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Abstract: In previous studies we used Laurent Schwartz’ theory of distributions to rigorously
introduce discretizations and periodizations on tempered distributions. These results are now
used in this study to derive a validity statement for four interlinking formulas. They are variants of
Poisson’s Summation Formula and connect four commonly defined Fourier transforms to one another,
the integral Fourier transform, the Discrete-Time Fourier Transform (DTFT), the Discrete Fourier
Transform (DFT) and the integral Fourier transform for periodic functions—used to analyze Fourier
series. We prove that under certain conditions, these four Fourier transforms become particular cases
of the Fourier transform in the tempered distributions sense. We first derive four interlinking formulas
from four definitions of the Fourier transform pure symbolically. Then, using our previous results,
we specify three conditions for the validity of these formulas in the tempered distributions sense.

Keywords: Fourier transform; Fourier series; Discrete-Time Fourier Transform (DTFT); Discrete
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Summation Formula; discretization; periodization

MSC: 42B05; 42B08; 42B10; 46F05; 46F10

1. Introduction

Poisson’s Summation Formula plays a very central role in mathematics. Its generalization,
see e.g., [1], Theorem 12.15, tells us that discretizations and periodizations are dual operations and
due to their reciprocity one of the two sums converges faster than the other. It can for example be used
to speed up summations [2]. In this study, we will see that there are basically two variants of these
formulas. We refer to the ones given in Gasquet [3], Equations (37.1) and (37.2), as

+∞

∑
k=−∞

f (t− kT) =
1
T

+∞

∑
k=−∞

f̂ (
k
T
) e 2π t k

T (1)

and

+∞

∑
k=−∞

ĝ(σ− k
T
) = T

+∞

∑
k=−∞

g(kT) e−2π σ kT (2)

where T > 0 is real and f̂ and ĝ denote the Fourier transforms of f and g, respectively. As can easily
be seen, these two reduce to special variants of the Poisson Summation Formula if t = 0 or σ = 0 or
if T = 1. Choosing t = 0 and T = 2π in (1), yields the formula originally found by Poisson [2,4–7].
Another variant arises if f is the Dirac impulse δ, i.e., a tempered distribution [6], or if g is the function
that is constantly 1, i.e., a non-integrable function. Choosing, vice versa, g = δ or f = 1, both equations
fail. Equivalently, if one chooses g = sinc and f = rect, let sinc(t) := sin(πt)/(πt) and rect be its
Fourier transform, they hold. However, choosing f = sinc or g = rect, they fail. In this paper, we use
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two simple criterions found in a previous study [7], which are dual to one another, for deciding whether
a Poisson Summation Formula of type (1) or (2) will hold or fail in the tempered distributions sense.
Our results will then be used to decide under what conditions four usually defined Fourier transforms
(Appendix A.1) will hold in the tempered distributions sense and reduce to only one Fourier transform,
the Fourier transform on tempered distributions (Appendix A.2).

Section 2 prepares the reader to the particularities of the space of tempered distributions. Readers
who are familiar with Laurent Schwartz’ theory of distributions may skip this section. Section 3
introduces to the notations and the terminology used and Section 4 prepares the theorem given in
Section 5. In Section 6, we discuss these findings.

2. Preliminaries

2.1. The Fourier Transform and the Theory of Infinitely Differentiable Functions

Whenever we use the Fourier transform, we develop a function f , no matter whether it is
differentiable or not, into a superposition (integral)

f (t) =
∫ ∞

−∞
c(σ) e2πitσdσ

of infinitely differentiable functions e2πitσ where c(σ) are the coefficients. Hence, functions that can
be Fourier transformed must unconditionally be infinitely differentiable in some sense. The theory
that made this notion rigorous [8,9] is the theory of distributions (generalized functions theory)
summarized in Laurent Schwartz’ encompassing two-volume work [10–12]. It has already become a
standard setting in Fourier analysis [3,6,13–19], wavelet theory [20] and beside mathematics [21–36],
also in quantum physics [37–42] where its origin [43], the Dirac delta [44] can be found, and in
electrical engineering [45–48] where the Dirac delta is used to formally describe sampling [49]. Laurent
Schwartz’ theory of distributions is also part of wider theories, such as those on pseudodifferential
operators [9,50,51] or modulation spaces [52–54] including Feichtinger’s algebra [55]. Compared
to these wider theories, the approach in this study requires fewer precautions. We only rely on
three subspaces of the space of tempered distributions in Laurent Schwartz’ standard distribution
theory [12,26–28,30,31]. All functions and generalized functions will be kept infinitely differentiable in
this way.

The circumstance that convolutions and, correspondingly, multiplications among distributions
cannot arbitrarily be applied, is sometimes considered a major disadvantage of Laurent Schwartz’
distribution theory [56,57]. It is, however, not a disadvantage of the theory—it is rather owned to
Heisenberg’s uncertainty principle [36]. Intuitively it is clear that convolutions fail if they are not
summable. Equivalently, the corresponding multiplications must fail because they are coupled via the
Fourier transform. Any other outcome would violate the fact that multiplications and convolutions
correspond to one another in dual domains. Therefore, when convolutions fail, their corresponding
multiplications fail and, vice versa, when multiplications fail, their corresponding convolutions fail.
We therefore stay, for convenience only, within the space of tempered distributions S ′ where we have a
clear understanding of the Fourier transform as an automorphism on tempered distributions, where
we will be able to infinitely derive all functions and where we have a clear understanding of allowed
multiplications and convolutions among distributions. They are regulated in Laurent Schwartz’
theorem on the multiplication-convolution equivalence in S ′, presented as Lemma 1 in the next
section—for the readers convenience. Another consequence of this central law is the circumstance that
discretizations and periodizations on tempered distributions cannot arbitrarily be allowed. One may
recall that discretization, in other words, “sampling” of a generalized function can be defined by
multiplying it with a Dirac comb [2,13,58]
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IIIT(t) :=
+∞

∑
k=−∞

δkT ,

where T > 0 is real-valued and δkT := τkTδ extends to τkT f := f (t− kT) for ordinary functions f .
Let us write III instead of IIIT if T = 1. Equivalently, the periodization of a generalized function
can be defined by convolving it with a suitable Dirac comb [2,13,58]. Therefore, in a most rigorous
approach, these operations must obey Laurent Schwartz’ equivalence of allowed multiplications and
convolutions within the space of tempered distributions.

2.2. Convolution vs. Multiplication

Because both convolution and multiplication may fail among arbitrary tempered distributions,
we need to consider three important subspaces of the space S ′ of tempered distributions. For a
deeper understanding one may refer to [7,24–28,30,31,35,36,59–64]. We require the subspace OC

′ of
convolution operators in S ′, the subspace OM of multiplication operators in S ′ and the Schwartz
space S which consists of (ordinary) functions which are both convolution and multiplication operators.
All three were introduced by Laurent Schwartz [12]. We build on the following theorem which can
also be found in Trèves [25], Horváth [26] and Barros-Neto [30] for the reader’s convenience. It plays a
very central role in Laurent Schwartz’ theory of distributions because it extends the commonly known
duality between multiplication and convolution to the space of tempered distributions.

Lemma 1 (Convolution vs. Multiplication). Let g ∈ S ′, f ∈ OC
′ and α ∈ OM, then

F (g ∗ f ) = F (g) · F ( f ) and (3)

F (g · α) = F (g) ∗ F (α) (4)

hold in the tempered distributions sense.

2.3. Discretization vs. Periodization

Using Lemma 1 and the fact that III ∈ S ′ and F (III) = III, see e.g., [6], one easily verifies the
following Lemma where we may think of “III ∗ f ” as the periodization of f with increments of T = 1
and of “III · α” as the discretization of α at integers.

Lemma 2 (Discretization vs. Periodization). Let f ∈ OC
′ and α ∈ OM, then

F (III ∗ f ) = F (III) · F ( f ) and (5)

F (III · α) = F (III) ∗ F (α) (6)

hold in the tempered distributions sense.

The role of III as an ideal sampling and periodization operator can be studied in Kammler [13]
or Bracewell [58], for example. Hence, by using 444 f := III ∗ f and ⊥⊥⊥α := III · α, where 444 is
periodization and ⊥⊥⊥ is discretization (sampling), the latter Lemma becomes

F (444 f ) = ⊥⊥⊥(F f ) and (7)

F (⊥⊥⊥α) = 444(Fα) (8)

in the tempered distributions sense. It tells us that “periodizing f discretizes its Fourier transform”
and, vice versa, “discretizing α periodizes its Fourier transform”. Without loss of generality, one may
think of α as the Fourier transform F f = α of f . Allowing moreover arbitrary increments T > 0,
i.e., using the definition 444T f := IIIT ∗ f and ⊥⊥⊥Tα := IIIT · α we obtain
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F (444T f ) =
1
T
⊥⊥⊥ 1

T
(F f ) and (9)

F (⊥⊥⊥ 1
T

α) = T 444T (Fα) (10)

in the tempered distributions sense [35], due to the reciprocity between time and frequency domain.
However, it is worth noting that the opposite, i.e., “discretizing f ” and “periodizing α” is not allowed
most arbitrarily. It requires that α, f ∈ OM ∩OC

′, as described below.

2.4. Poisson’s Summation Formula

One may think of the formulas (5), (6) and (7), (8) as well as (9), (10) as generalized versions of the
Poisson Summation Formula and its dual [3,5]. This can be seen by inserting the definition of 444T and
applying the Fourier transform rule F−1{δ(σ− k

T )} = e 2π t k
T in (1). It becomes

(444T f )(t) =
1
T
F−1{

+∞

∑
k=−∞

f̂ (
k
T
) δ(σ− k

T
)} (11)

and inserting the definition of ⊥⊥⊥ 1
T

on the right and applying F on both sides, it yields (9).
Vice versa, inserting the definition of 444 1

T
and applying the Fourier transform rule

F{δ(t− kT)} = e−2π σ kT in (2) yields

(444 1
T

ĝ)(t) = TF{
+∞

∑
k=−∞

g(kT) δ(t− kT)} (12)

and inserting the definition of ⊥⊥⊥T on the right and dividing both sides by T, it yields (10).
Let us recall now that (3), (5), (7), (9), (11) and (1) are true if f ∈ OC

′ and (4), (6), (8), (10), (12)
and (2) are true if α ∈ OM according to Lemma 1 and Lemma 2. Because F f = α, it is moreover
sufficient to either fulfill f ∈ OC

′ or α ∈ OM as F (OC
′) = OM and F (OM) = OC

′, see e.g., [12,25,26].
These two conditions form, accordingly, an outer framework for validity statements on variants of the
Poisson Summation Formula in the tempered distributions sense. They in particular apply to (1) and (2)
and therewith to many variants of the Poisson Summation Formula found in the literature.

2.5. Validity Statement

The validity statement f ∈ OC
′ and, equivalently, α ∈ OM is moreover most general in S ′

because it cannot be widened up in any way. The space OC
′ already includes all convolution

operators and OM already includes all multiplication operators and beyond these two spaces no
other convolution or multiplication will be possible in S ′. It is clear that otherwise the corresponding
generalized function already belongs to one of these two spaces. This validity statement is furthermore
obtained in good agreement with many other publications devoted to this topic, including [1,5,65–69],
except for the fact that, in this as well as in our previous studies, we generally do not move away from
the overall principle that all functions must be infinitely differentiable. It is the default, tacit assumption
in distribution theory.

One now easily verifies that to sample a tempered distribution f , it must be smooth in the ordinary
functions sense and should not grow faster than any polynomial. If one of these two conditions is not
fulfilled, then f is either no tempered distribution or f is not bandlimited. If f is not bandlimited (in the
sense that F f ∈ OC

′) then its Fourier transform F f cannot be periodized, i.e., the periodization of
F f fails to converge if f is not smooth in the ordinary functions sense. One may say, “differentiability
in one domain implies summability in the other domain and, vice versa, summability in one
domain implies differentiability in the other domain”. In Table 1 we summarize—for the readers
convenience—symbolic calculation rules including their validity scope. They are derived in [7,35,36].
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The validities hold on tempered distributions and in particular on Lebesgue-square integrable functions
under the same conditions.

Table 1. Discrete Functions vs. Periodic Functions.

No Rule Remark Requirement

1 F (444T f ) = 1
T ⊥⊥⊥ 1

T
(F f ) Poisson Summation Formula (generalized) f ∈ OC

′, T > 0
2 F (⊥⊥⊥ 1

T
f ) = T 444T(F f ) Poisson Summation Formula (its dual) f ∈ OM, T > 0

3 F (444 f ) = ⊥⊥⊥(F f ) Rule 1, special case T = 1 f ∈ OC
′

4 F (⊥⊥⊥ f ) = 444(F f ) Rule 2, special case T = 1 f ∈ OM
5 F (444δ) = ⊥⊥⊥(Fδ) Rule 3, special case f ≡ δ and Fδ = 1 —
6 F (⊥⊥⊥1) = 444(F1) Rule 4, special case f ≡ 1 and F1 = δ —
7 F (444δ) = 444δ Rule 5 + 9, Dirac Comb Invariance —
8 F (⊥⊥⊥1) = ⊥⊥⊥1 Rule 6 + 9, Dirac Comb Invariance —
9 444δ = ⊥⊥⊥1 Dirac Comb Identity (by definition) —

10 ⊥⊥⊥T1 = 444Tδ Dirac Comb Identity (by definition) T > 0
11 F (444Tδ) = 1

T ⊥⊥⊥ 1
T

1 Rule 1, f ≡ δ, Dirac comb reciprocity T > 0
12 F (⊥⊥⊥ 1

T
1) = T 444Tδ Rule 2, f ≡ 1, Dirac comb reciprocity T > 0

13 F ( f ∗ g) = F f · Fg Convolution vs. Multiplication f ∈ OC
′

14 F ( f · g) = F f ∗ Fg Multiplication vs. Convolution f ∈ OM
15 444g ∗ f = 444(g ∗ f ) = g ∗ 444 f Periodization Rule f , g ∈ OC

′

16 ⊥⊥⊥g · f = ⊥⊥⊥(g · f ) = g · ⊥⊥⊥ f Discretization Rule f , g ∈ OM
17 444δ ∗ f = 444(δ ∗ f ) = 444 f Rule 15, g ≡ δ, Periodization of f f ∈ OC

′

18 ⊥⊥⊥1 · f = ⊥⊥⊥(1 · f ) = ⊥⊥⊥ f Rule 16, g ≡ 1, Discretization of f f ∈ OM
19 444(rect) = 1 Rule 17, f ≡ rect, Periodization of rect —
20 ⊥⊥⊥(sinc) = δ Rule 18, f ≡ sinc, Discretization of sinc —

3. Notation

3.1. Generalized Functions

Although generalized functions cannot be treated pointwise and must always be applied as a
whole, we nevertheless denote them as f (t) instead of f to indicate that they would depend on t ∈ Rn

or σ ∈ Rn or k ∈ Zn or m ∈ Zn if they were ordinary functions. We denote Fourier transformed
functions as (F f )(σ) = f̂ (σ) or F ( f ) = f̂ or just F f and we denote discrete functions as f [k] or f̂ [m],
respectively. For simplicity, we do not assume vector-valued functions in this study, i.e., we let n = 1 in
t, σ ∈ Rn or k, m ∈ Zn although the n-dimensional case looks very similar. For cases of n > 1, one may
refer to our previous studies [7,35,36].

3.2. Definitions

As explained above, discretizations and periodizations may fail on tempered distributions.
To avoid this and to make our definitions rigorous, we require according to Lemma 2, that only
f ∈ OM can be discretized and only f ∈ OC

′ can be periodized. For any f ∈ OM, any real-valued
T > 0, k ∈ Z and the Dirac comb III ∈ S ′, one may therefore define

(⊥⊥⊥T f )(t) := (IIIT · f )(t) =
∞

∑
k=−∞

f (kT) δ(t− kT) (13)

and for any f ∈ OC
′ one may define

(444T f )(t) := (IIIT ∗ f )(t) =
∞

∑
k=−∞

f (t− kT) (14)

where (13) is called the “discretization of f ” and (14) is called the “periodization of f “ with increments T.
The result ⊥⊥⊥T f of discretization is again a tempered distribution. Equivalently, the result 444T f of
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periodization is again a tempered distribution. We call ⊥⊥⊥T f “discrete function” and 444T f “periodic
function”. It is either a periodic function in the usual sense or a generalized periodic function, such as
the Dirac comb IIIT which is T-periodic. Vice versa, every ordinary or generalized T-periodic function
g can be written as g = 444T f for some f ∈ OC

′. Equivalently, for every discrete function g = ⊥⊥⊥α

there is some α ∈ OM. It is interesting to note in this context that both these operations have already
been defined in 1953 in Woodward [2], see Table 2, and later in Brandwood [18] with symbols comb
and rep instead of ⊥⊥⊥ and 444, but pure symbolically, i.e., without statement on the actually permitted
domain and the resulting image of these operations in the tempered distributions sense.

Table 2. Woodward’s Rules 11 & 12 in [2], p. 28, endowed with validity statements.

No Waveform Spectrum Remark Requirement

W-11 repT( f ) |1/T| comb 1
T
( f̂ ) Rule 1 in Table 1 f ∈ OC

′, T 6= 0

W-12 combT( f ) |1/T| rep 1
T
( f̂ ) Rule 2 in Table 1 f ∈ OM, T 6= 0

4. Calculation Rules

4.1. Schwartz Functions

We first need to have a closer look at functions which are ordinarily smooth together with their
Fourier transform. It is expressed in the condition ϕ ∈ OM ∩OC

′. The spaceOM contains all ordinarily
smooth tempered distributions and OC

′ = F (OM) contains all those tempered distributions whose
Fourier transform is ordinarily smooth. One may recall that F (OC

′) = OM. Let us call them “fully
smooth functions”. A trivial statement is the following. It merely results from the usual staggered,
continuous embeddings of subspaces [12,35,63] within the space of tempered distributions.

Lemma 3 (Smoothness). Schwartz functions are fully smooth, i.e., S ⊂ OM ∩OC
′.

Proof. According to [12], p. 170, we have the following continuous distribution space embeddings

D ⊂ S ⊂ . . . ⊂ B ⊂ OM ⊂ E
∩ ∩ ∩ ∩
E ′ ⊂ OC

′ ⊂ D′L1 ⊂ . . . ⊂ S ′ ⊂ D′.

In particular, S ⊂ OM and S ⊂ OC
′ .

We already know that ϕ ∈ OM can be discretized and ϕ ∈ OC
′ can be periodized [36]. The next

Lemma complements these statements by telling us that ϕ ∈ S ⊂ OM ∩OC
′ can be discretized and

periodized or periodized and discretized.

Lemma 4 (Concatenation). Let T > 0 be real-valued and ϕ ∈ S , then 444T ϕ ∈ OM and ⊥⊥⊥T ϕ ∈ OC
′.

In other words, 444T ϕ can be discretized and ⊥⊥⊥T ϕ can be periodized. Both operations do therefore
not affect the respective admissibility condition (Lemma 1 and Lemma 2 in [36]) of their dual operation.
Hence, they act independently of one another.

Proof. Since IIIT ∈ S ′, Theorem 4.9 in [30] implies that IIIT ∗ ϕ = 444T ϕ ∈ OM. The statement
IIIT · ϕ = ⊥⊥⊥T ϕ ∈ OC

′ is furthermore the Fourier dual of the previous one.

Lemma 4 is thus another expression of the unique property of Schwartz functions to be able to
regularize and localize arbitrary tempered distributions (Lemmas 3 and 4 in [36]).
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4.2. Discrete Periodic Functions

In contrast to fully smooth functions (i.e., f and F f are both ordinarily smooth), let us now denote

G := {OM ∩ {OC
′

the fully generalized functions (i.e., f and F f are both not ordinarily smooth) in S ′.
The symbol { X denotes the complement of X in S ′ (see Figure 4 in [36]).

Lemma 5 (Commutation). Let T, B > 0 be real, T/B an integer and ϕ ∈ S , then

444T⊥⊥⊥B ϕ = ⊥⊥⊥B444T ϕ

in the tempered distributions sense. It is a fully generalized function, i.e., it belongs to G.

Proof. Lemma 4 allows us to concatenate these operations and ensures the sum convergences in S ′.
Using definitions (13) and (14), we on one hand obtain

(444T⊥⊥⊥B ϕ)(t) =
∞

∑
m=−∞

∞

∑
k=−∞

ϕ(kB) δ(t− kB−mT)

and on the other hand

(⊥⊥⊥B444T ϕ)(t) =
∞

∑
k=−∞

∞

∑
m=−∞

ϕ(kB−mT) δ(t−mT − kB).

In the first expression we may now replace ϕ(kB) by ϕ(kB−mT) because it is T-periodic and T is an
integer multiple of B such that both expressions become

(⊥⊥⊥B444T ϕ)(t) =
∞

∑
k=−∞

∞

∑
m=−∞

ϕ(kB−mT) δ(t− kB−mT) = (444T⊥⊥⊥B ϕ)(t). (15)

Finally, this function belongs to {OM ∩ {OC
′ because ⊥⊥⊥ is an operation from OM to {OM and

444 is an operation from OC
′ to {OC

′ and according to the previous Lemma, both ⊥⊥⊥ and 444,
act independently of one another.

Discrete periodic functions are usually mentioned in the context of treating the Discrete Fourier
Transform (DFT). However, every finite sequence of complex numbers (N-tuples) can be considered as
a discrete periodic function and, vice versa, every discrete periodic function is fully determined by its
N coefficients. This identification can be done in two ways. It is expressed in the following Lemma.

Lemma 6 (Normalization). Let T ≥ B > 0 be real, N = TB an integer and ϕ ∈ S , then

⊥⊥⊥ 1
B
444T(θB ϕ) = ⊥⊥⊥444N ϕ

⊥⊥⊥ 1
B
444T(θ 1

T
ϕ) = ⊥⊥⊥ 1

N
444ϕ

in the tempered distributions sense where θB ϕ(t) := ϕ(Bt).

Proof. Since B in ϕ(Bt) and 1/B in ⊥⊥⊥ 1
B
444 N

B
cancel out, Equation (15) becomes

⊥⊥⊥ 1
B
444T(θB ϕ)(t) = (⊥⊥⊥ 1

B
444 N

B
ϕ)(Bt) =

∞

∑
k=−∞

∞

∑
m=−∞

ϕ(k−mN) δ(t− k−mN) = ⊥⊥⊥444N ϕ
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N-periodic, discretized at integers. Equivalently, 1/T in ϕ(t/T) and T in 444T cancel out such that

⊥⊥⊥ 1
B
444T(θ 1

T
ϕ)(t) = (⊥⊥⊥ 1

TB
444 T

T
ϕ)(t) =

∞

∑
k=−∞

∞

∑
m=−∞

ϕ(
k
N
−m) δ(t− k

N
−m) = ⊥⊥⊥ 1

N
444ϕ.

in the tempered distributions sense.

4.3. The Discrete Fourier Transform

Links between Poisson’s summation formula and the DFT have already occasionally been
investigated, for example in [70,71]. The following Lemma helps to further understand this connection.

Lemma 7 (Discrete Fourier Transform, general case). Let T, B > 0 be real-valued, N = TB an integer,
f ∈ OC

′, α ∈ OM and ϕ ∈ S . Then, nesting Rules 1 and 2 (Table 1)

F (444T f ) = 1
T
⊥⊥⊥ 1

T
F ( f ) (16)

F (⊥⊥⊥ 1
B
α) = B444BF (α) (17)

into one another yields Rules i and ii (Table 3)

F (444T⊥⊥⊥ 1
B

ϕ)= B
T
⊥⊥⊥ 1

T
444B (F ϕ) (18)

F (⊥⊥⊥ 1
T
444B ϕ)= T

B
444T ⊥⊥⊥ 1

B
(F ϕ) (19)

in the tempered distributions sense.

Table 3. Discrete Periodic Functions.

No Rule Remark Requirement

i F (444T⊥⊥⊥ 1
B

f ) = B
T ⊥⊥⊥ 1

T
444B (F f ) Rule 1 + 2 f ∈ S , T ≥ B > 0 real, N = TB integer

ii F (⊥⊥⊥ 1
T
444B f ) = T

B 444T⊥⊥⊥ 1
B
(F f ) Rule 2 + 1 f ∈ S , T ≥ B > 0 real, N = TB integer

iii F (444⊥⊥⊥ 1
N

f ) = N ⊥⊥⊥444N(F f ) Rule 3 + 2 f ∈ S , integer N ≥ 1

iv F (⊥⊥⊥444N f ) = 1
N 444⊥⊥⊥ 1

N
(F f ) Rule 4 + 1 f ∈ S , integer N ≥ 1

v F (444⊥⊥⊥ f ) = ⊥⊥⊥444(F f ) Rule iii f ∈ S , integer N = 1

vi F (⊥⊥⊥444 f ) = 444⊥⊥⊥(F f ) Rule iv f ∈ S , integer N = 1

vii ⊥⊥⊥444 f = 444⊥⊥⊥ f Rule x f ∈ S , integer N = 1

viii 444⊥⊥⊥ 1
N

f = ⊥⊥⊥ 1
N
444 f identity f ∈ S , integer N ≥ 1

ix ⊥⊥⊥444N f = 444N⊥⊥⊥ f identity f ∈ S , integer N ≥ 1

x ⊥⊥⊥B444T f = 444T⊥⊥⊥B f commutation f ∈ S , T, B > 0 real, T/B integer

xi ⊥⊥⊥ 1
B
444T(θB f ) = ⊥⊥⊥444N f normalization f ∈ S , T ≥ B > 0 real, N = TB integer

xii ⊥⊥⊥ 1
B
444T(θ 1

T
f ) = ⊥⊥⊥ 1

N
444 f normalization f ∈ S , T ≥ B > 0 real, N = TB integer

We will later see that (18) and (19) describe the DFT for discretizations of ϕ in both time and
frequency, with rates of 1/B and 1/T, respectively, and N = TB is the time-bandwidth product. It is
clear that the larger N is chosen, the finer ϕ is discretized (see e.g. [72], p. 76).

Proof. According to Lemma 4, f = ⊥⊥⊥ 1
B

ϕ ∈ OC
′ can be periodized. Inserting f into (16) and applying

rule (17), we obtain

F (444T(⊥⊥⊥ 1
B

ϕ)) =
1
T
⊥⊥⊥ 1

T
(F (⊥⊥⊥ 1

B
ϕ)) =

B
T
⊥⊥⊥ 1

T
(444B (F ϕ)). (20)
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Equivalently, α = 444T ϕ ∈ OM can be discretized according to Lemma 4. Inserting α into (17) and
applying rule (16), we obtain

F (⊥⊥⊥ 1
B
(444T ϕ)) = B444B (F (444T ϕ)) =

B
T
444B (⊥⊥⊥ 1

T
(F ϕ)) (21)

which, according to Lemma 5, coincides with formula (20). In contrast to that, let ψ = F ϕ, and apply
F to the right-hand sides of (20) and (21), respectively, to obtain the reverse formulas

F (⊥⊥⊥ 1
T
(444B ψ)) = T 444T (F (444B ψ)) =

T
B
444T (⊥⊥⊥ 1

B
(Fψ)) (22)

F (444B (⊥⊥⊥ 1
T

ψ)) =
1
B
⊥⊥⊥ 1

B
(F (⊥⊥⊥ 1

T
ψ)) =

T
B
⊥⊥⊥ 1

B
(444T(Fψ)) (23)

with equalities in S ′.

Lemma 8 (Discrete Fourier Transform, unitary case). Let the conditions be as in the previous Lemma. Then,
without loss of generality, one may let B = 1 or T = 1 such that (18), (19) reduce to

F (444N⊥⊥⊥ϕ) = 1
N
⊥⊥⊥ 1

N
444(F ϕ) (24)

F (⊥⊥⊥ 1
N
444ϕ) = N 444N ⊥⊥⊥(F ϕ) (25)

which is the DFT, (A7) and (A8), in S ′.

Proof. According to Lemma 6, one may use dilated versions θB(ϕ) or θ 1
T
(ϕ) of ϕ prior to the operations

of discretization and periodization to adapt ϕ such that either T = 1 or B = 1. The fact that (24)
and (25) describe the DFT in S ′ is shown in Appendices B.3 and B.4.

It is interesting to observe that time and frequency are coupled via the same N = TB. The fact that
discretization and periodization “commute if the sampling distance (sampling grid) is a refinement
of the periodization net“ [73] is commonly known, described e.g., in [71,73]. However, the condition
N = TB also means that for any fix N, one cannot simultaneously refine the time and the frequency
grid. It is another expression of the Heisenberg uncertainty principle.

Furthermore, let A and B be operators applied to functions. Then using the commutator

[A,B] := AB − BA

notation which is customary practice in quantum mechanics [39,40,42,74,75], Lemma 5 with operators
444T and ⊥⊥⊥ 1

B
where N = TB and T = 1 or B = 1 becomes

[444N, ⊥⊥⊥] = 0 = [444, ⊥⊥⊥ 1
N
] (26)

with respect to Schwartz functions ϕ. Both equations in (26) hold because integers N are always
divisible by 1 and N, respectively. Another interesting aspect is that Schwartz functions play a double
role in (26) because they are simultaneously used as test functions in both distribution theory and
quantum physics. In distribution theory, they test tempered distributions [10–12] and in quantum
physics they test Hamiltonians and other relevant operators [39,76]. Their special role arises from the
fact that they are ordinarily smooth in both time and frequency domain.

Let us now summarize these rules in Table 3. One may recall that Rules i, ii and Rules iii, iv describe
the DFT and its inverse, i.e., finite summations in contrast to the Discrete-Time Fourier Transform
(DTFT) and its inverse in Rules 1, 2 and Rules 3, 4 (Table 1) where we have infinite summations.
The simplification of nested infinite sums actually falls into a recent research topic [77].
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5. Four Fourier Transforms

The Poisson Summation Formula in its original version is commonly known to be true on Schwartz
functions f ∈ S , see e.g., [16]. The next theorem extends this understanding to a validity on tempered
distributions including non-integrable functions f ∈ OM and truly generalized functions f ∈ OC

′.
Particular cases are the Dirac impulse δ ∈ OC

′ in (28) and the function that is constantly 1 ∈ OM in (29).

Theorem 1 (Four Fourier Transforms reduce to one Fourier Transform). Let four Fourier transforms be
defined as (A1), (A3), (A5) and (A7) and let us denote the integral Fourier transform (A1) as

F ( f ) = f̂ . (27)

It then follows that the other three Fourier transform definitions (A3), (A5) and (A7) reduce to the known rules

F (444T f ) = 1
T
⊥⊥⊥ 1

T
f̂ (28)

F (⊥⊥⊥ 1
T

f ) = T 444T f̂ (29)

F (⊥⊥⊥ 444N f ) = 1
N
444 ⊥⊥⊥ 1

N
f̂ (30)

F (444 ⊥⊥⊥ 1
N

f ) = N ⊥⊥⊥ 444N f̂ (31)

where ⊥⊥⊥ is discretization, 444 is periodization, defined as in (13) and (14), T > 0 is real, N > 0 an integer and

(27) is the Integral Fourier Transform F (for non-discrete non-periodic functions) in S ′,
(28) is the Integral Fourier Transform Fper for (non-discrete) periodic functions in S ′,
(29) is its inverse, the DTFT for discrete (non-per.) functions in S ′,
(30) is the DFT for discrete periodic functions in S ′,
(31) is its inverse, the inverse Discrete Fourier Transform (IDFT) for discrete periodic functions in S ′

and Equations (27)–(30) hold in the tempered distributions sense if

f ∈ S ′ = F (S ′) in (27),
f ∈ OC

′ = F (OM) in (28),
f ∈ OM = F (OC

′) in (29) and
f ∈ S = F (S) in (30) and (31).

Furthermore,

(28) and (29) are dual generalizations of the Poisson Summation Formula (PSF) and
(30) and (31) are (28) and (29) nested into one another in two different ways.

Finally, for any f ∈ S , it follows that (27)–(31) hold simultaneously in S ′.

Proof. The symbolic derivation of (28)–(31) from (A1), (A3), (A5) and (A7) is shown in Appendix B and
their validities in S ′ follow from Lemmas 1–8. The circumstance that (28) and (29) describe generalized
variants of the PSF is shown in Section 2.4 and nesting them into one another yields (30) and (31)
according to Lemmas 7 and 8. The last statement, finally, is already known [16].

Roughly, the theorem states that “instead of four Fourier transforms there is only one and
instead of one PSF there are actually four”. Let us furthermore recall that requiring f ∈ OM in (29),
which means that it is infinitely differentiable and bounded by a polynomial, is not too strong for a
function to be sampled.

Remark 1 (Bandlimitness). In all practical cases, f is bandlimited in the sense thatF f ∈ OC
′ and this already

fulfills the requirement f ∈ OM. Vice versa, if f /∈ OM then F f /∈ OC
′. Hence, f cannot be bandlimited.

One may recall that the space of compactly supported tempered distributions E ′ is a proper subspace of OC
′

(see above). The condition F f ∈ OC
′ may therefore be understood as a wider comprehension of bandlimitness.
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The interlinking formulas (28)–(31) can be visualized in a straightforward diagram (Figure 1).
For simplicity, we use a Gaussian, i.e., a so-called self-reciprocal function [78], to withhold an existing
reciprocity t−1 7→ t+1 or t+1 7→ t−1 between time (left or right column) and frequency (right or left
column). More generally, wide Gaussians become narrow Gaussians and narrow Gaussians become
wide Gaussians. One may notice that starting from the integral Fourier transform (middle row) at least
Schwartz functions can reach the domain of the DFT (above and below). That is what we proved in
Lemmas 7 and 8. It is also clear that “above” and “below” coincide. Hence, the diagram is double-cyclic
(two cycles in opposite directions). Identifying the upper left side with the lower right side, we may
also think of it as a Möbius band (only one cycle in either direction). It tells us that there is actually no
left-hand side and no right-hand side, just opposite sides.

2

�⊥⊥⊥

����

�⊥⊥⊥

����

�DFT

�Fper

�F

�DTFT

�DFT

periodic discrete
discrete periodic

periodic discrete

not discrete not periodic
not periodic not discrete

discrete
periodic

discrete periodic
periodic discrete

����

�⊥⊥⊥

����

�⊥⊥⊥

Fig. 1. Four Fourier transforms: F , Fper , DTFT and DFT, linked via
operations of discretization ⊥⊥⊥ and periodization ���. All four transforms
coincide with F in the generalized functions sense.

����

�
���

�

⊥⊥⊥�⊥⊥
⊥

not periodic periodic

di
sc

re
te

no
t

di
sc

re
te

periodic

discrete discrete
periodic

Fig. 2. Four important domains: non-discrete non-periodic functions,
periodic functions, discrete functions and discrete periodic functions; linked
via discretization ⊥⊥⊥ and periodization ���.

no scope whatsoever for possibly deviating definitions, i.e., all
four definitions already follow from F as well as (1) and (2).

The reason why equations (3)-(6) could not be found with
conventional means, i.e., without using an idea of general-
ized functions, is twofold. It results from the dual fact that
Lebesgue’s integral is inadequate today, in the sense that

• it yields zero if discrete functions are integrated and
• it yields infinity if periodic functions are integrated.

These disadvantages have been overcome in generalized func-
tions theory because it allows ”measuring” discrete and peri-
odic functions in the sense of Horváth’s integral [13].

A. Fourier Transform for periodic functions (Fper)

In this subsection we will see that if a periodic function
is Fourier transformed via the Fourier transform for periodic
functions (9) then the result is a discrete function. Indeed,

TABLE I
DISCRETE FUNCTIONS VS. PERIODIC FUNCTIONS

No Rule Remark

1 F(⊥⊥⊥ 1
T
f) = T ���T (Ff) Poisson Sum Formula

2 F(���T f) = 1
T

⊥⊥⊥ 1
T
(Ff) Poisson Sum Formula

3 F(⊥⊥⊥f) = ���(Ff) abbreviated for T = 1

4 F(���f) = ⊥⊥⊥(Ff) abbreviated for T = 1

5 F(⊥⊥⊥1) = ���(F1) where F1 = δ

6 F(���δ) = ⊥⊥⊥(Fδ) where Fδ = 1

7 F(⊥⊥⊥1) = ⊥⊥⊥1 Dirac comb invariance

8 F(���δ) = ���δ Dirac comb invariance

9 ⊥⊥⊥T 1 = ���T δ Dirac comb identity

10 ���δ = ⊥⊥⊥1 Dirac comb identity

11 F(⊥⊥⊥ 1
T
1) = T ���T δ Dirac comb reciprocity

12 F(���T δ) = 1
T

⊥⊥⊥ 1
T
1 Dirac comb reciprocity

13 F(f · g) = Ff ∗ Fg multiplication

14 F(f ∗ g) = Ff · Fg convolution

15 ⊥⊥⊥g · f = ⊥⊥⊥(g · f) discretization

16 ���g ∗ f = ���(g ∗ f) periodization

17 ⊥⊥⊥1 · f = ⊥⊥⊥(1 · f) = ⊥⊥⊥f discretization of f

18 ���δ ∗ f = ���(δ ∗ f) = ���f periodization of f

TABLE II
DISCRETE PERIODIC FUNCTIONS

No Rule Remark

i F(⊥⊥⊥ 1
T
���P f) = T

P ���T ⊥⊥⊥ 1
P
(Ff) Rule 1 + 2

ii F(���P ⊥⊥⊥ 1
T
f) = T

P ⊥⊥⊥ 1
P
���T (Ff) Rule 2 + 1

iii ⊥⊥⊥���Nf = ���N⊥⊥⊥f identity

v F(⊥⊥⊥���Nf) = 1
N

���⊥⊥⊥ 1
N
(Ff) Rule 3 + 2

vi F(���⊥⊥⊥ 1
N
f) = N ⊥⊥⊥���N (Ff) Rule 4 + 1

inserting some p(t) = (���Tf)(t) into (9) yields

p̂(m) =
1

T

∫ T

0

���Tf(t) e
−2πi m

T tdt

=
1

T

∫ ∞

−∞
f(t) e−2πi m

T tdt

=
1

T
(Ff)(

m

T
)

where we used the popular periodization trick [14] and
Fourier transform definition (7). Inserting these coefficients
into (10) we obtain

(���Tf)(t) =
1

T

∞∑

m=−∞
(Ff)(

m

T
) e2πi t

m
T

=
1

T
F−1

{ ∞∑

m=−∞
(Ff)(

m

T
) δ(σ − m

T
)

}

=
1

T
F−1

{
(⊥⊥⊥ 1

T
(Ff))(σ)

}

=
1

T
(F−1

⊥⊥⊥ 1
T
Ff)(t)

(F(���Tf))(σ) =
1

T
(⊥⊥⊥ 1

T
(Ff))(σ).
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Figure 1. Four Fourier transforms and the links ⊥⊥⊥ and 444 between them. In the tempered
distributions sense, all four transforms F ,Fper, DTFT and DFT reduce to only one Fourier transform,
the Fourier transform on tempered distributions.

6. Discussion

The PSF in its four variants is the actual link between the four usually defined Fourier transforms.
The naming of these four Fourier transforms F , Fper, DTFT and DFT in the literature is often not
very appropriate and sometimes confusing. They should be called “Fourier transform”, “Fourier
transform for periodic functions”, “Fourier transform for discrete functions” and “Fourier transform
for discrete periodic functions” more appropriately. All four transforms moreover describe special
cases of the Fourier transform on tempered distributions; they only differ in the kind of functions
to which they are applied, i.e., to f , 444T f , ⊥⊥⊥ 1

B
f or 444T⊥⊥⊥ 1

B
f . An introduction of two transforms

Fper and DTFT is generally not advisable because they are, apart from having an inverse sign (which
indicates that they are inverse to one another), the same transform. Most appropriately, it could
be called the “Fourier Series Transform” as it switches between two Fourier series representations,
i.e., between discrete functions (Fourier series coefficients) and periodic functions (Fourier series).
Its two formulas should be called “Fourier Series Analysis” and “Fourier Series Synthesis” formula,
as already done in many textbooks.

Furthermore, it is shown that to be able to sample a function, it must be smooth and bounded
by a polynomial. If one of these two properties is not given, the function is not bandlimited.
Hence, the periodization of its Fourier transform will fail. These two conditions moreover represent a
validity statement for variants of the PSF on tempered distributions.
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Remark 2 (Sinc vs. Rect). The Fourier transform pair {sinc, rect} mentioned in the introduction above
is a striking example for applying the validity statement for PSF variants as discussed in this study.
The Equations (1) and (2) hold if g ≡ sinc and f ≡ rect but they fail if f ≡ sinc and g ≡ rect and the
reason for this phenomenon is that

rect ∈ OC
′ but rect /∈ OM and

sinc ∈ OM but sinc /∈ OC
′

which can easily be seen because rect is of compact support and therewith it is rapidly decreasing (∈ OC
′).

However, it is not smooth in the ordinary functions sense (/∈ OM). In contrast, sinc is smooth in the ordinary
functions sense (∈ OM) but slowly decreasing (/∈ OC

′), it goes with 1/t towards infinity which is a polynomial
decrease. However, since rect ∈ OC

′ it can be periodized and since sinc ∈ OM, it can be discretized. A particular
case arising from these facts is 444(rect) = 1 and ⊥⊥⊥(sinc) = δ, respectively. Let us add them as Rule 19 and
Rule 20 in Table 1.

Remark 3 (Shannon’s formula fails in S ′). Another consequence of this slow decrease of sinc is its failure to
serve as a universal building block in Shannon’s [79] (and Kotelnikov’s [80]) reconstruction formula whenever we
restore functions from samples. This reconstruction formula fails in S ′ on arbitrary tempered distributions [3].
Equivalently, because rect is no infinitely differentiable function, it cannot be used to cut out one period of
arbitrary periodic tempered distributions. However, instead of the Fourier transform pair {sinc, rect} there are
other suitable building blocks (Lighthill’s unitary functions [22,81]) for reconstructing tempered distributions.
We will treat them in a future paper in greater detail.
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Appendix A. Fourier Transforms

There are mainly three ways of how to deal with the factor 2π in Fourier transform definitions.
Here, we use the so-called “unitary, ordinary frequency” Fourier transform as it is given for example
in [3,13,16,40]. It is also called the “normalization” of the Fourier transform [16] because it uses
1-periodic exponential functions e2πi rather than 2π-periodic ones ei and thereby yields the most
symmetric results in Fourier transform pairs, e.g., Fδ = 1 and F1 = δ. The normalized Fourier
transform actually links Z to R via e2πi. As a result, of this, “time domain” and “frequency domain”
become fully equivalent. Accordingly, it has also been found advantageous to use the normalized
Fourier transform in Folland [40] which is rather an exception in the physics literature.

Appendix A.1. Conventional Fourier Transforms

Let f (t) be a suitable function such that it can be Fourier transformed and let f̂ (σ) be its Fourier
transform. Then the following four Fourier transform variants are usually defined.

Appendix A.1.1. Fourier Transform

The Integral Fourier Transform (for non-discrete non-periodic functions) is defined by

f̂ (σ) =
∫ ∞

−∞
f (t) e−2πitσdt Analysis (A1)

f (t) =
∫ ∞

−∞
f̂ (σ) e2πiσtdσ Synthesis (A2)
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for suitable f (t).

Appendix A.1.2. Fourier Transform (for Periodic Functions)

The Integral Fourier Transform for (non-discrete) periodic functions, used for Fourier Series
analysis, is defined by

f̂ [m] =
1
T

∫ T

0
f (t) e−2πi t

T mdt Analysis (A3)

f (t) =
∞

∑
m=−∞

f̂ [m] e2πi m
T t Synthesis (A4)

where (A4) is the Fourier Series of f (t) and (A3) determines its coefficients. The coefficients are discrete.

Appendix A.1.3. Fourier Transform (for Discrete Functions)

The Fourier Transform for discrete (non-periodic) functions, also called DTFT, used for Fourier
Series synthesis, is defined by

f̂ (σ) =
1
T

∞

∑
k=−∞

f [k] e−2πi k
T σ Analysis (A5)

f [k] =
∫ T

0
f̂ (σ) e2πi σ

T kdσ Synthesis (A6)

where (A5) is a Fourier Series. Hence, it is periodic but f (t) itself is discrete, its samples are determined
by (A6).

Appendix A.1.4. Fourier Transform (for Discrete Periodic Functions)

The Fourier Transform for discrete periodic functions, called DFT is defined by

f̂ [m] =
1
N

N−1

∑
k=0

f [k] e−2πi k
N m Analysis (A7)

f [k] =
N−1

∑
m=0

f̂ [m] e2πi m
N k Synthesis (A8)

where both (A7) and (A8) are (finite-sum) Fourier Series. Thus, they are periodic and discrete,
simultaneously.

Appendix A.2. Distributional Fourier Transform

Let 〈 f , ϕ〉 be the application of a tempered distribution f ∈ S ′ to some test function ϕ ∈ S .
The Fourier transform of f ∈ S ′ is then defined as

〈F f , ϕ〉 := 〈 f ,F ϕ〉

where F on the right-hand side is the integral Fourier transform given by (A1) and its inverse
is (A2), respectively. One usually uses this definition to test and verify symbolic calculation rules on
tempered distributions. Once the rules are established, they can symbolically be used on tempered
distributions as if they were ordinary functions. It is known that Fourier transform rules which
apply to Lebesgue-square integrable functions do also apply to tempered distributions. Additionally,
new rules can be found such as F1 = δ and Fδ = 1 which are based on rigorous calculations using the
above definition. Rules summarized in Table 1 were established in [7]. They do also hold on ordinary
square-integrable functions under the same conditions.
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Most convenient is the fact that using the Fourier transform in the distributional sense, all functions
become infinitely differentiable. In other words, the Fourier transform rule “multiplying a function
k times with 2πit in one domain means to differentiate its Fourier transform k times in the other
domain”, e.g., in [3,6,13,32,34,69], can be exploited unrestrictedly. One may recall that 2πit is the inner
derivative of e2πitσ. It means, the Fourier transform rule originates from

d
dσ

e2πitσ = (2πit) e2πitσ

because e2πitσ is infinitely differentiable in the ordinary functions sense. The special role of e2πitσ arises
from the fact that it is a number and a function, simultaneously.

Appendix B. Derivations

In this appendix, we symbolically derive (28)–(31) from four definitions of the Fourier transform
given in (A1), (A3), (A5) and (A7). We prove that

• defining the Integral Fourier Transform for periodic functions via (A3) and (A4) leads to (28),
• defining the DTFT via (A5) and (A6) leads to (29) and
• defining the DFT via (A7) and (A8) leads to (30) and (31).

Interesting is the fact that there has obviously been no other choice than defining all four Fourier
transforms in exactly this way.

Appendix B.1. Fourier Transform for Periodic Functions (Fper)

In this subsection we will see that if a periodic function is Fourier transformed via the Fourier
transform for periodic functions (A3) then the result is a discrete function. Indeed, inserting some
p(t) = (444T f )(t) into (A3) yields

p̂(m) =
1
T

∫ T

0
444T f (t) e−2πi m

T tdt

=
1
T

∫ ∞

−∞
f (t) e−2πi m

T tdt

=
1
T

(F f )(
m
T
)

where we used the popular periodization trick [17] and Fourier transform definition (A1). Inserting
these coefficients into (A4) we obtain

(444T f )(t) =
1
T

∞

∑
m=−∞

(F f )(
m
T
) e2πi t m

T

=
1
T
F−1

{
∞

∑
m=−∞

(F f )(
m
T
) δ(σ− m

T
)

}

=
1
T
F−1

{
(⊥⊥⊥ 1

T
(F f ))(σ)

}

=
1
T

(F−1⊥⊥⊥ 1
T
F f )(t)

(F (444T f ))(σ) =
1
T

(⊥⊥⊥ 1
T
(F f ))(σ).

Therefore, (A3) inserted into (A4) reduces to

F (444T f ) =
1
T
⊥⊥⊥ 1

T
(F f )

as a function of σ ∈ R. This is formula (28).
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Appendix B.2. Fourier Transform for Discrete Functions (DTFT)

We show that if a discrete function is Fourier transformed via the DTFT then the result is
a periodic function. As (A5) is a Fourier series, it is periodic. The ansatz is therefore to let
d̂(σ) = (444T f̂ )(σ) = (444T(F f ))(σ) in (A6). It yields

d(k) =
∫ T

0
444T f̂ (σ) e2πi k

T σdσ

=
∫ ∞

−∞
f̂ (σ) e2πi k

T σdσ

= (F−1(F f ))(
k
T
) = f (

k
T
).

Inserting these coefficients into (A5) we obtain

(444T(F f ))(σ) =
1
T

∞

∑
k=−∞

f (
k
T
) e−2πi σ k

T

=
1
T
F

{
∞

∑
k=−∞

f (
k
T
) δ(t− k

T
)

}

=
1
T
F

{
(⊥⊥⊥ 1

T
f )(t)

}

=
1
T

(F (⊥⊥⊥ 1
T

f ))(σ).

Thus, (A6) inserted into (A5) reduces to

F (⊥⊥⊥ 1
T

f ) = T 444T(F f )

as a function of σ ∈ R. This is formula (29).

Appendix B.3. Fourier Transform for Discrete Periodic Functions (DFT)

We show that if a discrete periodic function is Fourier transformed via the DFT, then the result is
again a discrete periodic function. First, a simple reasoning tells us that after discretizing a periodic
function (444T f )(t) it can be denoted as y(t) = (⊥⊥⊥444N f )(t) where N is an integer corresponding to
its period T. Inserting now its coefficients (444N f )(k) with k ∈ Z into (A7) yields

(F (444N f ))(m) =
1
N

N−1

∑
k=0

(444N f )(k) e−2πi m
N k

=
1
N

∞

∑
k=−∞

f (k) e−2πi m
N k

=
1
N

(F (⊥⊥⊥ f ))(
m
N
)

=
1
N

(444(F f ))(
m
N
)

using, again, the periodization trick (applied to a discrete function this time), the definition of
discretization ⊥⊥⊥ and a previous result (Rule 4). Inserting these coefficients into (A8) we obtain
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(444N f )(k) =
1
N

N−1

∑
m=0

444 (F f )(
m
N
) e2πi k m

N

=
1
N

∞

∑
m=−∞

(F f )(
m
N
) e2πi k m

N

=
1
N

(F−1⊥⊥⊥ 1
N
(F f ))(k).

again, with the periodization trick, discretization ⊥⊥⊥ and the definition of F−1 this time. Thus, (A7)
inserted into (A8) reduces to

(444N f )(k) =
1
N

(F−1⊥⊥⊥ 1
N
(F f ))(k), k ∈ Z

(⊥⊥⊥ 444N f )(t) =
1
N

(⊥⊥⊥ F−1⊥⊥⊥ 1
N
(F f ))(t), t ∈ R

and with Rule 3 applied backwards and Fourier transforming both sides it yields

F (⊥⊥⊥ 444N f ) =
1
N
444 ⊥⊥⊥ 1

N
(F f )

being a function of σ ∈ R.

Appendix B.4. Derivation of the Inverse DFT

As (A7) is a Fourier series, it is periodic. Evaluating (A8) for ĝ(m) = (444N f̂ )(m) where
f̂ = F f yields

g(k) =
N−1

∑
m=0

(444N(F f ))(m) e2πi k
N m

=
∞

∑
k=−∞

(F f )(m) e2πi k
N m

= (F−1⊥⊥⊥ (F f ))(
k
N
)

= (F−1F (444 f ))(
k
N
)

= (444 f )(
k
N
)

and inserting this result into (A7) we obtain

(444N(F f ))(m) =
1
N

N−1

∑
k=0

(444 f )(
k
N
) e−2πi m k

N

=
1
N

∞

∑
k=−∞

f (
k
N
) e−2πi m k

N

=
1
N

(F (⊥⊥⊥ 1
N

f ))(m).

Thus, (A8) inserted into (A7) reduces to

(F (⊥⊥⊥ 1
N

f ))(m) = N (444N(F f ))(m), m ∈ Z
(⊥⊥⊥F (⊥⊥⊥ 1

N
f ))(σ) = N (⊥⊥⊥ 444N(F f ))(σ), σ ∈ R



Mathematics 2018, 6, 335 17 of 19

and with Rule 3 on the left-hand side (backwards) it yields

F (444 ⊥⊥⊥ 1
N

f ) = N ⊥⊥⊥ 444N(F f )

being a function of σ ∈ R.
Altogether, we proved that the DFT together with its inverse follow these two rules

F (⊥⊥⊥ 444N f ) = 1
N
444 ⊥⊥⊥ 1

N
(F f ) and

1
N
F (444 ⊥⊥⊥ 1

N
f ) = ⊥⊥⊥ 444N(F f )

as functions of σ ∈ R, which are (30) and (31), respectively.
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