use. This

phenomenon can be discussed using m−polar fuzzy hypergraphs. We now calculate the importance of each

source in student community.

Consider the example of five library resources {A,B,C,D,E} in a college. We represent these sources as

vertices in a 3−polar fuzzy hypergraph. The degree of membership of each vertex represents the percentage

of students using a particular source for exam preparation, percentage of faculty of members using the sources

and number of sources available. The degree of membership of each edge represents the common percentage.

The 3−polar fuzzy hypergraph is shown in Fig. 3.3.
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Using Algorithm 3, the strength of each library source in given in Table. 9.
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Figure 10. 3-Polar fuzzy hypergraph.

Using Algorithm 3, the strength of each library source in given in Table 10.

Table 10. Library sources.

Sources si T(si) S(ai, aj)

A (1.7,1.7,1.4) 1.60
B (1.6,1.6,1.1) 1.43
E (1.6,1.6,1.0) 1.40
C (0.9,1.2,1.0) 1.03
D (0.8,1.2,1.0) 1.0

Column 3 in Table 10 shows that sources A and B are mostly used by students and faculty.
Therefore, these should be available in maximum number. There is also a need to confirm the
availability of source E to students and faculty.

The method for the calculation of percentage importance of the sources is given in Algorithm 3
whose net time complexity is O(nrm).

Algorithm 3
1. Input: The n number of sources s1, s2, . . . , sn.
2. Input: The number of edges E1, E2, . . . , Er.
3. Input: The incident matrix Bij where, 1 ≤ i ≤ n, 1 ≤ j ≤ r.
4. Input: The membership values of edges ξ1, ξ2, . . . , ξr
5. do i from 1→ n
6. A(si) = 1
7. C(si) = 1
8. do k from 1→ r
9. if si ∈ Ek then

10. A(si) = max{A(si), ξk}
11. C(si) = min{C(si), Bik}
12. end if
13. end do
14. T(si) = C(si) + A(si)
15. end do
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16. do i from 1→ n
17. if T(si) > 0 then

18. S(si) =
P1 ◦ T(si) + P2 ◦ T(si) + . . . + Pm ◦ T(si)

m
19. end if
20. end do

Description of Algorithm 3: Lines 1, 2, 3 and 4 pass the input of membership values of vertices,
hyperedges and an m-polar fuzzy adjacency matrix Bij. The nested loops on lines 5 to 15 calculate the
degree of usage and availability of library sources. The nested loops on lines 16 to 20 calculate the
strength of each library source.

4. Conclusions

Hypergraphs are generalizations of graphs. Many problems which cannot be handled by graphs
can be solved using hypergraphs. mF graph theory has numerous applications in various fields of
science and technology including artificial intelligence, operations research and decision making.
An mF hypergraph constitutes a generalization of the notion of an mF fuzzy graph. mF hypergraphs
play an important role in discussing multipolar uncertainty among several individuals. In this
research article, we have conferred certain concepts of regular mF hypergraphs and applications
of mF hypergraphs in decision-making problems. We aim to generalize our notions to (1) mF soft
hypergraphs, (2) soft rough mF hypergraphs, (3) soft rough hypergraphs, and (4) intuitionistic fuzzy
rough hypergraphs.
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