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Abstract: Graph theory has numerous applications in various disciplines, including computer
networks, neural networks, expert systems, cluster analysis, and image capturing. Rough neutrosophic
set (NS) theory is a hybrid tool for handling uncertain information that exists in real life. In this
research paper, we apply the concept of rough NS theory to graphs and present a new kind
of graph structure, rough neutrosophic digraphs. We present certain operations, including
lexicographic products, strong products, rejection and tensor products on rough neutrosophic
digraphs. We investigate some of their properties. We also present an application of a rough
neutrosophic digraph in decision-making.
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1. Introduction

There are many real-life problems that are beyond a single expert. These are because of the
need to involve a wide domain of knowledge. As a generalization of the intuitionistic fuzzy set,
a neutrosophic set (NS) has been introduced by Smarandache [1]. This is a useful tool to deal with
uncertainty in several social and G natural aspects. Neutrosophy provides a foundation for a whole
family of new mathematical theories with the generalization of both classical and fuzzy counterparts.
In a NS, an element has three associated defining functions, the truth membership function (y), the
indeterminate membership function (c) and the false membership function (A), defined on a universe
of discourse X. These three functions are completely independent. To apply NSs in real-life problems
more conveniently, Smarandache [2] and Wang et al. [3] defined single-valued NSs. Ye [4] studied the
correlation coefficient and improved the correlation coefficient of NSs, as well as determined that in
NSs the cosine similarity measure is a special case of the correlation coefficient.

Rough set theory was proposed by Pawlak [5] in 1982. Rough set theory is useful to study
the intelligence systems containing incomplete, uncertain or inexact information. The lower and
upper approximation operators of rough sets are used for managing hidden information in a system.
Therefore, many hybrid models have been built, such as soft rough sets, rough fuzzy sets, fuzzy rough
sets, soft fuzzy rough sets, neutrosophic rough sets, and rough NSs for handling uncertainty and
incomplete information effectively. Dubois and Prade [6] introduced the notions of rough fuzzy
sets and fuzzy rough sets. Liu and Chen [7] have studied different decision-making methods.
Broumi et al. [8] introduced the concept of rough NSs. Yang et al. [9] proposed single-valued
neutrosophic rough sets by combining single-valued NSs and rough sets, and they established an
algorithm for decision-making problems based on single-valued neutrosophic rough sets on two
universes. Mordeson and Peng [10] presented operations on fuzzy graphs. Akram et al. [11-14]
considered several new concepts of neutrosophic graphs with applications. Zafer and Akram [15]
dealt with rough fuzzy digraphs with applications. Recently, Sayed et al. [16] considered rough
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neutrosophic digraphs. They discussed some fundamental properties of rough neutrosophic digraphs.
In this research paper, we investigate further new operations, including lexicographic products, strong
products, rejection and tensor products on rough neutrosophic digraphs. We investigate some of their
properties. We also consider an application of a rough neutrosophic digraph in decision-making.

2. Rough Neutrosophic Digraphs

For other notations, terminologies and applications not mentioned in the paper, the readers are
referred to [17-21].

Definition 1. [3] Let Z be a nonempty universe. A NS N on Z is defined as follows:
N ={<x:un(x),on(x),AN(x) >, x € Z}

where the functions u,o, A :Z— [0, 1] represent the degree of membership, the degree of indeterminacy and the
degree of falsity.

Definition 2. [5] Let Z be a nonempty universe and R be an equivalence relation on Z. A pair (Z, R) is called
an approximation space. Let N* be a subset of Z; the lower and upper approximations of N* in the approximation
space (Z, R) denoted by RN* and RN* are defined as follows:

RN* = {x € Z|[x]r € N"}
RN* = {x € Z|[x]g € N*}

where [x]g denotes the equivalence class of R containing x. A pair (RN*, RN*) is called a rough set.

Definition 3. [8] Let Z be a nonempty universe and R be an equivalence relation on Z. Let N be a NS on
Z. The lower and upper approximations of N in the approximation space (Z,R), denoted by RN and RN,
respectively, are defined as follows:

RN = {< x, jp(n) (%), 0r () (%), ARy () >y € [x]r, x € Z}
RN = {<x, pg(ny (%), 0y (%), Ag(ny (x) >y € [x]r, x € Z}

where

prov)(¥) = A un(y), prey () = Vo pN(y)

yelx]r ye(x]r
orv)(X) = A on(y),  ogp(x) =V on(y)
yexr yElxr
Ay (%) = AN(Y), AE(N)(X) = A An(y)
yelxr yelxr

A pair (RN, RN) is called a rough NS.

Definition 4. A rough neutrosophic digraph on a nonempty set V* is an 4-ordered tuple G = (R,RV,S, SE)
such that the following hold:

(a) R isan equivalence relation on V*;

(b) S is an equivalence relation on E* C V* x V*;

(¢c) RV = (RV,RV) isarough NS on V*;

(d) SE = (SE, SE) is a rough neutrosophic relation on V*;

(e) (RV,SE) is a rough neutrosophic digraph where G = (RV,SE) and G = (RV, SE) are lower and upper
approximate neutrosophic digraphs of G such that

pse(x,y) < min{pgy (x), prv (¥) }
ose(x,y) < min{ogy(x),orv(Y)}
Ase(x,y) < max{Ary(x), Arv(y)}

X,
X,
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and
pep(x,y) < min{pgy (%), pry (y)}
ogp(x,y) < min{ogy (x), 0y (v)}
Agp(xy) < max{Agy (%), Agy(¥)} Vx,ye V"

Example 1. Let V* = {a,b,c,d} be a set and R be an equivalence relation on V* defined as follows:

1100
R:1100
0 011
0 011

Let Vi = {(a,0.2,04,0.9), (b,0.1,0.3,0.5), (¢,0.2,0.3,0.6), (d,0.5,0.6,0.7) } be a NS on V*. The lower
and upper approximations of V1 are given by

RV; = {(,0.1,0.3,0.9), (b,0.1,0.3,0.9), (¢,0.2,0.3,0.7), (4,0.2,0.3,0.7) }
RV; = {(a,0.2,0.4,0.5), (b,0.2,0.4,0.5), (c,0.5,0.6,0.6), (d,0.5,0.6,0.6) }

Let E* = {(a,b),(b,c),(b,d),(c,d)} C V* x V* and S be an equivalence relation on E*, defined
as follows:

S O O
O = = O
(e )
_ O O O

Let Ey = {((a,1),0.1,0.2,0.4), ((b,¢),0.1,0.3,0.6), ((b,d),0.1,0.2,0.6), ((c,d),0.2,0.1,0.5) } be a NS
on E* and SEy = (SEy, SE1) be a rough neutrosophic relation, where SE1 and SE; are given as follows:

SEy = {((a,b),0.1,0.2,0.4), ((b,c),0.1,0.2,0.6), (b,d),0.1,0.2,0.6), ((c,d),0.2,0.1,0.5)}
SE1 = {((a,b),0.1,0.2,0.4), ((b,c),0.1,0.3,0.6), ((b,d),0.1,0.3,0.6), ((c,d),0.2,0.1,0.5)}

Thus, Gy = (RV4,SEq) and Gy = (RV4, SEq) are neutrosophic digraphs as shown in Figure 1.

a(0.1,0.3,0.9) 5(0.1,0.3,0.9) a(0.2,0.4,0.5) b(0.2,0.4,0.5)
(0.1,0.2,0.4) (0.1,0.2,0.4)
< Q) =)
oS S B =
Qo N A o3
S S \J =
s 4 -
= =
(0.2,0.1,0.5) (0.2,0.1,0.5) =
d(0.2,0.3,0.7) ¢(0.2,0.3,0.7) ~d(0.5,0.6,0.6) ¢(0.5,0.6,0.6)
Ql = (EVhﬁEl) al = (va,gEl)

Figure 1. Rough neutrosophic digraph G; = (G4, Gy).

Example 2. Let V* = {a,b,c} be a crisp set and R be an equivalence relation on V* defined as follows:
100
R=1011
011

Let Vo = {(a,0.1,0.7,0.8), (b,0.9,0.6,0.5), (c,0.2,0.4,0.3) } be a NS on V* and
RV, = (RV,,RV;) be a rough NS, where RV, and RV, are given as follows:
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RV, = {(a,0.1,0.7,0.8), (b,0.2,0.4,0.5), (c,0.2,0.4,0.5)}
RVs = {(4,0.1,0.7,0.8), (b,0.9,0.6,0.3), (c,0.9,0.6,0.3) }

Let E* = {(a,b), (b,c)} C V* x V* and S be an equivalence relation on E* defined as follows:

3]

Let E; = {((a,1),0.1,0.4,0.7), ((b,¢),0.2,0.3,0.2) } be a NS on E*; then by definition we have

SE, = {((a,b),0.1,04,0.7), ((b,c),0.2,0.3,0.2)}
SE, = {((a,b),0.1,0.4,0.7), ((b,c),0.2,0.3,0.2)}

Thus, G = (RVa, SE;) and G, = (RV;, SEy) are neutrosophic digraphs as shown in Figure 2.

5(0.2,0.4,0.5)

(0.1,0.7,0.8) ¢(0.2,0.4,0.5)

Gy = (RV3, SE»)

Figure 2. Rough neutrosophic digraph G, = (G,, G»).

Definition 5. Let G; = (G;, G1) and Gy = (G,, G) be two rough neutrosophic digraphs on a set V*. Then
the lexicographic product of Gy and Gy is a rough neutrosophic digraph G = G; ® G = (G ® G5, G1 ® Ga),
where G; ® G, = (RV; ® RV,,SEy ® SE,) and G1 ® Gy = (RV; ® RV,,SEy ® SE,) are neutrosophic
digraphs, respectively, such that

(1) HRvi0RV, (%1, X2) = min{ury, (x1), hrv, (¥2) }
min{ory, (x1), prv,(x2)}

max{Agv; (x1), pirv, (X2)} V (x1,%2) € RV1 x RV

min{pgy, (x), Hse, (x2,42) }

min{ogy, (x), 0sg, (X2,y2) }

max{Ary, (x),Asg, (x2,42)} ¥V x € RVy, (x2,42) € SEp

MsEosE, ((x1,%2), (y1,y2)) = min{pse, (x1,v1), Hse, (x2,y2) }

OsE,o8E, (X1, %2), (1, Y2 min{0osg, (X1,Y1),0sE, (x2,¥2) }

AsE sk, (X1, %2), (Y1, 2 max{Agg, (x1,¥1), Asg, (x2,y2)} V¥ (x1,¥1) € SEq, (x2,12) € SE»

) =
)
)
)
)
)
)
)
) =
(2) MRy RV, (31, %2) = min{ugy, (x1), pgy, (x2)}
) =
) =
) =
) =
) =
) =
)
)

ORV;ORV, (X1, X2

ARV,ORV, (X1, X2

(
(
(x,v2
(
(

VSEloSEz((x X2),

) )
sk, osE, (¥, X2), (%, y2)
AsE osE, (X, x2), (x,y2)

)
)
)

x1,X2) = min{ogy, (¥1), pgy, (¥2)}

max{Agy, (¥1), gy, (¥2)} ¥ (x1,%2) € RV1 x RV,

1
X, Y2 x), Wgg, (X2,42) }
x),0gg, (x2,¥2) }

max{Agy, (x), Ask, (x2,y2)} ¥V x € RVy, (x2,v2) € SE»

mm{yRV1

min{ogy,

P‘SE@SEZ((x x2), (
(

(
A

ARv, Ry, (X1, X2
(

’ (x 2

(x,

) )
5k, o5k, (¥, x2) )
/\5519552(( ,X2), )
M5k, o5E, (X1, %2), (Y1, 42)

), (1, ¥2)

) (y1,92)

)\351@552 X1,%X2),\Y1, Y2

mm{]/‘s}gl(ﬁ,]/l) ngz(xzrl/z)}
mln{USE xl/]/l) USEz(xZIyZ)}

max{)\SE (x1,11), A Sk, (x2,y2)} ¥V (x1,y1) € SEq, (x2,y2) € SE,

s, o5E, (Y1, X2
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Example 3. Consider the two rough neutrosophic digraphs Gy and G, as shown in Figures 1 and 2.
The lexicographic product of Gy and Gy is G = G1 ® Gy = (G ® Gy, G1 ® Gy), where G; ©® G, =
(RVy ® RV,,SEy ® SEp) and G1 ® G = (RVy ® RV, SE| ® SE,) are neutrosophic digraphs as shown
in Figures 3 and 4.

((a,a),0.1,0.3,0.9) ((a,b),0.1,0.3,0.9) ((a,c),0.1,0.3,0.9)
(0.1,0.3,0.9) (0.1,0.3,0.9)

((b,a),0.1,0.3,0.9) ((b,¢),0.1,0.3,0.9)

((d,a),0.1,0.3,0.8)

((d,b),0.2,0.3,0.7)
(0.1,0.3,0.7) (0.1,0.3,0.7)

(d,c),0.2,0.3,0.7)

Figure 3. Neutrosophic digraph G; ® G, = (RV; ® RV,,SE; ® SEj).

((a,a),0.1,0.4,0.8) ((a,b),0.2,0.4,0.5) ((a,¢),0.2,0.4,0.5)
(0.1,04,0.7 (0.2,0.3,0.5)

((b,a),0.1,0.4,0.8) b,c),0.2,0.4,0.5)

(01,0407

((¢,a),0.1,0.6,0.8) (¢,¢),0.5,0.6,0.6)
(0.2,0.3,0.6)

((d,a),0.1,0.6,0.8)

(d,b),0.5,0.6,0.6)
(0.1,0.4,0.7) (0.2,0.3,0.6)

(d, ),0.5,0.6,0.6)

Figure 4. Neutrosophic digraph G; ® G, = (RV; ® RV,,SE1 ® SEj).

Theorem 1. The lexicographic product of two rough neutrosophic digraphs is a rough neutrosophic digraph.

Proof. Let G; = (G;,G1) and Gy = (G, Gy) be two rough neutrosophic digraphs.
Let G = G ©®G, = (G ® Gy, Gy ® Gy) be the lexicographic product of G; and G,
where G; ® G, = (RV; ® RV,,SE; ® SE») and G; ® G, = (RV; ® RV,,SE; ® SE,). To prove
that G = G; ® Gy isa rough neutrosophic digraph, it is enough to show that SE; ® SE; and SE; ® SE,
are neutrosophic relations on RV; ® RV, and RVj ® RV, respectively. First, we show that SE; ® SE;
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is a neutrosophic relation on RV; ® RVj.
If x € RV, (XZ, yz) € SE,, then

MsE sk, (X, x2), (x,¥2)) = prvy (x) A pse, (x2,2)
< uRrvy (%) A (prv, (%2) A R, (92))
= (MR (%) A Ry (%2)) A (RY, (X) A iRV, (42)
= URVioRV, (X, X2) A RV, 0RV, (X, Y2)
MsE sk, (X, x2), (x,¥2)) < min{prv,orv, (X, %2), RV, ORV, (%, Y2) }
OsE,08E, (X, x2), (X, ¥2)) = ory, (X) A 0sE, (X2, ¥2)
< orv, () A (0RV, (x2) A ORY, (¥2))
= (orv; (¥) A oRY, (%2)) A (ORY; (%) A ORY, (12))
= ORV,0RV, (X, X2) A ORV, 0RV, (X, Y2)
0sE,0SE, (X, %2), (X, ¥2)) < min{oRy,0rY, (X, X2), ORV 0RV, (X, Y2) }
AskjosE, ((%,%2), (X,92)) = Arv, (%) V Ask, (%2, ¥2)
< Arvy (%) V (AR, (x2) V ARV, (¥2))
= (Arv; (¥) V ARy, (x2)) V (Ary; (%) V ARV, (42))
= ARvi0RV, (X, X2) V ARV, 0RV, (X, 12)

AskyosE, (X, X2), (%, ¥2)) < max{ARv,orv, (¥, X2), ARV 0RV, (X, Y2) }

If (xllyl) < §E1/ (xZ/yZ) S EEZI then

IN

HsE o3k, ((x1,%2), (y1,Y2)) = pse, (x1,51) A pisg, (%2, y2)
(nrv; (x1) A pirvy (Y1) A (Rv, (X2) A iRy, (y2))
= (Hrvy (x1) A PRV, (X2)) A (HRY; (Y1) A BRV, (12))
= HRV,oRV, (X1, %2) A PRV 0RV, (Y1, Y2)
HsEosE, ((x1,%2), (y1,y2)) < min{prv,orv, (X1, X2), HRV;0RV, (V1,Y2) }
sk 08E, (X1, %2), (Y1, ¥2)) = 05, (X1, Y1) A s, (X2, ¥2)
(0rv; (x1) ARy, (1)) A (ORV, (%2) A ORV, (¥2))
= (0rw; (x1) ARV, (x2)) A (ORW, (Y1) A ORY, (12))
ORV, RV, (X1, %2) A\ ORV, RV, (Y1, Y2)
OsE,08E, (X1, %2), (y1,Y2)) < min{ory,orv, (X1, %2), ORV, 0RV, (Y1, Y2) }
Ask sk, (Y1, X2), (y1,Y2)) = Ask, (X1,y1) V Ask, (x2,12)
< (Arvy (x1) V ARy, (y1)) V (ARv, (x2) V AR, (12))
= (Arv; (¥1) V ARy, (2)) V (Arv; (1) V ARV, (¥2))
= ARvioRV, (X1, %2) V ARV 0RV, (Y1, Y2)
AseosE, (1, X2), (y1,Y2)) < max{Agv,orv, (%1, %2), ARV, 0RW, (Y1, 42) }

IN

Thus, from the above, it is clear that SE; ® SE; is a neutrosophic relation on RV} ® RV5.
Similarly, we can show that SE; ®SEyisa neutrosophic relation on RV; ® RV;,. Hence,

G = (G; ® G,, G1 ® Gy) is a rough neutrosophic digraph. [

6 of 19
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Definition 6. The strong product of two rough neutrosophic digraphs Gi and Gy is a rough neutrosophic
digraph G = G1 X G, = (G; K G,, G, X G,), where Gy X G, = (RV; X RV,,SE; K SE,) and G K G, =
(RVy ® RV,, SEy X SEy) are neutrosophic digraphs, respectively, such that

(1) HrRvmERY, (XY
ORV KRV, (X, Y

ARV,RRV, (X, Y

HsERSE, (X, %2), (x,y2)
0sE®sE, (¥, x2), (x, ¥2)
(x,x2), (x,2)
(x1,v), (y1,y)
(x1,y), (1)
), (y1,y)
pseywsE, ((x1,%2), (y1,42)
sk msE, ((¥1,%2), (Y1, 2)
AsemsE, ((x1,%2), (Y1, ¥2)

HSE|RSE, (X1,

(
(
ASERSE, (
(
USE|XSE, (

(

Y
X1, Y
Ase,RsE, ((X1,Y

— — — — — — — — — — — ~—

(2)  HryxRY, (0Y
URV, KRV, (x,y

ARv,=RV, (/Y

M3k XSE, (x,x2), (x, 2
X, Y2
Y2

X,

Y1, 92
Y1, 92

) =
) =
) =
) =
) =
) =
)
)
)
)
)
y1,y2))

)
)
)
)
,y)
)
)
)
)

o
{52l
=
X
%)
™
(S}

—~
~—~ ~ N
=
ol
~
=
N
~— ~— ~—
~
~ o~

4

= min{pgy, (x

) urv, (V) }

), URVZ( )}

max{Agy, (x),Ary,(¥)} V (x,y) € RV} x RV,
min{pgy, (x), pse, (X2, 42) }
min{ogy, (x), 0k, (x2,¥2) }

max{Arv, (x),Asg,(x2,¥2)} Vx € RVy,(x2,2) € SE»
min{psg, (X1,Y1), Hrv, () }

min{osg, (x1,¥1), 0rV, () }

max{Asg, (¥1,41), Arv,(¥)} ¥V (x1,y1) € SE1,y € RV,
min{psg, (X1, ¥1), Hse, (X2, ¥2) }

min{osg, (¥1,41), 05k, (x2,¥2) }

max{Asg, (¥1,¥1),AsE, (¥2,¥2)} V¥ (x1,41) € SEq, (x2,¥2) € SE2

min{UEw (x

mm{ﬂva(x Hrv, (W)}

mm{aRVl(x (TRVZ( )}

max{Agy, (x), Ay, (¥)} V (x,y) € RVi x RV,
mm{Vva(x)rﬂsgz(XZrVZ)}

min{ogy, (x), 05, (¥2,¥2)}

max{Agy. (¥), Agp, (¥2,42)} ¥ x € RV, (x2,42) € SE2
min{pzg, (¥1,51), fgy, Y)}

mln{asgl(xlfl/l) ‘Tsz(y)}

max{Agp (¥1,¥1), Agy, ()} ¥ (x1,41) € SE1,y € RV,
min{pge, (¥1,91), Hgp, (%2, 42)}

mm{‘fsg (x1, 1), O-SEZ(eryZ)}

maX{/\SE (Xl,yl) SE, (Xz,yz)} Y (x1,y1) c §El, (XZ,yz) S §Ez

),
),

Example 4. Consider the two rough neutrosophic digraphs Gy and Gy as shown in Figures 1 and 2. The strong
product of Gy and Gy is G = G1 X Gy = (G; K G,, Gy K Gy), where G; K G, = (RV; X RV, SE; X SEj)
and G1 X G, = (Ruy ¥ RV,, SEy X SEy) are neutrosophic digraphs as shown in Figures 5 and 6.
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((a,a),0.1,0.3,0.9) ((a,b),0.1,0.3,0.9) ((a,¢),0.1,0.3,0.9)
B (0.1,0.3,0.9) = (0.1,0.3,0.9) =
S S =
) (01 o (0] e
5 L9 S 2 b
< 2 : 2
— 0 — 4 =
s 2 < =2
((b,a),9.1,0.3,0.9) ,b),0.1,0.3,0.9) b,¢),0.1,0.3,0.9)
(0.1,0.3,0.9) = (0.1,0.3,0.9) 2
= /| = s =
=/ & @, o &, 50\ 2
5/ B 9, S 2, 2| \=
< T 95 = 0, — i
; = J 2 S5 o
Nt e
(¢, ),0.%,0.3,0.8) b2$0'370 7)
o 0.7
4,
(0.1,0.3,0.7) (0.1,0.3,0.7)
((d7 a),0.1,0.3,0.8) ((d, b)7042,0.3,0.7) (d‘r C)’O‘2’0'3’0‘7)

Figure 5. Neutrosophic digraph G, X G,.

((a,a),0.1,0.4,0.8) ((a,b),0.2,0.4,0.5) ((a,c),0.2,0.4,0.5)
= 0(0.1, 0.4,0.7) p (0.2,0.3,0.5) =
= Lo H 7 =
; o ) o
g N 0.} ; 4 0.9 R
) S Qe <
S = =
((b,a),0.1,0.4,0.8) b.b),0.2,0.4,0.5) b,c),0.2,0.4,0.5)
(0.1,04,0.7) | (0.2,0.3,0.5)
AN > AN\ -
ERN E 3 \2
i 9> e g \e
5 g EIE
,001,0.6,0.8) \0.1,0.4, 0.7c, o
L(ﬁ a) ) : ¢,¢)0.5,0.6,0.6)
© L~ 0 0/ g =
S < 4 O N <
S| = % SO o
= i 95 ¢, O =
— =] A =
S\ |2 H /- o
=2 I/ <
(0.1,0.4,0.7) (0.2,0.3,0.6)
((d,a),0.1,0.6,0.8) ((d,),0.5,0.6,0.6) ((d, ¢),0.5,0.6,0.6)

Figure 6. Neutrosophic digraph G; X G».

Theorem 2. The strong product of two rough neutrosophic digraphs is a rough neutrosophic digraph.

Proof. Let G; = (G;,G1) and G, = (G,, G2) be two rough neutrosophic digraphs. Let G = G; X G, =
(G X G,, G1 X G,) be the strong product of G; and G, where G; K G, = (RV; X RV;, SE; X SE»)
and G; X G, = (RV; K RV;, SE; X SE,). To prove that G = G; X G; is a rough neutrosophic digraph,
it is enough to show that SE; X SE; and SE; X SE; are neutrosophic relations on RV; X RV, and
RV} X RV;, respectively. First, we show that SE; X SE; is a neutrosophic relation on RV; X RV;.

If x € RV, (JCZ,y;)_) € SE,, then

HsERSE, (X, x2), (x,¥2)) = prv; (%) A psk, (x2,42)
< prvy (%) A (BRv, (¥2) A pRY, (Y2))
= (urv; (X) A prv, (22)) A (HRV; (X) A iRV, (Y2))
= URV;RRV, (X, X2) A HRViRRV, (X, Y2)

pseiwse, (X, x2), (x,y2)) < min{prvimry, (%, X2), pRVIRRY, (%,Y2) }
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0sE,RsE, (X, x2), (x,y2)) = ory; (x) A 0sE, (X2, 12)
< oy, (X) A (0RW, (%2) A ORY, (42))
= (0rv; (%) A oRy, (22)) A (0RV, (X) A RV, (12))
= ORVERV, (X, X2) A ORv RV, (X, 2)
0sE,RsE, (X, x2), (x,y2)) < min{ory;xRrY, (X, X2), RV, RRV, (X, ¥2) }
Asemse, (X, x2), (%, ¥2)) = ARv; (X) V AsE, (2, 2)
< Arv; (%) V (ARw, (%2) V ARy, (12))
= (Arv; (%) V ARy, (22)) V (ARyy (%) V ARy, (12))
= ARViRRV, (¥, X2) V ARV, RRV, (X, Y2)
Asemse, (%, x2), (x,y2)) < max{Ary;mry, (X, X2), ARvizRY, (%, 42) }

If x111 € SEq,z € RV,, then

HsExsE, (X1,2) (Y1, 2) = pse, (X1, ¥1) A pRv, (2)
< (urvy (x1) A rv; (V1)) A R, (2)
= (urv; (x1) ARV, (2)) A (BRV, (Y1) A RV, (2))
= URVKRV, (X1,2) A HRV;ERV, (Y1, 2)
Mseywse, (¥1,2) (y1,2) < min{pury;mRrv, (¥1,2), HRV;RRV, (V1,2) }
OsE,®SE, (¥1,2) (Y1, 2) = sk, (X1, 1) A ORY, (2)
< (orv; (x1) A oRY; (Y1) A ORY, (2)
= (orv; (¥1) ARV, (2)) A (RV; (1) A ORV, (2))
= ORV&RV; (X1, 2) A ORVi®RV, (Y1, 2)
UsE\®SE, (¥1,2) (y1,2) < min{ory,mrv, (¥1,2), ORV; &RV, (V1,2) }
AsE\®SE, (*1,2)(Y1,2) = Asg, (x1,41) V ARy, (2)
< (Arw; (x1) V ARy, (1)) V AR, (2)
= (Arvy (x1) V ARy, (2)) V (ARv; (1) V ARy, (2))
= ARV,®RV, (X1,2) V ARy, RV, (Y1, 2)
AsE,®SE, (X1,2) (Y1,2) < max{Arv,=rv, (X1,2), ARv,®RV, (V1,2) }

N

If (xl,y1) € SEq, (XZ,]/z) € SEy, then

pseiwse, ((x1,%2), (y1,¥2)) = pse, (%1, Y1) A pse, (%2, y2)
(Hrv; (x1) A pirvy (1)) A (HRv, (X2) A RV, (12))
= (rv; (x1) ARy, (22)) A (R, (V1) A iRy, (12))
HRV,®RV, (X1, X2) A RV, KRV, (Y1, Y2)
MsEmSE, (%1, %2), (¥1,¥2)) < min{prv;mRv, (X1, %2), pRVAERY, (Y1, ¥2) }
sEywsk, (X1, X2), (y1,Y2)) = 05k, (X1,41) A 0sE, (%2, 42)
(orv; (x1) Aorv; (1)) A (ORV, (X2) A ORY, (42))
= (orv; (x1) ARV, (x2)) A (ORV, (Y1) A ORV, (42))
ORV®RV, (Y1, X2) A ORV;RRV, (Y1, Y2)
0sE®SE, ((x1,%2), (¥1,¥2)) < min{ory,xmrv, (X1, X2), ORV;RRV, (Y1, Y2) }
Askywsk, ((x1,%2), (Y1,Y2)) = Asg, (x1,y1) V Ask, (22, ¥2)

< (Arvy (¥1) V ARy, (1)) V (Arv, (x2) V ARy, (12))

IN

IN

90f19



Mathematics 2018, 6, 18

10 of 19

= (Arw, (1) V ARy, (x2)) V (ARv, (y1) V ARV, (42))
= ARViERV, (¥1, X2) V ARvi=RV, (Y1, Y2)

AsE,®sE, (X1, %2), (y1,y2)) < max{Arv,&Rrv, (X1, X2), ARV, &RV, (Y1, Y2) }

Thus, from the above, it is clear that SE; X SE, is a neutrosophic relation on RV; X RV;.
Similarly, we can show that SE{XSE,isa neutrosophic relation on RV; K RV,. Hence,
G = (G; M G,, G; ¥ G,) is a rough neutrosophic digraph. [

Definition 7. Let G; = (G;,G1) and Gy = (G,, Gy) be two rough neutrosophic digraphs on a set V*.
Then the rejection of Gy and Gy is a rough neutrosophic digraph G = G1|Gy = (G1|G,, G1|G2), where

G1|G, = (RV1|RV,, SEq|SEy) and G1|G, =

such that

(1) Hrvy|RY, (X1, %2
‘Tva\RVZ(xsz
(1, %2

V§E1\§E2((x xz),(x ¥2)

U§E1\§E2((xrx2)/( y2)

/\§E1\§E2((xrx2)f(xr 2)

FgE]\gEz((xl/Z)r(th)

U§E1\§E2((xlrz)r(ylxz)
((x1,2), (y1,2)

)
)
)

Asky sk, ((¥1,2), (1,2

)=
)=
)=
)=
)=
)=
)=
) =
)=
) =
)=
)

HsE,|sE, ((x1,22), (Y1, ¥2
s, sk, ((X1,%2), (y1, 2
Askyse, ((x1,%2), (Y1, ¥2

(2) Mgy Ry, (X1, %2

X1, X2

va\Rv2 X1, X2

(
RV, (
). (x,
USE,|SE, (x,xz),( Y2
(x,x2), (x, 2
x1,2), (¥1,2
A
A

X1,2),(¥1,Z
(x1,%2), (Y1, 92
USE1\SE2((X1/ x2), (Y1, Y2
(x1,x2), (

]/1/]/2

7

P‘SEl\SEZ(

)=
)=
)=
) =
) =
) =
( ) =
(x1,2), (y1,2)) =
( ) =
) =
) =
X1, X2 ) =

’

Ak, \552(

(RV1|RV,, SE1|SE,) are neutrosophic digraphs, respectively,

JHRY, (%2)} V (x1,x2) € RVy X RV,
min{ugy, (%), Hrv, (*2), HRV, (Y2) }
(x), 0rv, (x2), ORY, (¥2) }
max{Agy, (x), Arv, (¥2), ARV, (y2)} ¥V x € RVy, (x2,42) & SE2
min{pgv, (x1), Hrvy (Y1), 1RV, (2) }
min{ogry, (x1),0rv; (1), ORV, (2) }
max{Ary; (x1), Arv, (1), Arv, (2)} V (x1,91) & SEq, 2 € RV2
mm{ﬂgvl (x1), prvy (1), 1RV, (x2), HRY, (42) }
(

x1), 0rv; (Y1), 0Rv, (X2), RV, (¥2) 3,

= max{Arv, (¥1), Arv; (y1), ARV, (X2), ARV, (y2)} ¥ (x1,41) & SE1, (x2,¥2) & SE»

min{pgy, (x1), By, (x2)}
min{ogy, (x1), Py, (¥2)}
max{Azy, (¥1), gy, (¥2)} ¥ (x1,%2) € RVy X RV,
min{pgy, (X), pigy, (X2), pgy, (v2) }
min{ogy, (x), 0y, (¥2), 07y, (v2) }
max{Agy, (x), Agy, (x2), Ay, (v2)} Vx € Ry, (x2,y2) & SEa
mln{P‘va (x1), Hrv (1), HRv, (2)}
mln{‘TRm(M) ORv, (1), ‘TFVZ( z)}
max{Agy, (x1), Ay, (1), Agy, (2)} V(x1,91) € SE1,z € RV
mm{Vva (x1), MRy (1), VﬁVZ(XZ)/VﬁVZ(yZ)}
7Y, (X1), ORy, (1), 07y, (%2), 0y, (v2) }

max{Agy, (x1), Agy, (V1), Agy, (¥2), Agy, (V2)} ¥ (x1,41) & SE1, (x2,12) € SE»

)
)

Example 5. Consider the two rough neutrosophic digraphs Gy and G as shown in Figures 7 and 8. The rejection

of Gy and Gy is G = G1|Gy = (G1|G,, G1|G2), where G,|G, =
(RV1|RV;, SE1|SEy) are neutrosophic digraphs, as shown in Figures 9 and 10.

G1|Gy =

(RV1|RVA, SE1|SEy) and
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a(0.2,0.4,0.6)

(0.1,0.2,0.3)

2 ¥
S N
3 ¥
S S
e 2
N N
G —~
S =
- o
S =
) S
S al
=~ S
N
N &
> "
> ,\?
N Q' .
~ <
d(0.2,0.5,0.9) d(0.5,0.6,0.8)
G, = (BV1,5E1) G, = (RW1,SEy)
Figure 7. Rough neutrosophic digraph G; = (G4, G1).
a(0.5,0.4,0.3) 4,03 a(0.9,0.6,0.1) 0.1
: (0.3,0.2,0.1) 5(0.5,0.4,0.3) ’ (0.5,0.4,0.1) 5(09,0.6,0.1)
~ o ~ 2
3 % S 23
J ® S ¥
5?" OQ u'y 09
S S _
F — =)
2 = 2 B
— = < =)
s 2 = =
= C S °
e & o &
~
S @ S G
> Y N ¥
N ‘o Q ?
> ke o v
Q (0.1,0.1,0.6) o 3 o,
d(0.2,0.1,0.8) ¢(0.2,0.1,0.8) 4 d(0.5,0.5,0.6) ¢(0.5,0.5,0.6) ~

Figure 8. Rough neutrosophic digraph G, = (G,, G»).

((a,),0.2,0.4,0.6)  ((a,c),0.2,0.1,0.8)

,a),0.2,0.4,0.6) .d),0.2,0.1,0.
((2,),0.2,04,0.6) 5557 06) (0.2,0.1,0.8) 0z0108 §(@d,02,01,08)
L~ = 0 )
=R0O» = <o) s
< Qg ~ "Q - 4, =
=) ) < "/,0 < °Q <
N CE L I E NS
((b,a),0.2.0.470.6\v mﬁb)10.2,0.4.0.6 ((b,C)A,O.Z,O.LO.S ((b, d),02.01,08)

’ (0.2,0.4,0.6) (0.2,0.1,0.8) (0.2,0.1,0.8)
S 2> S 2 =0 S
= o < ) = Q =
= '%{0 < 'JO < /)0(9 <
~ 2 (&N R [aN]
5 2 2 O\ B N\e
((¢,a),0.2,0.4,0.9) ¢ ((c.1).02,0.4,0.9N[((.©), 0.2,0.1L.09N (0. 4).0.2,0.1,0.9)
’ (0.2,0.1,0.9) (0.2,0.1,0.9) RS
= = =IO S
= ) 2 Yo o}
=] S <0 = <0 <
= N Ean N
(d,a),0.2,0.4,0.9)4(0:2:0.4,0.9) (0.2,0.1,0.9) (0.2,0.1,0.9) ((d,d),0.2,0.1,0.9)

(d,b),0.2,0.4,0.9) ((d;),0.2,0.1,0.9)

Figure 9. Neutrosophic digraph G;|G, = (RV1|RV,, SE1|SE;).
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((a,b),0.3,0.6,0.3) ((a,¢),0.3,0.5,0.6)

,a),0.3,0.6,0.: ,d),0.3,0.5,0.6
((2,a),03,06,0.3) (0.3,0.6,0.3) (0.3,0.5,0.6) (0.3,05,0.6) (a,d) )
= = = =)

NG E 73 = S
S .U?O “5 ,0.0\ S 05 o
= ‘6 = ) = 2 <
= 7] - 2 3 <, o5
e ) F < il OIN S
=) = . =) . S
(b.0),03,06,03) [7.6).0.3.0.6.0.9N\{8.0).03.0.5. 0.0 (4, a).0.3,0.5.0.6)
(0.3,0.6,0.3) (0.3,05,0.6) (0.3,0.5,0.6)
= R = 2
S 2y = 2 = =
3 > © Q g 2
= %5 = CP S EP) S
AN PPN FYTTH )g
¢,0),0.5,0.6,0.8) 4= ¢,),0.5,0.6,0.8)\J¢, ¢),0.5,0.5,0.8 d),0.5,0.5,0.8
((e,0), 05, ) (0.5,0.6,0.8) (0.5,0.5,0.8) (0.5,0.5,0.8) ((d),05,05,08)
2 Z 2 IO g
= =} '(2\0 N3 Uvg Y=y
= ‘) S S 2 INE
(d, a),0.5,0.6,0.8) | (0.5.0.6,0.8) (0.5,0.5,0.8) (05,0.5,08) (4, d),0.5,0.5,0.8)
(d,b),0.5,0.6,0.8) ((d, ¢),0.5,0.5,.8)

Figure 10. Neutrosophic digraph G1|G, = (RV;|RV», SE{|SEy).

Theorem 3. The rejection of two rough neutrosophic digraphs is a rough neutrosophic digraph.

Proof. Let G; = (G;,G1) and G = (G, G,) be two rough neutrosophic digraphs. Let
G = G1|Gy = (G1|G,, G1|Gz) be the rejection of Gy and G,, where G;|G, = (RV1|RV;, SE1|SE;) and
G1|G, = (RV4|RV;, SE1|SEy). To prove that G = G4 |G, is a rough neutrosophic digraph, it is enough
to show that SE;|SE, and SE;|SE; are neutrosophic relations on RV;|RV, and RV;|RV;, respectively.
First, we show that SE;|SE; is a neutrosophic relation on RV;|RV;.

If x € RV}, (XZ,yz) ¢ SE;, then

MsE, sk, (%, %2), (%,92)) = pRrv, (%) A pry, (X2) A R, (y2)
= (Hrv; (X) ARy, (x2)) A (HRv, (X) A pRV, (2))
= HRvy RV, (X, X2) A PRy, RV, (X, Y2)

HsE, |sE, ((x,x2), (x,¥2)) = min{pgy, v, (X, X2), Ry, RV, (4, Y2)

sk, sk, (X, X2), (X, ¥2)) = RV, (X) A ORY, (%2) A ORY, (V2)
= (0rw; (x) ARy, (x2)) A (ORV, (%) A ORY, (42))
= ORyy RV, (X, X2) A Oy, RV, (%, Y2)

sk, sk, (X, x2), (x,y2)) = min{ogy, |rv, (X, X2), ORv; RV, (X, Y2) }

Asky sk, (%, x2), (x,42)) = Arv; (X) V ARy, (%2) V ARy, (12)
= (AR (%) V ARy, (2)) V (ARy; (%) V ARy, (12))
= Arvy RV, (X, X2) V ARy RV, (%, Y2)

/\§E1\§E2((xr x2), (%, ¥2)) = max{/\gvl\g\@(xf XZ)IABVI\BVZ(xryZ)}

If x111 ¢ SE1,z € RV;, then

14551|§Ez(x1/2)(]/1/2) = prv; (x1) A pirvy (Y1) A HR1, (2)
= (nrv; (x1) A pRY, (2)) A (HRV; (V1) A RV, (2)
= URvy|RV, (¥1,2) A PRV, RV, (Y1, 2)

HsE, |sE, (¥1,2) (¥1,2) = min{pry, |rv, (X1, 2), R, RV, (Y1, 2) }
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sk, |sE, (X1,2) (Y1, 2) = orv, (¥1) A ory, (Y1) A RV, (2)
= (0rv; (x1) ARV, (2)) A (ORV, (Y1) A ORY, (2)
= ORvy|RV, (*1,2) A Ory, RV, (Y1, 2)

OsE,|SE, (¥1,2) (y1,2) = min{ogy, |rv, (X1, 2), Orvy RV, (Y1, 2) }

Askyise, (X1,2) (1,2) = Arvy (1) V ARy, (1) V ARy, (2)
= (Arny (x1) V ARy, (2)) V (Arv; (1) V ARy, (2)
= ARrvy|RV, (X1,2) V ARy, RV, (V1,2)

AsE, |§E2(x1rz)(y1rz) = max{)\gvﬂgvz (xl/z),}\gvl IRV, (y1,2)}
If (x1,y1) & SEq, (x2,y2) € SE, then

05k, sk, ((X1,%2), (Y1, ¥2)) = 0rv, (X1) A ORY, (Y1) A ORY, (X2) RV, (¥2)
= (orv; (x1) A ORV, (%2)) A (ORV; (Y1) A ORY, (12))
= ORw; RV, (X1, X2) A ORyy RV, (Y1, Y2)

sk, sk, ((¥1,%2), (y1,¥2)) = min{ogy, |rv, (X1, %2), ORY, RV, (Y1, Y2) }

Ask,|sE, ((X1,%2), (y1,¥2)) = Arvy (¥1) V ARy, (V1) V ARy, (%2) ARV, (¥2)
= (Arv; (x1) V ARy, (22)) V (ARv; (1) V ARy, (12))
= ARw; RV, (X1, %2) V ARy, RV, (Y1, ¥2)

)‘§E1\§E2((xlrx2>/ (y1.y2)) = max{/\gvl\BVQ(xLXZ)/)\Bvlmvz(yl/VZ)}

Thus, from the above, it is clear that SE;|SE; is a neutrosophic relation on RV; |RV5.
Similarly, we can show that SE1|SE; is a neutrosophic relation on RV;|RV,. Hence,
G = (G4]G,, G1|G,) is a rough neutrosophic digraph. [

Definition 8. The tensor product of two rough neutrosophic digraphs Gy and G, is a rough neutrosophic digraph
G = (Gy x Gy, Gy x Gy), where Gy x Gy = (RVy x RV, SEy % SE») and Gy x Go = (RVy x RV, SEy % SE»)
are neutrosophic digraphs, respectively, such that

(1) prvixRY, (%, ¥) = min{pry, (x), urv, () }
ORVyxRV, (X, ) = min{ory, (X)r v ()}
ARV RV, (X, ) = max{)&BV1 rR,(Y)} YV (x,y) € RV; x RV,

HRviRV, (Y1, %2), (¥1,Y2)) = min{pse, (x1,91), psk, (x2,y2) }
ORV RV, (X1, X2), (Y1,Y2)) = min{osE, (x1, Y1), OsE, (X2, Y2) }

ABV]*B‘/z((xl/ xZ)/ (]/1/]/2)) = maX{AﬁEl (xll yl)/ A§E2 (xZ/ ]/2)} v (xlzl/l) S §E1/ (xZIyZ) S §E2

(2)  pryrW, (4 Y) = min{ugy, (x), pry, (V) }
‘Tﬁvl*ﬁvz(x/y) = min{f’ivl(x) RV, ()}
ARvysiw, (% Y) = max{Agy, (), Ay, W)} ¥ (x,y) € RV1 X RV,
MRy, (X1, %2), (y1,¥2)) = min{psg, (x1,y1), psg, (%2, ¥2) }
TRV RV, (X1, X2), (y1,Y2)) = min{oge (x1,y1), 05E, (x2,¥2) }
Agviarv, (¥1,%2), (11, ¥2)) = max{Agg (x1,11), Asg, (x2,42)} ¥ (x1,51) € SE1, (x2,¥2) € SE2
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Example 6. Let V' = {a,b,c} and V; = {w, x,y,z} be two crisp sets. Let G; = (G, Gy) and

Gy = (Gy, Go) be two rough neutrosophic digraphs on Vi and V5, respectively, where G, = (RV;, SE;) and
Gy = (RVy, SEy) are neutrosophic digraphs as shown in Figure 11. G, = (RVa,SEy) and Gy = (RV>, SEy)
are also neutrosophic digraphs, as shown in Figure 12.

(0.2,0.1,0.6)

(0.2,0.1,0.3)

(0.2,0.1,0.5) (0.2,0.1,0.5)
b(0.8,0.6,0.5) ¢(0.2,0.1,0.6) 5(0.8,0.6,0.5) ¢(0.9,0.3,0.4)
Gy G

Figure 11. Rough neutrosophic digraph G; = (G;, G1).

w(0.4,0.2,0.6) w(0.8,0.5,0.1)

2,0.1,0.1)(0.4,0.2, 0.3) 3,0.2,0.1) (0.4,0.2,0.
2(0.4,0.2,0.6) (0.4,0.2,0.6) 2(0.9,0.8,04) 2(0.8,0.5,0.1) y(0.8,0.5,0.1) 2(0.9,0.8,0.4)

QQ GQ

Figure 12. Rough neutrosophic digraph G, = (G,, G).

The tensor product of Gy and Gy is G = Gy x Gy = (G * Gy, G1 * Gy), where G x G, =
(RVy x RV;,SE1 x SE,) and Gy x Go = (RVy x RV,, SEq x SE;) are neutrosophic digraphs, as shown in
Figures 13 and 14, respectively.

((a,v),0.2,0.1,0.6)  ((a,z),0.2,0.1,0.6) ((a,),0.2,0.1,0.6)  ((a,2),0.2,0.1,0.6)

((b,w),0.4,0.2,0.6)

(60'00°8°0(249))

((¢,),0.2,0.1,0.6) ((¢,2),0.2,0.1,0.6) ((¢,4),0.2,0.1,0.6) ((c,2),0.2,0.1,0.6)

Figure 13. Neutrosophic digraph G; x G, = (RV; * RV,, SE1 x SEy).
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((a,),0.2,0.1,0.3)  ((a,),0.2,0.1,0.3) ((a,),0.2,0.1,0.3)  ((a,2),0.2,0.1,0.4)

((b,w),0.8,0.5,0.5)

(¢°0°9'0°8°0°(29))

((¢,1),0.8,0.3,0.4)  ((¢,2),0.8,0.3,0.4)  ((c,y),0.8,0.3,0.4) ((c,2),0.9,0.3,0.4)

Figure 14. Neutrosophic digraph G x Gy = (RV; % RV,, SE1 % SE»).

Theorem 4. The tensor product of two rough neutrosophic digraphs is a rough neutrosophic digraph.

Proof. Let G; = (G;,G1) and G, = (G,, G») be two rough neutrosophic digraphs. Let G = G; x G, =
(G; * G,, G1 x Gy) be the tensor product of G; and G,, where G x G, = (RV; x RV, SE; x SE;) and
Gy *x Gy = (RVy x RV,, SEq x SE,). To prove that G = G; * G5 is a rough neutrosophic digraph, it is
enough to show that SE; x SE; and SE; x SE; are neutrosophic relations on RV; x RV, and RV; x RV;,
respectively. First, we show that SE; x SE; is a neutrosophic relation on RVj x RV5.

If (xl,y1) € SEq, (xz,yz) € SE, then

MsEyxsE, ((x1,X2), (y1,Y2)) = sk, (X1,y1) A pse, (x2,2)

(Hrv; (x1) A iRy (1)) A (HRV, (X2) A RV, (12))

= (urv; (X1) A pRv, (22)) A (R, (V1) A RV, (12))

HRV; =RV, (X1,%2) A PRV *RV, (Y1, Y2)

MsEyxSE, (%1, X2), (y1,Y2)) < min{prvy.rv, (X1, %2), pRVISRV, (Y1, Y2) }

OsEyxSE, (X1, X2), (¥1,Y2)) = 05k, (x¥1,1) A OsE, (%2, Y2)

(orv; (1) Aory, (1)) A (ORV, (%2) A ORV, (12))
= (orv; (x1) ARV, (x2)) A (ORV, (V1) A ORY, (12))
= ORV;+RV; (X1, X2) A\ ORV; %RV, (Y1, Y2)

05y 4SE, (X1, %2), (Y1, ¥2)) < min{oRy;«rv; (X1, X2), ORV; <RV, (Y1, Y2) }

AsessE, (X1, %2), (y1,¥2)) = Ase, (x1,¥1) V Ask, (x2, ¥2)
< (Arvy (¥1) V ARy, (1)) V (Arv, (x2) V AR, (12))
= (Arv; (¥1) V ARy, (x2)) V (Arw; (1) V ARy, (12))
= ARV, %RV, (X1, %2) V ARV, <RV, (Y1, Y2)

AsEyxsE, (21, %2), (y1,¥2)) < max{Arv,«rv, (X1, %2), ARV <RV, (Y1, Y2) }

IN

IN

Thus, from the above, it is clear that SE; x SE; is a neutrosophic relation on RV; x RV;.
Similarly, we can show that SE; xSEyisa neutrosophic relation on RV; x RV,. Hence,
G = (G; * G,, G1 * Gy) is a rough neutrosophic digraph. [

Remark 1. Hybrid-model rough neutrosophic digraphs are generalization of fuzzy digraphs and can be used
to represent the relations and flows between data. Rough neutrosophic digraphs can be incrementally modified
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by deleting or adding elements, or they can be built by combining multiple rough neutrosophic digraphs
using rough neutrosophic operations. Our proposed operations are methods of construction of new rough
neutrosophic digraphs from old digraphs. By introducing the rough neutrosophic digraph theory, we have
proposed a novel decision-making method based on rough neutrosophic information. It provides a new viewpoint
for rough neutrosophic information. The given decision-making method can be used to evaluate upper and lower
approximations to develop deep considerations of the problem.

3. Application

In this application, we use the concept of a rough neutrosophic digraph for decision-making in
real-life problems. To obtain the optimal decision, we use the following formula:

Sij = (Ts;, Is;;, Fs,;)

where

Try (01)*Tgy (v))

3— (T§E(Uirvj)+T§E(vi/vj)_T§E (Z),‘,U]')*TEE(?}I',UJ‘))
Iry (v;)*Igy ()

3— (I§E (0i,0))+Igg (vi,07) — Isg (v;,0)) * Isp (Ui,vj)>
Frv (v;)*Fgy (0))

3— (FgE(vi/vj)JrPsg(Ui/Uj)*FgE(UiIUj)*%E(Uz‘IUj))

Tsi]. = T§E 5% TgE(Ui, U]) =

)

Isij = I§E [S2) I§E(Uir U]) =

FSZ'/- = F&E D PSE(Ui/ Z)]) =

Flight planning is the process of producing a flight plan to describe a proposed aeroplane fight.
Flight plans generally include basic information such as departure and arrival points, estimated time
en route, and alternate airports in case of bad weather. The presented application provides alternate
airports for a plane in the case of bad weather.

We suppose V* = {Chicago(CHI),Beijing(B]), Lahore(LHR),Paris(PAR), Istanbul(IST)} is the set of
cities under consideration and R is an equivalence relation on V*, where equivalence classes represent
cities having the same characteristics.

= O O =
_ O Rk =)k O
_ O =) Rk O
—_ 0 O -
[ )

0 0 1

We assume that a flight Boeing 747 of Pakistan International Airways (PIA) travels to these cities.
In the case of bad weather, the flight will be directed to the city with the best weather condition among
the cities under consideration.

LetV = {(CHI,0.1,0.2,0.8),(B],0.9,0.7,0.5), (LHR,0.8,0.4,0.3), (PAR,0.6,0.5,0.4), (IST,0.2,0.4,0.6) }
be a NS on V* that describes the characteristic of each city, and RV = (RV, RV) be a rough NS, where
RV and RV are lower and upper approximations of V, respectively, as follows:

RV = {(CHI,0.1,02,0.8),(BJ,0.2,0.4,0.6), (LHR,0.2,0.4,0.6), (PAR,0.1,0.2,0.8), (IST,0.2,0.4,0.6)} }
RV = {(CHI,06,05,04),(BJ,09,0.7,0.3).(LHR,0.9,0.7,0.3), (PAR,0.6,0.5,0.4), (IST,0.9,0.7,0.3) }

Let E* = {(B],CHI), (LHR,CHI), (BJ,LHR), (IST, B]), (PAR, B]), (PAR, LHR)} be a subset of
V* x V* and S be an equivalence relation on E* defined as follows:

100110
010000
s_|001000
100110
100110
(000000 1|
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where S represents the equivalence classes of “weather between different cities”. For example, the
relationships (BJ,CHI),(IST,B]) and (PAR,BJ) belong to the same equivalence class. This means that the
weather between Beijing and Chicago is the same as the weather between Paris and Beijing.

Let E = {((BJ,CHI),0.1,0.1,0.3), ((LHR,CHI),0.1,0.2,0.3), ((BJ,LHR),0.1,0.3,0.2), ((IST, B] ),
0.2,0.1,0.1), ((PAR, BJ),0.1,0.1,0.4), ((PAR,LHR),0.2,0.2,0.3)) } be a NS on E* that describes the
comparison of weathers of the cities under consideration. Let SE = (SE, SE) be a rough NS, where SE
and SE are lower and upper approximations of E, respectively, as follows:

SE = {((BJ,CHI),0.1,0.1,0.4), (LHR,CHI),0.1,0.2,0.3), ((BJ, LHR)0.1,0.3,0.2)
((IST, BJ),0.1,0.1,0.4), (PAR, BJ),0.1,0.1,0.4), ((PAR, LHR),0.2,0.2,0.3))}

SE = {((BJ,CHI),0.2,0.1,0.1), ((LHR,CHI),0.1,0.2,0.3), ((B], LHR)0.1,0.3,0.2)
((IST,BJ),0.2,0.1,0.1), ((P], B]),0.2,0.1,0.1), ((PAR, LHR),0.2,0.2,0.3)) }

Thus, G = (RV, SE) and G = (RV, SE) are neutrosophic digraphs, as shown in Figures 15 and 16.

(0.1,0.1,0.4) @

Be,0.2,0.4,0.6)

Ch,0.6,0.5,0.4

(0.1,0.3,0.2)

Lh,0.9,0.7,0.3)

Figure 16. Neutrosophic digraph G = (RV, SE).

To find the city with the best weather condition, we use the formula that we mentioned in

Equation (1).
Our decision is ey if e = miax(TEE @ Tgg)(ei), where ¢; = (v;,v;). By direct calculations, we have
Tse ® Ty (BJ, CHI) = 0.044
Isg @ Igp(BJ,CHI) = 0.071
Fsg @ Fp(BJ, CHI) = 0.094
Tsg @ Tsp(LHR,CHI) = 0.043
Isg @ Is(LHR, CHI) = 0.076
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Fsg @ Fsz(LHR,CHI) = 0.09
Tse @ Tsp(BJ, LHR) = 0.064
Isg @ Isp(BJ,LHR) = 0.112
Fsg @ Fs(BJ,LHR) = 0.068
Tse & Tsp (IST, B]) = 0.066

Isg @ s (IST, BJ) = 0.100
Fsg @ Fs;(IST, B]) = 0.070
Tse @ Tsp(PAR, BJ) = 0.033
Isg ® Is;(PAR, B]) = 0.050
Fsg @ Fsz(PAR, B]) = 0.094

Tse @ Tsp(PAR, LHR) = 0.034

Isg ® Isz(PAR, LHR) = 0.155

Fsg @ Fsz(PAR, LHR) = 0.096

Hence the weather conditions between Istanbul and Beijing are good; Boeing 747 can use this
path in the case of a weather emergency.

We present an Algorithm 1 for the above-mentioned application. The presented algorithm can be
applied to avoid lengthy calculations when dealing with a large number of objects.

Algorithm 1:

Input, the vertex set V*.

Construct an equivalence relation T on the set V*.
Calculate the approximation sets TV and TV.
Input, the edge set E* C V* x V*.

Construct an equivalence relation S on E*.
Calculate the approximation sets SE and SE.

NSOl W=

Calculate the score value, by using the following formula:

Try (v;) * Try (vf)

3 — (Tsg(vi,vj) + Tgg(vi,v5) — Tse(vi,v5) * Tgp (v, v))
Irv (v;) * Iy ()

3 — (Isg (v, 9)) + Isg (v, vj) — Isg(vi, 07) * Igp (03, 05))
FRy (v;) * Fgy (v))

3 — (Fse(vi, vj) + Fgp(vi, ) — Fse(vi,v)) * Fgp (04, 05))

Tse ® Tgp(vi,0j) =

Isg ® g (v;,0)) =

Fsg @ Fsp(vi,0) =

8.  Decision is ¢ if ey = max(Tsg @ Tgg)(e;), where e; = (v;, ;).
ax{ls

9.  If ¢, has more than one value, then any one of S(v;) may be chosen.

4. Conclusions

The NS model is suitable for modeling problems with uncertainty, indeterminacy and inconsistent
information in which human knowledge is necessary and human evaluation is needed. Various
sources of uncertainty can make it a challenge to make a reliable decision. The NS model and rough
set model are used to handle uncertainty, combining these two models with another remarkable
model of soft sets, giving more precise results for decision-making problems. In this paper, we
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have presented certain operations, including Lexicographic products and tensor products on rough
neutrosophic digraphs. This research work can be extended to (1) rough bipolar neutrosophic soft
graphs, (2) bipolar neutrosophic soft rough graphs, (3) interval-valued bipolar neutrosophic rough
graphs, and (4) neutrosophic soft rough graphs.
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