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Abstract: In this paper, we introduce a new definition for nilpotent fuzzy subgroups, which is called
the good nilpotent fuzzy subgroup or briefly g-nilpotent fuzzy subgroup. In fact, we prove that this
definition is a good generalization of abstract nilpotent groups. For this, we show that a group G is
nilpotent if and only if any fuzzy subgroup of G is a g-nilpotent fuzzy subgroup of G. In particular,
we construct a nilpotent group via a g-nilpotent fuzzy subgroup. Finally, we characterize the elements
of any maximal normal abelian subgroup by using a g-nilpotent fuzzy subgroup.
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1. Introduction

Applying the concept of fuzzy sets of Zadeh [1] to group theory, Rosenfeld [2] introduced the notion
of a fuzzy subgroup as early as 1971. Within a few years, it caught the imagination of algebraists like
wildfire and there seems to be no end to its ramifications. With appropriate definitions in the fuzzy setting,
most of the elementary results of group theory have been superseded with a startling generalized effect
(see [3-5]). In [6] Dudek extended the concept of fuzzy sets to the set with one n-ary operation i.e., to the
set G with one operation on f : G — G, where n > 2. Such defined groupoid will be denoted by (G, f).
Moreover, he introduced the notion of a fuzzy subgroupoid of an n-ary groupoid. Specially, he proved
that if every fuzzy subgroupoid yu defined on (G, f) has the finite image, then every descending chain of
subgroupoids of (G, f) terminates at finite step. One of the important concept in the study of groups is
the notion of nilpotency. In [7] Kim proposed the notion of a nilpotent fuzzy subgroup. There, he attached
to a fuzzy subgroup an ascending series of subgroups of the underlying group to define nilpotency of the
fuzzy subgroup. With this definition, the nilpotence of a group can be completely characterized by the
nilpotence of its fuzzy subgroups. Then, in [8] Guptaa and Sarmahas, defined the commutator of a pair
of fuzzy subsets of a group to generate the descending central chain of fuzzy subgroups of a given fuzzy
subgroup and they proposed a new definition of a nilpotent fuzzy subgroup through its descending
central chain. Specially, They proved that every Abelian (see [9]) fuzzy subgroup is nilpotent. There are
many natural generalizations of the notion of a normal subgroup. One of them is subnormal subgroup.
The new methods are important to guarantee some properties of the fuzzy sets; for example, see [10].
In [3] Kurdachenko and et all formulated this concept for fuzzy subgroups to prove that if every fuzzy
subgroup of v is subnormal in y with defect at most d, then - is nilpotent ([3] Corollary 4.6 ). Finally
in [11,12] Borzooei et. al. defind the notions of Engel fuzzy subgroups (subpolygroups) and investigated
some related results. Now, in this paper we define the ascending series differently with Kim'’s definition.
We then propose a definition of a nilpotent fuzzy subgroup through its ascending central series and call it
g-nilpotent fuzzy subgroups. Also, we show that each g-nilpotent fuzzy subgroup is nilpotent. Moreover,
we get the main results of nilpotent fuzzy subgroups with our definition. Basically this definition help
us with the fuzzification of much more properties of nilpotent groups. Furthermore, we prove that for
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a fuzzy subgroup p of G, {x € G | u([x,y1,...,yn|) = u(e) for any y1,..,yn € G} is equal to the n—th
term of ascending series where [x,y1| = x‘lyl_lxyl and [x,y1, ..., Yn] = [[X, Y1, -, Yn-1], Yn]. Therefore,
we have a complete analogy concept of nilpotent groups of an abstract group. Specially, we prove that a
finite maximal normal subgroup can control the g-nilpotent fuzzy subgroup and makes it finite.

2. Preliminary

Let G be any group and x,y € G. Define the n-commutator [x,,y], forany n € Nand x,y € G,

by [xo0y] = x, [x1y] = xilyflxy and [x,, y| = [[x,n—1Y],y] also, for any y1,...yn € G, [X, Y1, ..., Yn] =
[[%, Y1, -, Yn—1], yn]. For any x,g € G, we consider x8 = ¢~ !xg and [x,y] = [x,1 y].

Theorem 1. [13] Let G be a group and x,y,z € G. Then
(M) [x,y] = [y, 2],
(2) [x.y,z 1 [x, 2] [y, Wld[x J/Z} [x, 2] [x, v )%,

@) oy = (Poyl ) and [x Lyl = ([xy] )
Note that x8 = x.[x, g].

Definition 1. [13] Let X1, Xo, ... be nonempty subsets of a group G. Define the commutator subgroup of Xq and
X2 by

[X1,X2] = <[x1,x2] | x1 € X1,xp € X2>.

More generally, define
(X1, .o Xn] = [[X1, oo Xi—1], Xii]

where n > 2 and [X1] = (Xq). Also recall that sz = (x12 | x1 € X4, € X)

Definition 2. [1] A fuzzy subset p of X is a function p : X — [0,1].

Also, for fuzzy subsets p1 and pp of X, then pq is smaller than yp and write y; < yp iff forall x € X,
we have pq(x) < pp(x). Also, u1 V pp and piq A pp, for any iy, pp are defined as follows:

(1 V p2) (x) = max{p1 (x), pa(x)}, (1 A p2) (x) = min{pr (x), p2(x)}, for any x € X.

Definition 3. [14] Let f be a function from X into Y, and u be a fuzzy subset of X. Define the fuzzy subset f(u)
of Y, foranyy € Y, by

V oou), ) #e
f()(y) = xef )

0, otherwise

Definition 4. [2] Let y be a fuzzy subset of a group G. Then y is called a fuzzy subgroup of G if for any x,y € G;
u(xy) > u(x) Au(y), and u(x=1) > u(x). A fuzzy subgroup p of G is called normal zfy(xy) u(yx), for any
x,y in G. It is easy to prove that a fuzzy subgroup y is normal if and only if u(x) = u(y~'xy), forany x,y € G
(See [14]).

Theorem 2. [14] Let p be a fuzzy subgroup of G. Then for any x,y € G, u(x) # wu(y), implies
u(xy) = p(x) A u(y). Moreover, for a normal subgroup N of G, fuzzy subset & of < as the following definition:

= \/ ulz), for any x€G

zexN
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is a fuzzy subgroup of %

Definition 5. [14] Let p be a fuzzy subset of a semigroup G. Then Z () is define as follows:

Z(p) ={x € G| u(xy) = p(yx) and p(xyz) = u(yxz), foranyy,z € G}

If Z(u) = G, then y is called a commutative fuzzy subset of G.

Note that since p(xy) = p(yx) then we have u(xyz) = u(x(yz)) = u((yz)x) = p(yzx).

Theorem 3. [14] Let p be a fuzzy subset of a semigroup G. If Z() is nonempty, then Z(u) is a subsemigroup of
G. Moreover, if G is a group, then Z(u) is a normal subgroup of G.

We recall the notion of the ascending central series of a fuzzy subgroup and a nilpotent fuzzy
subgroup of a group [14]. Let u be a fuzzy subgroup of a group G and ZO( ) = {e}. Clearly {e} is a
normal subgroup of G. Let 7 be the natural homomorphism of G onto (}) It is clear that my = I.

Suppose that Z' () = 75 ' (Z(7o(p))). Since Z(mo(p)) is a normal subgroup of then it is clear

ZO( )’
that Z!(y) is a normal subgroup of G. Also we see that Z!(y) = Z(u). Now let 711 be the natural

homomorphism of G onto Zlc(;y) and Z2(p) = mr; 1 (Z(m1(p))). Since 71 () is a fuzzy subgroup of

Zl(ﬂ)’
then Z (7 (p)) is a normal subgroup of ZIL(V)’ which implies that Z2(u) is a normal subgroup of G.
Similarly suppose that Z/(y) has been defined and so Z/ (i) is a normal subgroup of G, for i € NU {0}.
Let 71; be the natural homomorphism of G onto % and Z" 1 (p) = 7 “YZ(m;())). Then ZiH1(u)
is a normal subgroup of G. Since 1 < C Z(mi(p), then 77171(1 ¢ ) C ﬂfl(Z(m(y))). Therefore,

ZH(p) ZH(u)
Ker(m;) = Z!(u) C ZH 1 (p), fori =0,1,.

Definition 6. [14] Let y be a fuzzy subgroup of a group G. The ascending central series of y is defined to be the
ascending chain of normal subgroups of G as follows:

2%(u) € Z(u) € 22 ().

Now the fuzzy subgroup u of G is called nilpotent if there exists a nonnegative integer m, such that
Z"(u) = G. The smallest such integer is called the class of .

Theorem 4. [14] Let y be a fuzzy subgroup of a group G, i € Nand x € G. If xyx~y~' € ZI=1(n), for any
y € G, then x € Z! (). Moreover, if T = {x € G | u(xyx~'y~) = u(e), foranyy € G}, then T = Z ().

Let G be a group. We know that Z(G) is a normal subgroup of G. Let Z,(G) be the inverse image

of Z(5 7 G)) under the canonical projection G — Z(G) Then Z,(G) is normal in G and contains Z(G).

Continue this process by defining inductively, Z; (G) = Z(G) and Z;(G) is the inverse image of Z (%@)

under the canonical projection G — %(G) for any i € N. Thus we obtain a sequence of normal
i

subgroups of G, called the ascending central series of G thatis, {e} = Zy(G) C Z;(G) C Z»(G) C
The other definition is as follows [13]: Let G be a group and Zy(G) = {e}. Itis clear that {e} is a normal

subgroup of G. Put Z}é? =Z(

{e}) Then Z;(G) = Z(G) is a normal subgroup of G. Similarly for

any integer n > 1, put Z”(%) =Z(7- ( ) ). Then Z;(u) is called the i-th center of group G. Moreover,
{e} = Zy(G) C Z1(G) C Z(G) Q . is called upper central series of G. These two definitions are

= n(n’l(Z(i))) =Z( (G)) Thus Zzz((g)) = (ﬁ) Similarly we get the

equivalent since, 71(Z>(G)) 7(C)

result for any n € N.
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Theorem 5. [13] Let G be a group and n € N. Then

(i) x € Z,(G) if and only if for any y; € G where 1 <i <mn, [x,y1,..., Yn] = ¢,

(i) [Zn(G)/ G] c Zn—l(G)'

(iii) Class of nilpotent groups is closed with respect to subgroups and homomorphic images.

Notation. From now on, in this paper we let G be a group.

3. Good Nilpotent Fuzzy Subgroups

One of the important concept in the study of groups is the notion of nilpotency. It was introduced
for fuzzy subgroups, too (See [14]). Now, in this section we give a new definition of nilpotent fuzzy
subgroups which is similar to one in the abstract group theory. It is a good generation of the last one.
With this nilpotency we get some new main results.

Let u be a fuzzy subgroup of G. Put Zy(y) = {e}. Clearly Zo(u) <G. Let Z1(u) = {x € G |
u([x,y]) = u(e), for any y € G}. Now using Theorems 4, we have Z; (1) = Z(u) is a normal subgroup

of G. We define a subgroup Z,(u) of G such that 2—8‘3 = Z(%(m); Since Z1 (1) < G then Zy (u) < Za(u).

We show that [Z,(u), G] € Z1(p). For this let x € Z(u) and ¢ € G. Thus xZ;(u) € 28‘[; = Z(%(m),

which implies that [xZ1(y),8Z1(4)] = Z1(pu) for any ¢ € G. Therefore [x,g] € Zi(u). Hence
[Z2(n), G] € Z1(p). Therefore x8 = x[x,g| € Zp(n). Thus Zy(1) < G. Similarly for k > 2 we define a

normal subgroup Z;(u) such that fo%)l) = Z(Zk,(l;(u) ). Itis clear that Zo(u) € Z1(u) € Zp(u) C ...

Definition 7. A fuzzy subgroup p of G is called a good nilpotent fuzzy subgroup of G or briefly g-nilpotent fuzzy
subgroup of G if there exists a none negative integer n, such that Z,(u) = G. The smallest such integer is called
the class of p.

Example 1. Let D3 = (a,b;a® = b?> = ¢,ba = a®b) be the dihedral group with six element and to, t; € [0,1]
such that tg > t1. Define a fuzzy subgroup y of D3 as follows:

. to if xe<a>
“(x)_{tl if x¢<a>

Then (D3\(a))(D3\(a)) = (a), ((2))(D3\(a)) = (D3\(@)), (D3\(a))({@)) = (D3\(a)) and ((a))((a)) = ((a))-
Now, we show that Z1(i) = D3. If x € (a) and y & (a), then xy ¢ (a). Thus by the above relations, we have
[x,y] = x Yy~ txy = (yx) "' (xy) € (a), which implies that u[x,y] = to = u(e). Similarly, for the cases x ¢ (a)
and y € (ay or x,y € {(a) or x,y & (a), we have u(x,y] = u(e). Hence for any x,y € Ds, p[x,y] = u(e) and so by
Theorem 4, Z(yu) = D3. Now, since Z1(u) = Z(p), we get u is g-nilpotent fuzzy subgroup.

In the following we see that for n € N, each normal subgroup Z,(u), in which is defined by

Z’Z’:z;’;) = Z(ZnG(y)) isequal to {x € G | u([x,y1, ... yn|) = u(e), for any yi,y2,...yn € G}.

Lemma 1. Let y be a fuzzy subgroup of G. Then for k € N

Zi(n) = {x € G| u([x,y1, -~ yx]) = ule), for any y1,y2,...yx € G}.
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Proof. We prove it by induction on k. If k = 1, then by definition of Z;(u) we have Z;(u) = {x € G |
u([x,y]) = u(e) for any y € G}. Now letk = n +1, and the result is true for k < n. Then

nH(V) G

Zw) 2z
(xZn (), 1 Zn ()] = Zu(p), for any vy, € G
[, v1)Zn(p) = Zu(), for any y1 € G
[x,y1] € Zu(n), for any y; € G

X €Zp(p) = xZy(n) €

<
<
= [vy
= vl ya - yuil) =ule), for any yi,.,yn1 € G.

This complete the proof. [
Theorem 6. Any g-nilpotent fuzzy subgroup of G is a nilpotent fuzzy subgroup.

Proof. Let fuzzy subgroup u of G be g-nilpotent. Since Z; (1) = Z(u) = Z'(u), for n = 1, the proof is true.
Now let Z,, 1 () = G. Thenby Lemma 1, {x | u([x,y1, ..., yn11]) = p(e) for any y1,y2,...,yn+1 € G} = G.
We should prove that Z"*1(u) = G. Let x € G. Then u([x,y1, ..., yu11]) = p(e), for any y1, .., y,11 € G.
Therefore by Theorem 4, [x,y1,..,yn] € Z(1). Consequently, by Theorem 4, [x,y1, .., y,_1] € Z?(p).
Similarly, by using k-times Theorem 4, we have x € Z"!(y) and so Z"*!(u) = G. Therefore y is a
nilpotent fuzzy subgroup of G. [

Theorem 7. Let y be a fuzzy subgroup of G. Then u is commutative if and only if u is g-nilpotent fuzzy subgroup
of class 1.

Proof. (=) Let u be commutative. Then Z(i) = G. Since Z;(u) = Z(pt), then Z; (1) = G which implies
that p is g-nilpotent of class 1.
(<) If p is gnilpotent of class 1, then Z1(y) = G. Hence Zi() = Z(u) = G. Therefore, u
is commutative. []
Notation. If y is a fuzzy subgroup of G, then Z;_ (%ﬂ)) means the (k — 1)-th center of - ) ([15]).
Next we see that a g-nilpotent fuzzy subgroup of G makes the g-nilpotent fuzzy subgroup of ﬁ
For this, we need the following two Lemmas.

Lemma 2. Let y be a fuzzy subgroup of G. Then for any k € N, Z((ﬂ)) Zk—1 (ﬁ)

Proof. First we recall that fori € N, x € Z;(G) if and only if [x,y1, ... y;] = e, for any y1,12,...,y; € G
(See [13]). Hence

20 € Zr(gs) = WL, Y Z(0) = Z(0), for any . Yi1 € G

(X, y1s o Y1l Z(4) = Z(p), for any y, .., ye—1 € G

(%, y1, . Yk_1] € Z(n), for any y1,..,yx_1 € G

WX, Y1, Vi1, k] = ule), for any yx € G (by Theorem 4)
x € Z(n) (by Lemma 1)

Z()
xZ(u) € Zk(;/l) .

Froee e
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Therefore sz(%) = Zk—l(ﬁ)- O

Lemma 3. Let u be a fuzzy subgroup of G, H = %, 1 be a fuzzy subgroup of Hand N = Z(u). If H is

nilpotent, then % is nilpotent, too.
Proof. Let H be nilpotent of class 1, that is Z,(H) = H. We will prove that there exist m < n such that
Zm(%) = % For this by Theorem 5, since % is a homomorphic image of H, we get % is nilpotent of class

atmostm. [

Theorem 8. Let y be a fuzzy subgroup of G and 1 be a fuzzy subgroup of %}4) If w is a g-nilpotent fuzzy subgroup
of class n, then W is a g-nilpotent fuzzy subgroup of class m, where m < n.

Proof. Let y be a g-nilpotent fuzzy subgroup of class n. Then Z, (1) = G. Now we show that there exists

- Zn -
m<mn, .such that Zm(‘u)f. ﬁ By Lemma 2, Z,(y) = G <= % = Z((;)) = Zn,l(ﬁ) , and similarly
(put m instead of n and 7 instead of ),

G 760, _ 7w
_ Z(p Z(u
V4 = =Zy (=)= 5=
"= 200 T Bz ) T 2
Consequently, it is enough to show that if Z,,_4 (%) = ﬁ, then
2w\ _ 7w
Z(p Z(p
Zy— — ) = 5=
26w = 2w
It follows by Lemma 3 (put H = ﬁ in Lemma 3).

O

We now consider homomorphic images and the homomorphic pre-image of g-nilpotent
fuzzy subgroups.

Theorem 9. Let H be a group, f : G — H be an epimorphism and u be a fuzzy subgroup of G. If y is a
g-nilpotent fuzzy subgroup, then f(u) is a g-nilpotent fuzzy subgroup.

Proof. First, we show that f(Z;(1)) C Z;(f(u)), forany i € N. Leti € N. Then x € f(Z;(u)) implies that
x = f(u), for some u € Z;(u). Since f is epimorphism, hence for any yy, ..., v, € H we get y; = f(v;) for
some v; € G where 1 < i < n. Therefore [x,y1, ... yn| = [f(1t), f(v1), ..., f (V)] which implies that

FE) (%91, yn]) = Vo ouz) = V p(z)
=51 ] FE)=F (01,00

Now, since u € Z;(i), by Lemma 1, we get p([u, v1, ..., va]) = pi(eg). Therefore,

@)y yn]) = plec) = (f(1))(en)

Hence by Lemma 1, x € Z;(f(p)). Consequently, f(Z;(1)) € Z;(f(u)). Hence if p is g-nilpotent, then
there exists nonnegative integer # such that Z,(y) = G which implies that f(Z,(1t)) = f(G). Therefore
Z,(f(n)) = H which implies that f(u) is g-nilpotent. []

Theorem 10. Let H be a group, f : G — H be an epimorphism and v be a fuzzy subgroup of H. Then v is a
g-nilpotent fuzzy subgroup if and only if f~1(v) is a g-nilpotent fuzzy subgroup.
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Proof. First, we show that Z;(f~!(v)) = f~1(Z;(v)), for any i € N. Now, leti € N. Then by Lemma 1,

xeZ(f'(v) = (W) xy.x]) = (1)), for any x1,x2..,% €G
= v([f(x),.. f(x))]) =v(e), for any x1,x3,..,x; € G
— f(x) e Z(v),
= xef(ZW)

Hence v is g-nilpotent if and only if there exists nonnegative integer n such that Z,(v) = H if and
only if f~1(Z,(v)) = f~1(H) if and only if Z,(f~'(v)) = G if and only if, f~!(v) is g-nilpotent. [

Proposition 1. Let y and v be two fuzzy subgroups of G such that y C v and y(e) = v(e). Then Z(p) C Z(v).
Proof. Let x € Z(u). Then u([x,y]) = pu(e), for any y € G. Since

v(e) = u(e) = u(lx,yl) <v(lxyl) <vle).
hence v(e) = v([x,y]) and so x € Z(v). Therefore Z(y) C Z(v). O

Lemma 4. Let p be a fuzzy subgroup of G and i > 1. Then for any y € G, [x,y| € Z;_1(p) if and only if
X e Zl("l/l)

Proof. (=) Let[x,y] € Z;_1(u). Thenby Lemma 1, u([[x, y], y1, -, yi—1]) = u(e) forany y,y1, .., i1 € G.
Hence x € Z;(p).
(<=) The proof is similar. [J

In the following we see a relation between nilpotency of a group and its fuzzy subgroups.
Theorem 11. G is nilpotent if and only if any fuzzy subgroup u of G is a g-nilpotent fuzzy subgroup.

Proof. (=) Let G be nilpotent of class n and y be a fuzzy subgroup of G. Since Z,(G) = G, it is enough
to prove that for any nonnegative integer i, Z;(G) C Z;(u). For i=0 or 1, the proof is clear. Let for
i>1,2;(G) C Zi(u) and x € Z;11(G). Then forany y € G, [x,y] € Z;(G) C Z;(1) and so by Lemma 4,
x € Ziv1(p). Hence Z;i11(G) C Zi11(n), for any i > 0, and this implies that Z,(u) = G. Therefore, y is
g-nilpotent.

(«<=) Let any fuzzy subgroups of G be g-nilpotent. Suppose that fuzzy set y on G is defined as follows:

1 Zf X € Zo(G)
px) =19 g if x€Zi(G)—Zi1(G)
0 otherwise

We show that Z;(i) C Z;(G), for any nonnegative integer i. For i = 0, the result is immediate. If
i=1and x € Zy(u), then pu([x,y]) = p(e) = 1 for any y € G. By definition of y, [x,y] € Zy(G) = {e}
and so x € Z1(G). Now let Z;_1(i) C Z;_1(G), for i > 2. Then by Lemma 4, x € Z;(i) implies that
foranyy € G; [x,y] € Zi_1(n) C Z;_1(G). Hence, for any y,y1, ..., yi-1 € G, [x,¥, Y1, .., yi—1] = e which
implies that x € Z;(G). Thus by induction on i, Z;(#) C Z;(G), for any nonnegative integer i. Now since
Zi(G) C Z;j(n) for any nonnegative integer i, then Z;(11) = Z;(G). Now by the hypotheses there exist
n € Nsuch that G = Z,(y) = Z,(G). Hence, G is nilpotent. [J
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Theorem 12. Let fuzzy subgroups py and py of G be g-nilpotent fuzzy subgroups. Then the fuzzy set py X pp of
G x G is a g-nilpotent fuzzy subgroup, too.

Proof. Let y = p1 X pp. It is clear that u is fuzzy subgroup of G. So we show that y is g-nilpotent.
It is enough to show that Z,(u; x up) = G x G, for n € N. Suppose that (x,y) € G x G. Then
there exist ny,1n, € N such that Z,,(i11) = G and Z,(y2) = G. Hence for any xy..., Xy, Y1...¥n € G,

w1 ([x, x1..., xn]) = p(e) and pa([y, y1-.., yn]) = p(e) for n = max{ny, ny}. Then

(1 X p2) (2, Y), s (X, Yn)]) = min{pua [x, 1, x0], paly, Y1, ynl b = (1 X p2)(eve)-

Therefore, Z,, (41 X p2) = G x G. O

Definition 8. Let p be a normal fuzzy subgroup of G. For any x,y € G, define a binary relation on G as follows

-1
X~y == play) = ple)
Lemma 5. Binary relation ~ in Definition 8, is a congruence relation.

Proof. The proof of reflexivity and symmetrically is clear. Hence, we prove the transitivity. Let x ~ y
and y ~ z, for x,y,z € G. Then u(xy~1) = u(yz~!) = u(e). Since u is a fuzzy subgroup of G, then
u(xz™1) > min{p(xy=1), u(yz=1)} = u(e). Hence u(xz~1) = u(e) and so x ~ z. Therefore ~ is an
equivalence relation. Now let x ~ y and z € G. Then u((xz)(yz) ') = p(xy~!) = u(e) and so xz ~ yz.
Since y is normal, we get 1((zx)(zy) ™) = u((zy) '(zx)) = u(y~'x) = p(xy') = u(e) and so zx ~ zy.

Therefore, ~ is a congruence relationon G. O
Notation. For the congruence relation in Definition 8, for any x € G, the equivalence class containing
x is denoted by xu, and % = {xp | x € G}. Itis easy to prove that % by the operation (xu).(yu) = xyu

1

for any xp, yu € % is a group, where ey is unit of % and (xu)~! = x~1y, for any xp € %

Theorem 13. Let y be a normal fuzzy subgroup of G. Then y is a g-nilpotent fuzzy subgroup if and only if % isa
nilpotent group.

Proof. (=) Let u be a g-nilpotent fuzzy subgroup of G. First we show that for any n € N and
X1, s Xn € G, [X, X1, o0, Xn | = [, X114, ..., Xn]. For n = 1, we have

-1

[, xalp = () ((oe1) 7 ) (). (xa o) = [, 2]

Now assume that it is true for n — 1. By hypotheses of induction, we have

1 1

(%, %1, 0, Xt = ([x,%0, 000, x01] 7 1) (2, 1) ([, X1, 00y X1 ). (X )
= (o1t 2npt) 706 1) ([ 21, X1 pi]) ()
= [XH, X1, o) X ).

Therefore, if j is a g-nilpotent fuzzy subgroup then there exist n € N; Z,, (1) = G, which implies by
Lemma 1, that

{x € G| ulx,x1,...x4] = p(e) for any xq1,x2,x3,..,%, € G} =G, (I)
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Also p(x) = u(e) if and only if x ~ e if and only if xu = ey , (II). Thus, by (I) and (II) we have

G
m = {xp|x e G} ={xp|pulx x1,...xq =ple), Vxy,x2x3,..,% €G}
G
= {xp| [xp, x14, .., Xnp] = ey, Vx1,x2,%3,..., Xy € G} = Zn(;)
Consequently & is a nilpotent group of class 7.

I3
(=) 1If % is a nilpotent group of class 1, then

G G
ﬁ = Zn(ﬁ) = {xu | [xp, x14, ..., xupt] = ey, ¥ x1,x2,%3, ..., Xn € G} }

Thus for x € G we have xu € & Therefore [xp, X114, ..., Xnpt] = ey for any x1, x, X3, ..., Xy € G which
implies by (II) that u[x, x1,..., x,] = u(e). Thus, by Lemma 1, x € Z,(y). Thus G = Z,(u) and so y is
g-nilpotent. [J

Theorem 14. Let u be a fuzzy subgroup of G and y, = {x | u(x) = u(e)} be a normal subgroup of G. If% isa
nilpotent group, then y is a g-nilpotent fuzzy subgroup.

Proof. Let y% be a nilpotent group and 7 : G — u% be the natural epimomorphism. Since

zen Y (n(x)) <= n(z)=mn(x) <= n(z 'x) =e <=z 'x € kerm = .

= pz7lx) = ple) = p(z) = p(v).

hence for any x € G,

zen—1(n(x)) u(z)=p(x)

and so 7~ (7t(u)) = . Now since ’% is a nilpotent group and 77(y) is a fuzzy subgroup of PTG*’ then by

Theorem 11, 7t(u) is g-nilpotent and by Theorem 10, 7~ (7t(y)) = p is g-nilpotent. [

Example 2. In Example 1, yu(e) = toand so p. = {x | u(x) = u(e)} = (a). Thus . is a normal subgroup of Ds.
Also % ~ Zy. Since Zy is Abelian hence it is nilpotent and so by Theorem 14, y is a g-nilpotent fuzzy subgroup.

Theorem 15. Let p and v be two fuzzy subgroups of G such that y C v and u(e) = v(e). If u is a g-nilpotent
fuzzy subgroup of class m , then v is a g-nilpotent fuzzy subgroup of class n, where n < m.

Proof. Let y and v be two fuzzy subgroups of G where y C v and p(e) = v(e). First, we show that for
anyi € N, Z;(u) C Z;(v). By Theorem 1, for i = 1 the proof is clear. Let fori > 2, Z;(u) C Z;(v) and
x € Zi11(p). Then by Lemma 4, for any y € G, [x,y] € Z;(u) C Z;(v). Thus, by Lemma 4, x € Z; . 1(v).
Hence Z;1(1) € Z;11(v). Now let i be g-nilpotent of class m. Then G = Z;,(u) C Zy(v) C G. Thus
G = Z,(v), which implies that v is g-nilpotent of class at most m. [

Definition 9. [4] Let y be a fuzzy set of a set S. Then the lower level subset is

i, = {x € S;u(x) <t}, where t € [0,1].
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Now fuzzification of i, is the fuzzy set Ay, defined by

(x)_{ ux) if xeq,

0 otherwise

Clearly, Az, C pand (Ag, )t = #y.
Corollary 1. Let y be a nilpotent fuzzy subgroup of G. Then Ay, is nilpotent too.

Proof. Let y be a nilpotent fuzzy subgroup of G, since Az, C y then by Theorem 15, Az, is nilpotent. [

In the following we see that our definition for terms of Z; (), is equivalent to an important relation,
which will be used in the main Lemma 7.

Lemma 6. Let y be a fuzzy subgroup of G. For k > 2, fog’(‘;) = Z(ij(y)) ifand only if [Zx (1), G) C Zx_1(p).

Proof. (=) Let fork > 2, 3D Z(5-5—) and w € [Z(1), G]. Then there exist x € Z(u) and g € G

Zr () TNz ()
such that w = [x, g]. Since
Zi(p) G
YAl = 2 € 770y = Az 0w
= [xZk1(4), 8Zk1(W)] = Zx_1(), for any g€ G
= [x%,8]Zk-1(n) = Zx_1(p), for any g€ G
= [x8] € Zra(p).

hence w € Z;_1(p).

(<) Letfor k > 2, [Zx(1),G] C Zy_1(p) and xZ_1(u) € % Hence x € Zi(p). Since [Z; (1), G] C

Zr_1(n), for any ¢ € G, we have [x,g] € Z;_1(1) which impli:as that [xZx_1(u),8Zk-1(4)] = Zx_1(p) and
Z

so xZx_1(p) € Z(Zk%(y)) Hence Zkfg}(l;)a) - Z(Zkfl;(#))' Now, let xZ;_1(u) € Z(Zk%(y)) Then for any

g € Gwehave, [xZy_1(i),8Zk—1(1)] = Zx_1(p) which implies that [x,¢]Z;_1(4) = Zx_1 (i) and so [x,g| €

Zy_1(n). Now by Lemma 1, u([x, g, ¥1, Y2, Yk_1]) = p(e), for any g,y1,y2..., yx_1 € G. Hence x € Z;(u) and

this implies that xZ;_1(u) € fo?&) So fo?&) VA Zkfl;(ﬂ))' Therefore, fo%)l) =Z( Zkfl;(u))' O

Lemma 7. Let yu be a g-nilpotent fuzzy subgroup of G of class n > 2 and N, be a nontrivial normal subgroup of G
(iel1#N<G). Then NNZ(u) # 1.

Proof. Since yu is g-nilpotent, so there exist n > 2 such that Z,(y) = G. Thus

1=2Zo(p) € Z1(p) € .. € Zu() = G

Since NN Zy(1) = NNG = N # 1, then there is j € N such that NN Z;(u) # 1. Let i be the smallest
index such that NN Z;(u) # 1 (so NN Z;_1(x) = 1). Then we claim that [N N Z;(i), G] € N. For this
let w € [NNZ;j(u),G]. Then there exists x € NN Z;(4) and ¢ € G such that w = [x,g] = x " 1¢g~xg.
Since N <G, then w = x '8 € N. Thus [NN Z;(1),G] C N. Also since x € NN Z;(u), by Lemma 6,
[x,8] € [Zi(n),G] C Zi_1(p). Thus [NNZ;(u),G] € Z;_1(n). Hence INNZ;(1),G] C NN Z;—1(p) = 1.
Therefore NN Z;(1) < Z(G) < Z(p) andso NN Z;(y) < NNZ(u) =1.Hence NN Z;(y) =1 whichisa
contradiction. Consequently NN Z(u) #1. O
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The following theorem shows that for a g-nilpotent fuzzy subgroup y each minimal normal subgroup
of G is contained in Z ().

Theorem 16. Let u be a g-nilpotent fuzzy subgroup of G of class n > 2. If N is a minimal normal subgroup of G,
then N < Z(u).

Proof. Since N and Z(y) are normal subgroups of G, we get N N Z(y) < G. Now since N is a minimal
normal subgroup of G, NN Z(y) < N and by Lemma 7,1 # N N Z(u). we get NN Z(u) = N. Therefore
N<Z(u). O

Theorem 17. Let u be a g-nilpotent fuzzy subgroup of G and A be a maximal normal Abelian subgroup of G.
Ifu(x) = u(e) forany x € A, and u(x) # u(e) forany x € G — A, then

A=Cg(A)={xeG|[xal=e forany ac A}.

Proof. First, we prove that Cg(A) < G. For this, let x € Cg(A) and ¢ € G. Then for alla € A we have
[x8,a] = [x,a8 ']$. Since A is Abelian, then a8 ' = a. Hence x € Cg(A) implies that [x8,a] = [x, a8 )8 =
[x,a]8 = e and so x8 € Cg(A). Thus Cg(A) <G. Suppose A C Cs(A). Then 1 # CGT@ <SG Letube
the fuzzy subgroup of §. Then by Lemma 7, CGTW NZ(f) # 1. So there exists A # gA € CGT(M NZ(u).
Hence ¢ € Cg(A) and Ji[gA, xA] = Ji(eA) for any x € G . Thus by Theorem 2, \/ u([g,x]a) = u(e).

acA
Now if for some a € A, u([g,x]) = p(a), then by definition of y, [g,x] € A and if for any a € A,

u([g,x]) # p(a), then by Theorem 2, \/ u([g,x]a) = \/ (u([g,x]) A u(a)) = u([g, x]). Thus [g,x] € A.

acA acA
Now let B = (A,g). Then A C B<G(B<G since A <G, and for x € G we have g* = g[g,x] € B).

Moreover, since § € Cg(A), then B is Abelian. Therefore, B is a normal Abelian subgroup of G, which is
a contradiction. Thus A = Cg(A).
O

Now we show that with some conditions every g-nilpotent fuzzy subgroup is finite.

Corollary 2. Let y be a g-nilpotent fuzzy subgroup of G and A be a finite maximal normal Abelian subgroup of G.
If u(x) = u(e) forany x € A, and u(x) # u(e) forany x € G — A, then y is finite, too.

Proof. Since A <G, for g € Gand x € A we have x8 € A. Now let
6 : G— Aut(A)

§—0,:A— A

x — x8.
We prove that 6 is a homomorphism. Let g1, $> € G. Then 0(g81¢2) = 0¢,¢,. Thus for x € A,

(0(8182)) (x) = (Og15,) (x) = 28182 = x81.282 = (0(81)) (x).(6(82)) (x)-

But Ker() = {g € G | 6(g) = I}, in which [ is the identity homomorphism. Thus for any
x € A, (6(g))(x) = I(x) which implies that x8 = x. Hence § € Cg(A). Therefore, Ker(6) = Cg(A).
By Theorem 17, A = Cg(A). Thus %@ = & is embeded in Aut(A). Now since A and so Aut(A) are
finite we get G is finite which implies that y is finite. [
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4. Conclusions

By the notion of a g-nilpotent fuzzy subgroup we can investigate on fuzzification of nilpotent

groups. Moreover, since this is similar to group theory’ definition, it is much easier than before to study
the properties of nilpotent fuzzy groups. Moreover, if we accept the definition of a g-nilpotent fuzzy
subgroup, then one can verify, as we have done in Theorem 16, that for a g-nilpotent fuzzy subgroup u
each minimal normal subgroup of G is contained in the center of . We hope that these results inspire
other papers on nilpotent fuzzy subgroups.

Author Contributions: Elaheh Mohammadzadeh and Rajab Ali Borzooei conceived and designed the paper structure.
Then Elaheh Mohammadzadeh performed the first reaserch and Rajab Ali Borzooei completed the research.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338-353, d0i:10.1016 /50019-9958(65)90241-X.

2. Rosenfeld, A. Fuzzy groups. J. Math. Anal. Appl. 1971, 35, 512-517, d0i:10.1016 /0022-247X(71)90199-5.

3. Kurdachenko, L.A.; Subbotin, I.Y.; Grin, K.O. On some properties of normal and subnormal fuzzy subgros.
Southeast Asian Bull. Math. 2014, 38, 401-421.

4. Biswas, R. Fuzzy subgroups and anti fuzzy subgroups.  Fuzzy Sets Syst. 1990, 35, 121-124,
doi:10.1016/0165-0114(90)90025-2.

5. Bhattacharya, P.; Mukherjee, N.P. Fuzzy relations and fuzzy groups. Inf. Sci. 1985, 36, 267-282,
doi:10.1016/0020-0255(85)90057-X.

6. Dudek, W.A. Fuzzification of n-ary groupoids. Quasigroups Related Syst. 2000, 7, 45-66.

7. Kim, J.G. Commutative fuzzy sets and nilpotent fuzzy groups. Inf. Sci. 1995, 83, 161-174,
doi:10.1016/0020-0255(94)00082-M.

8. Guptaa, K.C; Sarma, B.K. Nilpotent fuzzy groups. Fuzzy Sets Syst. 1999, 101, 167-176,
doi:10.1016/50165-0114(97)00067-5.

9. Ray, S. Generated and cyclic fuzzy groups. Inf. Sci. 1993, 69, 185-200, doi:10.1016,/0020-0255(93)90119-7.

10. Bucolo, M.; Fazzino, S.; 1a Rosa, M.; Fortuna, L. Small-world networks of fuzzy chaotic oscillators. Chaos Solitons
Fractals 2003, 17, 557-565, d0i:10.1016 /50960-0779(02)00398-3.

11. Ameri, R.; Borzooei, R.A.; Mohammadzadeh, E. Engel fuzzy subgroups. Ital. |. Pure Appl. Math. 2015, 34,
251-262.

12. Borzooei, R.A.; Mohammadzadeh, E.; Fotea, V. On Engel Fuzzy Subpolygroups. New Math. Nat. Comput. 2017,
13, 195-206, d0i:10.1142/51793005717500089.

13. Robinson, D.J.S. A Course in the Theory of Groups; Springer-Verlag: New York, NY, USA, 1980; pp. 121-158;
ISBN 978-1-4612-643-9.

14. Mordeson, ]J.N.; Bhutani, K.R.; Rosenfeld, A. Fuzzy Group Theory; Studies in Fuzziness and Soft Computing;
Springer-Verlag: Berlin/Heidelberg, Germany, 2005; pp. 61-89; ISBN 978-3-540-25072-2.

15. Hungerford, T.W. Algebra; Springer-Verlag: New York, NY, USA, 1974; pp. 23-69; ISBN 978-1-4612-6103-2.

@ (© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution (CC

BY) license (http:/ /creativecommons.org/licenses/by/4.0/).


http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Preliminary 
	Good Nilpotent Fuzzy Subgroups
	Conclusions

