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Abstract: This paper is concerned with a class of the discrete Mackey–Glass model that describes
the process of the production of blood cells. Prior to proceeding to the main results, we prove
the boundedness and extinction of its solutions. By means of the contraction mapping principle
and under appropriate assumptions, we prove the existence of almost periodic positive solutions.
Furthermore and by the implementation of the discrete Lyapunov functional, sufficient conditions are
established for the exponential convergence of the almost periodic positive solution. Examples, as well
as numerical simulations are illustrated to demonstrate the effectiveness of the theoretical findings of
the paper. Our results are new and generalize some previously-reported results in the literature.
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1. Introduction and Preliminaries

The nonlinear delay differential equation:

x′(t) = −αx(t) +
β

1 + xn(t− τ)
, (1)

was proposed by Mackey and Glass in [1] as an appropriate model for the dynamics of hematopoiesis,
which describes the process of the production of blood cells. Here, x denotes the density of mature
cells in blood circulation at time t and τ is the time delay between the production of immature cells
in the bone marrow and their maturation for release in the circulating bloodstream. It is assumed
that the cells are lost from the circulation at a rate α, and the flux of the cells into the circulation
from the stem cell compartment depends on the density of mature cells at the previous time t− τ.
The theory of periodic functions, which was established by [2] and developed by [3,4], has direct
connection to biological models. Indeed, it has been realized that due to various seasonal effects and
certain environmental factors in real-life situations, the study of biological models under periodic
or almost periodic perturbations has become obligatory. Many authors have incorporated this idea
into their investigations and employed several techniques such as the degree theory, the Lyapunov
functional approach, and some fixed point theorems to study the dynamic behavior of this model
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and its modifications in the last few years [5–16]. In [17], Wang and Zhang studied the following
Mackey–Glass model:

x′(t) = −α(t)x(t) +
β(t)x(t− τ)

1 + xn(t− τ)
, n > 1, (2)

which provides a more realistic description of the process of the production of blood cells. Indeed,
the authors employed the fixed point theorem in cones to study the existence, nonexistence, and
uniqueness of positive almost periodic solutions. Their approach was based on using a new fixed
point theorem without compactness restrictions. In [18], Guo used the Lyapunov functional method
and differential inequality techniques to study the exponential stability of pseudo almost periodic
solutions of Model (2). Searching the literature and comparing to Model (1), however, one can figure
out that the study of Model (2) has gained less attention among researchers.

Recently, it has been realized that difference models are more appropriate than the continuous
ones when the size of the population is rarely small or the population has non-overlapping generations.
The discrete models can also provide more efficient methods for numerical computations and
simulations. Nevertheless, most of models studied in the literature have considered the continuous
case of the Mackey–Glass model. To the best of our observation, however, there are no published
papers studying the discrete analogue of (2). There are many methods that can be used to derive the
discrete equations from the continuous counterparts; see for instance the papers [19,20] for further
details. By virtue of these methods, the discrete model of (2) can be viewed as:

4x(k) = −α(k)x(k) +
β(k)x(k− τ)

1 + xn(k− τ)
, (3)

where 4x(k) = x(k + 1)− x(k), α(·) : Z → (0, 1), β(·) : Z → (0, ∞), α and β are bounded almost
periodic sequences, and n > 1, τ ∈ Z+. Due to the biomedical significance, we restrict our attention to
positive solutions of (3). The initial condition associated with Model (3) is:

x(k) = φ(k) > 0, k ∈ [−τ, 0]. (4)

The objective of this paper is to investigate the dynamical behavior of solutions of Model (3).
Before proceeding to the main result, nevertheless, we present notations, basic definitions, and some
preliminary results that are needed in the subsequent sections. For any bounded sequence { f (k)},
we denote:

f = sup
k∈Z

f (k) and f = inf
k∈Z

f (k).

In view of Equation (3), we always assume that n > 1, and the almost periodic sequences satisfy:

0 < α ≤ α(k) ≤ α < 1 and 0 < β ≤ β(k) ≤ β.

Let:

L1 =
1

n
√

n− 1

/
(1 +

1
n− 1

) and L2 =
(n− 1)2

4n
.

Throughout the whole paper, we will make use of the following assumptions:

(C1) There exist two positive constants m1 and m2 (m1 > m2 > 0) such that:

m1 ≥
βL1

α
and

1
n
√

n− 1
≤ m2 ≤

βm1

α(1 + mn
1 )

.

(C2) βL2
α < 1.
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Definition 1. [21] A sequence x(k) : Z → R is called an almost periodic sequence if the ε-translation set
E{ε, x} = {δ ∈ Z : |x(k + δ)− x(k)| < ε, k ∈ Z} is a relatively dense set in Z for all ε > 0, that is, for any
ε > 0, there exists a constant l(ε) > 0 such that each interval of length l(ε) contains a number δ ∈ E{ε, x}
such that |x(k + δ)− x(k)| < ε for all k ∈ Z. Here, δ is called the ε-translation number of x(k).

Lemma 1. [22] Let f : Z→ R be an almost periodic sequence, then f (k) is bounded on Z.

Lemma 2. [22] Let f , g : Z→ R be an almost periodic sequence, then f + g and f g are almost periodic.

Lemma 3. [22] If f : Z → R is an almost periodic sequence and F(·) is defined on the value field of f (k),
then F ◦ f is almost periodic.

Lemma 4. [22] If f : Z→ R is an almost periodic sequence, then F(k) = ∑k−1
i=0 f (i) is almost periodic if and

only if F is bounded on Z.

Lemma 5. Every solution x of the initial value problem (3) and (4) is positive.

Proof. It is straightforward to show that the solution x of the initial value problem (3) and (4) can be
expressed by:

x(k) = x(0)
k−1

∏
s=0

(1− α(s)) +
β(k− 1)x(k− 1− τ)

1 + xn(k− 1− τ)
+

k−2

∑
s=0

( β(s)x(s− τ)

1 + xn(s− τ)

k−1

∏
i=s+1

(1− α(i))
)

.

Since x(k) = φ(k) > 0 for −τ ≤ k ≤ 0, we can deduce that x(1) > 0, x(2) > 0, . . . , and x(k) > 0 for all
k > 0, k ∈ Z.

The following two remarks prove monotonicity for certain functions that are needed in our
later analysis.

Remark 1. For the function f (x) = x
1+xn , n > 1, x ∈ [0,+∞), f is increasing on [0, 1

n√n−1
] and decreasing

on [ 1
n√n−1

, ∞). Furthermore, f attains its maximum fmax = f ( n
√

n− 1) = n
√

n− 1
/
(1 + 1

n−1 ) := L1.

Remark 2. For the function g(x) = 1−(n−1)xn

(1+xn)2 , n > 1, x ∈ [0,+∞), g is increasing on [ n
√

n+1
n−1 , ∞)

and decreasing on [0, n
√

n+1
n−1 ]. Furthermore, g(0) = 1, g( 1

n√n−1
) = 0, g

(
n
√

n+1
n−1
)
= − n

(1+ n+1
n−1 )

2 < 0,

limx→∞ g(x) = 0, and
∣∣∣g( n
√

n+1
n−1
)∣∣∣ = n

(1+ n+1
n−1 )

2 = (n−1)2

4n .

The paper is organized as follows: In Section 2, we prove the the boundedness and extinction
of solutions of (3). In Section 3, by means of the contraction mapping principle and under suitable
conditions, we prove the existence of positive almost periodic solutions. Section 4 is devoted to
establishing sufficient conditions for the exponential convergence of the almost periodic positive
solution. We provide examples, as well as numerical simulations in Section 5 to demonstrate the
theoretical findings of the paper. We conclude our results in Section 6.

2. Boundedness and Extinction of Solutions

Concerning solutions of Model (3), in this section, we prove three results on the boundedness and
the fact that x(k)→ 0 as k→ ∞.

Theorem 1. Every solution x of Model (3) is bounded.
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Proof. Let x be an arbitrary solution of Model (3) with the initial function x(k) = φ(k) > 0 for
−τ ≤ k ≤ 0. By Lemma 5, we know x(k) > 0 for all k > 0, k ∈ Z+.

Let M = βL1
α + max−τ≤k≤0, k∈Z φ(k). Then, we have:

x(k) = φ(k) ≤ max
−τ≤k≤0, k∈Z

φ(k) <
βL1

α
+ max
−τ≤k≤0, k∈Z

φ(k) = M, k ∈ [−τ, 0].

We claim that:
x(k) < M, for all k > 0, k ∈ Z. (5)

Suppose on the contrary that the claim is not true. Then, there exists a K∗ ∈ Z+ such that
x(K∗) ≥ M and x(k) < M for −τ ≤ k < K∗, k ∈ Z.

It follows from (3) that:

x(K∗)− x(K∗ − 1) = −α(K∗ − 1)x(K∗ − 1) +
β(K∗ − 1)x(K∗ − 1− τ)

1 + xn(K∗ − 1− τ)
. (6)

By Remark 1, we have x(K∗−1−τ)
1+xn(K∗−1−τ)

≤ L1. From (6), we get x(K∗)− x(K∗ − 1) ≤ −αx(K∗ − 1) +

βL1. This implies:

x(K∗) ≤ (1− α)x(K∗ − 1) + βL1 < (1− α)M + βL1

= M− αM + βL1 = M− α
( βL1

α
+ max
−τ≤k≤0, k∈Z

φ(k)
)
+ βL1

= M− α max
−τ≤k≤0, k∈Z

φ(k) < M,

which contradicts that x(K∗) ≥ M. Therefore, the claim (5) is true. Thus, x(k) < M for all k > 0, k ∈ Z.
Hence, every solution of Equation (3) is bounded.

Let S0 = {φ| m2 < φ(k) < m1, k ∈ J}, where J = {−τ,−τ + 1, . . . ,−2,−1, 0}.

Theorem 2. Assume that (C1) holds. Then, every solution x of Model (3) with initial function φ ∈ S0 satisfies
m2 < x(k) < m1 for all k > 0, k ∈ Z+.

Proof. For k ∈ J, x(k) = φ(k) ∈ S0 and m2 < φ(k) < m1. We proceed inductively and prove that
m2 < x(1) < m1. From Model (3), we have:

x(1)− x(0) = −α(0)x(0) +
β(0)x(−τ)

1 + xn(−τ)
≥ −αx(0) + β

x(−τ)

1 + xn(−τ)
,

which yields:

x(1) ≥ (1− α)x(0) + β
x(−τ)

1 + xn(−τ)
> (1− α)m2 + β

x(−τ)

1 + xn(−τ)
. (7)

By Remark 1 and since 1
n√n−1

≤ m2 < x(−τ) < m1, we have f (x(−τ)) > f (m1). That is:

x(−τ)

1 + xn(−τ)
>

m1

1 + mn
1

. (8)

By virtue of (C1), (7) and (8), we get:

x(1) > (1− α)m2 + β
m1

1 + mn
1
≥ m2. (9)
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On the other hand, we get:

x(1)− x(0) = −α(0)x(0) +
β(0)x(−τ)

1 + xn(−τ)
≤ −αx(0) + β

x(−τ)

1 + xn(−τ)
. (10)

By Remark 1, we have:
x(−τ)

1 + xn(−τ)
≤ L1. (11)

By virtue of (C1), (10), and (11), we have:

x(1) ≤ (1− α)x(0) + β
x(−τ)

1 + xn(−τ)
≤ (1− α)x(0) + βL1 < (1− α)m1 + βL1 ≤ m1. (12)

Thus, (9) and (12) imply that m2 < x(1) < m1. Furthermore, we have:

x(2)− x(1) = −α(1)x(1) +
β(1)x(1− τ)

1 + xn(1− τ)
≥ −αx(1) + β

x(1− τ)

1 + xn(1− τ)
, (13)

which leads to:

x(2) ≥ (1− α)x(1) + β
x(1− τ)

1 + xn(1− τ)
> (1− α)m2 + β

x(1− τ)

1 + xn(1− τ)

> (1− α)m2 + β
m1

1 + mn
1
≥ m2. (14)

We also have:

x(2)− x(1) = −α(1)x(1) +
β(1)x(1− τ)

1 + xn(1− τ)
≤ −αx(1) + β

x(1− τ)

1 + xn(1− τ)
.

Therefore, we get:

x(2) ≤ (1− α)x(1) + β
x(1− τ)

1 + xn(1− τ)
≤ (1− α)x(1) + βL1 < (1− α)m1 + βL1 ≤ m1. (15)

By virtue of (14) and (15), we have m2 < x(2) < m1. Repeating the above steps, we can deduce
that m2 < x(k) < m1 for all k > 0, k ∈ Z+.

Theorem 3. Let α > β. Then, every solution x of Model (3) tends to extinction, that is, x(k)→ 0 as k→ ∞.

Proof. Let x be an arbitrary solution of (3) with initial function x(k) = φ(k) > 0 for −τ ≤ k ≤ 0.
By Lemma 5 and Theorem 1, we know that 0 < x(k) < M for all k > 0, k ∈ Z+ where M =
βL1

α + max−τ≤k≤0, k∈Z φ(k).

Consider the function G(x) = βe(τ+1)x − αex + ex − 1, x ∈ [0, 1]. Since G(0) = β− α < 0, then
there exists a constant λ ∈ (0, 1) such that G(λ) < 0. That is, we get:

− αeλ + eλ + βeλ(τ+1) < 1. (16)
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Let W(k) = x(k)eλk, then we have:

W(k + 1)−W(k) = x(k + 1)eλ(k+1) − x(k)eλk

=
(

x(k + 1)− x(k)
)
eλ(k+1) + (eλ − 1)x(k)eλk

=
(
− α(k)x(k) +

β(k)x(k− τ)

1 + xn(k− τ)

)
eλ(k+1) + (eλ − 1)x(k)eλk (17)

=
(
− α(k)eλ + eλ − 1

)
x(k)eλk + β(k)eλ x(k− τ)

1 + xn(k− τ)
eλk.

Let Q = M + max−τ≤k≤0, k∈Z φ(k). Then, we get:

W(k) = x(k)eλk ≤ x(k) = φ(k) ≤ max
−τ≤k≤0, k∈Z

φ(k) < M + max
−τ≤k≤0, k∈Z

φ(k) = Q, k ∈ [−τ, 0].

Now, we prove the claim that:

W(k) < Q for all k > 0, k ∈ Z+. (18)

Suppose on the contrary that (18) does not hold true. Then, there exists a K̃ ∈ Z+ such that
W(K̃) ≥ Q and W(k) < Q for −τ ≤ k < K̃, k ∈ Z. It follows from (17) that:

W(K̃)−W(K̃− 1) =
(
− α(K̃− 1)eλ + eλ − 1

)
x(K̃− 1)eλ(K̃−1)

+ β(K̃− 1)eλ x(K̃− 1− τ)

1 + xn(K̃− 1− τ)
eλ(K̃−1)

=
(
− α(K̃− 1)eλ + eλ − 1

)
W(K̃− 1) (19)

+ β(K̃− 1)eλ x(K̃− 1− τ)

1 + xn(K̃− 1− τ)
eλ(K̃−1)

≤
(
− αeλ + eλ − 1

)
W(K̃− 1) + βeλx(K̃− 1− τ)eλ(K̃−1).

It follows that:

W(K̃) ≤
(
− αeλ + eλ

)
W(K̃− 1) + βeλx(K̃− 1− τ)eλ(K̃−1)

=
(
− αeλ + eλ

)
W(K̃− 1) + βeλx(K̃− 1− τ)eλ(K̃−1−τ)eλτ

=
(
− αeλ + eλ

)
W(K̃− 1) + βeλW(K̃− 1− τ)eλτ (20)

<
(
− αeλ + eλ

)
Q + βeλQeλτ

=
(
− αeλ + eλ + βeλ(τ+1))Q

Hence, (16) and (20) imply that W(K̃) < Q. This contradicts that W(K̃) ≥ Q. Therefore, the
claim (18) is true. Thus, W(k) = x(k)eλτ for all k > 0, k ∈ Z+. It follows that 0 < x(k) < Qe−λk for all
k > 0, k ∈ Z+, which implies that x(k)→ 0 as k→ ∞.

3. Existence of the Almost Periodic Positive Solution

Let X = {x(k) : x(k) : Z → R, x(k) is almost periodic function} with the norm ‖x‖ =

supk∈Z |x(k)|. It is clear that X is a Banach space.
It is easy to verify that x is the solution of Model (3) if and only if x is the solution of

the equation below:

x(k) =
β(k− 1)x(k− 1− τ)

1 + xn(k− 1− τ)
+

k−2

∑
s=−∞

( β(s)x(s− τ)

1 + xn(s− τ)

k−1

∏
i=s+1

(1− α(i))
)

.
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We define the operator A : X → X by:

(Ax)(k) =
β(k− 1)x(k− 1− τ)

1 + xn(k− 1− τ)
+

k−2

∑
s=−∞

( β(s)x(s− τ)

1 + xn(s− τ)

k−1

∏
i=s+1

(1− α(i))
)

.

Obviously, x ∈ X is the almost periodic solution of Model (3) if and only if x is the fixed point of
the operator A.

Define Ω = {x : x ∈ X, m2 ≤ x(k) ≤ m1, k ∈ Z}

Theorem 4. Assume that (C1) and (C2) hold, then Model (3) has an almost periodic positive solution on Ω.

Proof. For all x ∈ Ω, we have:

(Ax)(k) =
β(k− 1)x(k− 1− τ)

1 + xn(k− 1− τ)
+

k−2

∑
s=−∞

( β(s)x(s− τ)

1 + xn(s− τ)

k−1

∏
i=s+1

(1− α(i))
)

≤ β
x(k− 1− τ)

1 + xn(k− 1− τ)
+ β

k−2

∑
s=−∞

( x(s− τ)

1 + xn(s− τ)

k−1

∏
i=s+1

(1− α(i))
)

. (21)

By virtue of Remark 1, we get x(k−1−τ)
1+xn(k−1−τ)

≤ L1 and x(s−τ)
1+xn(s−τ)

≤ L1. It follows from (21) that:

(Ax)(k) ≤ βL1 + βL1

k−2

∑
s=−∞

( k−1

∏
i=s+1

(1− α(i))
)
≤ βL1 + βL1

k−2

∑
s=−∞

( k−1

∏
i=s+1

(1− α)
)

= βL1 + βL1

k−2

∑
s=−∞

(1− α)k−1−s = βL1 + βL1

∞

∑
j=1

(1− α)j

= βL1 + βL1
1− α

α
=

βL1

α
≤ m1.

On the other hand, we have:

(Ax)(k) =
β(k− 1)x(k− 1− τ)

1 + xn(k− 1− τ)
+

k−2

∑
s=−∞

( β(s)x(s− τ)

1 + xn(s− τ)

k−1

∏
i=s+1

(1− α(i))
)

≥ β
x(k− 1− τ)

1 + xn(k− 1− τ)
+ β

k−2

∑
s=−∞

( x(s− τ)

1 + xn(s− τ)

k−1

∏
i=s+1

(1− α(i))
)

. (22)

Notice that 1
n√n−1

≤ m2 ≤ x(k) ≤ m1 for k ∈ Z. In view of Remark 1, we have f (x(k)) ≥ f (m1)

for k ∈ Z. That is x(k)
1+xn(k) ≥

m1
1+mn

1
for k ∈ Z. Therefore, we get:

x(k− 1− τ)

1 + xn(k− 1− τ)
≥ m1

1 + mn
1

and
x(s− τ)

1 + xn(s− τ)
≥ m1

1 + mn
1

.
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By (22), we obtain:

(Ax)(k) ≥ β
m1

1 + mn
1
+ β

m1

1 + mn
1

k−2

∑
s=−∞

( k−1

∏
i=s+1

(1− α(i))
)

≥ β
m1

1 + mn
1
+ β

m1

1 + mn
1

k−2

∑
s=−∞

( k−1

∏
i=s+1

(1− α)
)

= β
m1

1 + mn
1
+ β

m1

1 + mn
1

k−2

∑
s=−∞

(1− α)k−1−s

= β
m1

1 + mn
1
+ β

m1

1 + mn
1

∞

∑
j=1

(1− α)j

= β
m1

1 + mn
1
+ β

m1

1 + mn
1

1− α

α

=
βm1

α(1 + mn
1 )
≥ m2.

Hence, we get m2 < (Ax)(k) < m1.
Moreover, since x ∈ Ω is almost periodic and by virtue of Lemmas 1–4, as well as the fact that

the uniform limit of the almost periodic sequence is almost periodic, we can deduce that A is almost
periodic. Therefore, Ax ∈ Ω, and thus, we have AΩ ⊂ Ω.

It remains to prove that A is a contraction mapping on Ω. For all x, y ∈ Ω, we get:

‖Ax− Ay‖ = sup
k∈Z

∣∣(Ax)(k)− (Ay)(k)
∣∣

= sup
k∈Z

∣∣∣ β(k− 1)x(k− 1− τ)

1 + xn(k− 1− τ)
− β(k− 1)y(k− 1− τ)

1 + yn(k− 1− τ)

+
k−2

∑
s=−∞

(
β(s)

[ x(s− τ)

1 + xn(s− τ)
− y(s− τ)

1 + yn(s− τ)

] k−1

∏
i=s+1

(1− α(i))
)∣∣∣ (23)

≤ sup
k∈Z

{
β(k− 1)

∣∣∣ x(k− 1− τ)

1 + xn(k− 1− τ)
− y(k− 1− τ)

1 + yn(k− 1− τ)

∣∣∣
+

k−2

∑
s=−∞

(
β(s)

∣∣∣ x(s− τ)

1 + xn(s− τ)
− y(s− τ)

1 + yn(s− τ)

∣∣∣ k−1

∏
i=s+1

(1− α(i))
)}

.

For the function f (x) = 1
1+xn , n > 1, and by the mean value theorem, we have:

| f (x)− f (y)| = | f ′(ξ)(x− y)| =
∣∣∣1− (n− 1)ξn

(1 + ξn)2

∣∣∣|x− y|, x, y ∈ [
1

n
√

n− 1
, ∞), (24)

where ξ lies between x and y. By Remark 2, we have |g(x)| ≤ L2 for all x ∈ [ 1
n√n−1

, ∞) where

L2 := (n−1)2

4n . Thus, we get |g(ξ)| =
∣∣∣ 1−(n−1)ξn

(1+ξn)2

∣∣∣ ≤ L2. Hence, by (24), we obtain the inequality:

| f (x)− f (y)| ≤ L2|x− y|, x, y ∈ [
1

n
√

n− 1
, ∞), n > 1.

That is, we have:∣∣∣ x
1 + xn −

y
1 + yn

∣∣∣ ≤ L2|x− y|, x, y ∈ [
1

n
√

n− 1
, ∞), n > 1. (25)
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We note that 1
n√n−1

≤ m2 ≤ x(k) ≤ m1 and 1
n√n−1

≤ m2 ≤ y(k) ≤ m1 for k ∈ Z. By the
inequality (25), therefore, we have:∣∣∣ x(k− 1− τ)

1 + xn(k− 1− τ)
− y(k− 1− τ)

1 + yn(k− 1− τ)

∣∣∣ ≤ L2|x(k− 1− τ)− y(k− 1− τ)| (26)

and: ∣∣∣ x(s− τ)

1 + xn(s− τ)
− y(s− τ)

1 + yn(s− τ)

∣∣∣ ≤ L2|x(s− τ)− y(s− τ)|. (27)

Hence, from (23), (26), and (27), we have:

‖Ax− Ay‖ ≤ sup
k∈Z

{
β(k− 1)L2

∣∣x(k− 1− τ)− y(k− 1− τ)
∣∣

+
k−2

∑
s=−∞

(
β(s)L2

∣∣x(s− τ)− y(s− τ)
∣∣ k−1

∏
i=s+1

(1− α(i))
)}

≤ sup
k∈Z

{
βL2‖x− y‖+

k−2

∑
s=−∞

(
βL2‖x− y‖

k−1

∏
i=s+1

(1− α)
)}

= sup
k∈Z

{
βL2‖x− y‖+ βL2‖x− y‖

k−2

∑
s=−∞

(1− α)k−1−s
}

= sup
k∈Z

{
βL2‖x− y‖+ βL2‖x− y‖

∞

∑
j=1

(1− α)j
}

= sup
k∈Z

{
βL2‖x− y‖+ βL2‖x− y‖1− α

α

}
=

βL2

α
‖x− y‖.

Since βL2
α < 1, we have that A is a contraction mapping. Therefore, by the contraction mapping

fixed point theorem, the operator A has a unique fixed point x∗ in Ω. This implies that Model (3) has
an almost periodic positive solution x∗ satisfying m2 ≤ x∗(k) ≤ m1.

4. Exponential Convergence

Sufficient conditions for the exponential stability of Model (3) are given by the following theorem.
In the proof, we utilize a discrete Lyapunov functional of the form:

V(k) = |x(k)− x∗(k)|eµk. (28)

Definition 2. Let x∗ be an almost periodic solution of (3) satisfying m2 < x∗ < m1. If there exist positive
constants H and µ such that:

|x(k)− x∗(k)| ≤ He−µk, k ∈ Z+,

then we say that x(k) converges exponentially to x∗(k) as k→ ∞.

Theorem 5. Assume that (C1) and (C2) hold. Then, every solution x of Model (3) with the initial function
φ ∈ S0 converges exponentially to x∗ as k → ∞, where x∗ is an almost periodic solution of (3) satisfying
m2 < x∗ < m1.

Proof. By Theorem 4, we know that Model (3) has an almost periodic positive solution x∗ satisfying
m2 < x∗(k) < m1. Let x∗(k) = ψ(k) > 0,−τ ≤ k ≤ 0 be the initial function associated with the solution
x∗(k) and x(k) be an arbitrary solution of Model (3) with initial function φ ∈ S0. Then, m2 < φ(k) < m1

and x(k) = φ(k) for −τ ≤ k ≤ 0. By Theorem 2, we know that m2 < x(k) < m1 for all k > 0, k ∈ Z+.
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Consider the function F(x) = L2βe(τ+1)x − αex + ex − 1, x ∈ [0, 1]. Since F(0) = L2β− α < 0,
then there exists a constant µ ∈ (0, 1) such that F(µ) < 0. That is,

− αeµ + eµ + L2βeµ(τ+1) < 1 (29)

In view of (28), we have:

4V(k) = V(k + 1)−V(k) =
∣∣x(k + 1)− x∗(k + 1)

∣∣eµ(k+1) −
∣∣x(k)− x∗(k)

∣∣eµk

=
(∣∣x(k + 1)− x∗(k + 1)

∣∣− ∣∣x(k)− x∗(k)
∣∣)eµ(k+1) +

(
eµ − 1

)∣∣x(k)− x∗(k)
∣∣eµk.

Noting that:

∣∣x(k+ 1)− x∗(k+ 1)
∣∣− ∣∣x(k)− x∗(k)

∣∣ = −α(k)
∣∣x(k)− x∗(k)

∣∣+ β(k)
∣∣∣ x(k− τ)

1 + xn(k− τ)
− x∗(k− τ)

1 + x∗n(k− τ)

∣∣∣,
we get:

4V(k) = V(k + 1)−V(k)

≤
(
− α(k)

∣∣x(k)− x∗(k)
∣∣+ β(k)

∣∣∣ x(k− τ)

1 + xn(k− τ)
− x∗(k− τ)

1 + x∗n(k− τ)

∣∣∣)eµ(k+1)

+
(
eµ − 1

)∣∣x(k)− x∗(k)
∣∣eµk. (30)

=
(
− α(k)eµ + eµ − 1

)∣∣x(k)− x∗(k)
∣∣eµk + β(k)eµ

∣∣∣ x(k− τ)

1 + xn(k− τ)
− x∗(k− τ)

1 + x∗n(k− τ)

∣∣∣eµk

=
(
− α(k)eµ + eµ − 1

)
V(k) + β(k)eµ

∣∣∣ x(k− τ)

1 + xn(k− τ)
− x∗(k− τ)

1 + x∗n(k− τ)

∣∣∣eµk

Let H := m1 + max−τ≤k≤0, k∈Z |φ(k)− ψ(k)|. For all k ∈ [−τ, 0], we have:

V(k) =
∣∣x(k)− x∗(k)

∣∣eµk ≤
∣∣x(k)− x∗(k)

∣∣ = ∣∣φ(k)− ψ∗(k)
∣∣

≤ max
−τ≤k≤0, k∈Z

|φ(k)− ψ(k)| < m1 + max
−τ≤k≤0, k∈Z

|φ(k)− ψ(k)| = H.

Now, we prove the following claim:

V(k) < H for all k > 0, k ∈ Z+. (31)

Suppose the claim (31) is not true. Then there must exist a K∗ ∈ Z∗ such that V(K∗) ≥ H and
V(K) < H for −τ ≤ k < K∗, k ∈ Z. It follows from (30) that:

V(K∗)−V(K∗ − 1) ≤
(
− α(K∗ − 1)eµ + eµ − 1

)
V(K∗ − 1)

+ β(K∗ − 1)eµ
∣∣∣ x(K∗ − 1− τ)

1 + xn(K∗ − 1− τ)
− x∗(K∗ − 1− τ)

1 + x∗n(K∗ − 1− τ)

∣∣∣eµ(K∗−1) (32)

≤
(
− αeµ + eµ − 1

)
V(K∗ − 1)

+ βeµ
∣∣∣ x(K∗ − 1− τ)

1 + xn(K∗ − 1− τ)
− x∗(K∗ − 1− τ)

1 + x∗n(K∗ − 1− τ)

∣∣∣eµ(K∗−1).

Note that 1
n√n−1

≤ m2 ≤ x(k) ≤ m1 and 1
n√n−1

≤ m2 ≤ x∗(k) ≤ m1 for k ∈ Z. By the
inequality (25), therefore, we have:∣∣∣ x(K∗ − 1− τ)

1 + xn(K∗ − 1− τ)
− x∗(K∗ − 1− τ)

1 + x∗n(K∗ − 1− τ)

∣∣∣ ≤ L2
∣∣x(K∗ − 1− τ)− x∗(K∗ − 1− τ)

∣∣. (33)
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Thus, (32) and (33) imply that:

V(K∗)−V(K∗ − 1) ≤
(
− αeµ + eµ − 1

)
V(K∗ − 1) + βeµ L2

∣∣∣x(K∗ − 1− τ)− x∗(K∗ − 1− τ)
∣∣∣eµ(K∗−1)

=
(
− αeµ + eµ − 1

)
V(K∗ − 1)

+ βeµ L2

∣∣∣x(K∗ − 1− τ)− x∗(K∗ − 1− τ)
∣∣∣eµ(K∗−1−τ)eµτ (34)

=
(
− αeµ + eµ − 1

)
V(K∗ − 1) + βeµ L2V(K∗ − 1− τ)eµτ .

From (34), we obtain:

V(K∗) ≤
(
− αeµ + eµ

)
V(K∗ − 1) + βeµL2V(K∗ − 1− τ)eµτ

<
(
− αeµ + eµ

)
H + βeµL2Heµτ

=
(
− αeµ + eµ + βL2eµ(τ+1)

)
H < H,

which contradicts that V(K∗) ≥ H. Therefore, the claim (31) is true. Hence, V(k) = |x(k)− x∗(k)|eµk <

H for all k > 0, k ∈ Z+. That is, |x(k)− x∗(k)| ≤ He−µk for all k > 0, k ∈ Z+, which implies that x(k)
converges exponentially to x∗(k) as k→ ∞.

5. Examples and Numerical Simulations

In this section, we present two numerical examples along with their numerical simulations to
demonstrate the effectiveness of our theoretical findings.

Example 1. Consider the equation:

4x(k) = −
(1

5
+

1
500

sin
√

3k
)

x(k) +

(
1

10 + 1
200 cos

√
5k
)

x(k− τ)

1 + xn(k− τ)
, (35)

where α(k) = 1
5 + 1

500 sin
√

3k, β(k) = 1
10 + 1

200 cos
√

5k, n = 2, τ = 1. Since α > β, then it follows from
Theorem 3 that every solution x of System (35) satisfies x(k)→ 0 as k → ∞. Figure 1 depicts the extinction
behavior of the solution of (35).

Figure 1. Extinction pattern for the solution of System (5.1).
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Example 2. Consider the equation:

4x(k) = −
(3

5
+

1
100

sin
√

2k
)

x(k) +

(
10 + 1

20 cos
√

3k
)

x(k− τ)

1 + xn(k− τ)
, (36)

where α(k) = 3
5 + 1

100 sin
√

2k, β(k) = 10 + 1
20 cos

√
3k, n = 1.5, τ = 1. It is straightforward to find that

α = 0.61, α = 0.59, β = 10.05, β = 9.95, 1
1.5√0.5

≈ 1.59, L1 ≈ 0.53, L2 ≈ 0.042. There exist m1 = 10,

m2 = 2 such that m1 > βL1
α ≈ 9.028, 1

1.5√0.5
< m2 < βm1

α(1+mn
1 )
≈ 5 where βL2

α < 1. Therefore, Conditions (C1)
and (C2) are satisfied. By Theorem 4 and Theorem 5, we know that for System (36), there exists an almost periodic
positive solution x∗ satisfying m2 ≤ x∗(k) ≤ m1. Moreover, every solution x of Equation (36) with initial
condition φ ∈ S0 converges exponentially to x∗ as k→ ∞. Figure 2 illustrates the exponential convergence of
the solution of System (36) to x∗.

Figure 2. Exponential convergence pattern of the solution of System (5.2).

6. Conclusions

The study of the Mackey–Glass model, which is referred to in the literature, as the hematopoiesis
model has been initiated a long time ago and then developed by systematic study through the
contributions of many researchers. The model itself has gained its reputation amongst researchers due
to its realistic significance in the description of blood cell production. After the proposal of Model (1)
by Mackey and Glass, the authors in [23] investigated the global attractivity of its unique positive
equilibrium. The authors in [24], however, considered the following model with variable coefficients:

x′(t) = −α(t)x(t) +
β(t)

1 + xn(t− τ(t))
, t ≥ 0 (37)

and investigated the oscillation and global attractivity of its solutions, as well as its exponential stability
of the positive almost periodic solution. The existence and global exponential convergence of positive
almost periodic solutions for the hematopoiesis model with several delays:

x′(t) = −α(t)x(t) +
m

∑
i=1

βi(t)
1 + xn(t− τi(t))

(38)

was investigated in [25]. Later on and by employing a novel argument, the author in [26] established
sufficient conditions to ensure the existence, uniqueness, and global exponential stability of positive
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almost periodic solutions of Model (38). Gopalsamy et al. [27] introduced the more realistic
hematopoiesis model (2), which was also under consideration in [28]. On the other hand, the authors
in [17,18] conducted an extensive study for the dynamics of almost periodic solutions of Model (2).

The discretization of population models has been the object of research due to their effective
applicability when the size of the population has non-overlapping generations. The discrete
models are straightforward and can also provide more efficient methods for processes involving
numerical computations and simulations. Motivated by the above justifications, the researchers in [29]
investigated the model:

4x(k) = −α(k)x(k) +
β(k)

1 + xn(k− τ)
, (39)

where the permanence, oscillation, and attractivity of solutions have been considered. In [30],
the current author established sufficient conditions for the existence and global attractivity of the
positive periodic solution of Model (39). To the best of our observation, the discrete analogue of
Model (2) has not under consideration in the literature. This paper is devoted to studying the dynamics
of the discrete Mackey–Glass model (2). We proved the following:

• the boundedness and extinction of its solutions,
• the existence of almost periodic positive solutions,
• the exponential convergence of the almost periodic positive solution.

To prove our results, we used the contraction mapping principle, as well as the discrete Lyapunov
functional to establish sufficient conditions in their less restrictive forms. Examples, as well as
numerical simulations were illustrated to demonstrate the effectiveness of the theoretical findings of
the paper. Our results are new and generalize some previously-reported results in the literature.

Author Contributions: Z.Y. and J.A. formulated the research problem, designed the mathematical framework of
the scientific inquiry and wrote the paper. D.J. performed numerical calculations and generated the provided
figures. All authors revised and edited the final version of the manuscript.

Funding: J.A. would like to thank Prince Sultan University for funding this work through research group
Nonlinear Analysis Methods in Applied Mathematics (NAMAM) Group Number RG-DES-2017-01-17.

Acknowledgments: The work of the first author is supported by the Natural Science Foundation of Education
Department of Anhui Province (KJ2017A487).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Mackey, M.C.; Glass, L. Oscillations and chaos in physiological control systems. Sciences 1977, 197, 287–289.
[CrossRef]

2. Bohr, H. Almost Periodic Functions; Chelsea: New York, NY, USA, 1951.
3. Besicovitch, A.S. Almost Periodic Functions; Dover: New York, NY, USA, 1954.
4. Bochner, S. A new approach to almost periodicity. Proc. Nat. Acad. Sci. USA 1962, 48, 2039–2043. [CrossRef]

[PubMed]
5. Gopalsamy, K.; Kulenovic, M.R.S.; Ladas, G. Oscillation and global attractivity in models of Hematopoiesis.

J. Dyn. Differ. Equ. 1990, 2, 117–132. [CrossRef]
6. Weng, P.X. Global attractivity of periodic solution in a model of hematopoiesis. Comput. Math. Appl. 2002,

44, 1019–1030. [CrossRef]
7. Saker, S.H. Oscillation and global attractivity in hematopoiesis model with time delay. Appl. Math. Comput.

2003, 136, 241–250. [CrossRef]
8. Saker, S.H. Oscillation and global attractivity in hematopoiesis model with periodic coefficients.

Appl. Math. Comput. 2003, 142, 477–494. [CrossRef]
9. Wu, X.M.; Li, J.W.; Zhou, H.Q. A necessary and sufficient condition for the existence of positive periodic

solutions of a model of hematopoiesis. Comput. Math. Appl. 2007, 54, 840–849. [CrossRef]
10. Saker, S.H.; Alzabut, J. On the impulsive delay hematopoiesis model with periodic coefficients. Rocky Mt.

J. Math. 2009, 39, 1657–1688. [CrossRef]

http://dx.doi.org/10.1126/science.267326
http://dx.doi.org/10.1073/pnas.48.12.2039
http://www.ncbi.nlm.nih.gov/pubmed/16591025
http://dx.doi.org/10.1007/BF01057415
http://dx.doi.org/10.1016/S0898-1221(02)00211-0
http://dx.doi.org/10.1016/S0096-3003(02)00035-8
http://dx.doi.org/10.1016/S0096-3003(02)00315-6
http://dx.doi.org/10.1016/j.camwa.2007.03.004
http://dx.doi.org/10.1216/RMJ-2009-39-5-1657


Mathematics 2018, 6, 333 14 of 14

11. Alzabut, J.; Nieto, J.J.; Stamov, G.T. Existence and exponential stability of positive almost periodic solutions
for a model of hematopoiesi. Bound. Value Probl. 2009, 2009, 127510. [CrossRef]

12. Berezansky, L.; Braverman, E.; Idels, L. Mackey–Glass model of hematopoiesis with monotone feedback
revisited. Appl. Math. Comput. 2013, 219, 4892–4907. [CrossRef]

13. Berezansky, L.; Braverman, E.; Idels, L. Mackey–Glass model of hematopoiesis with non-monotone feedback:
Stability, oscillation and control. Appl. Math. Comput. 2013, 219, 6268–6283. [CrossRef]

14. Zhang, T. Almost periodic oscillationsin a generalized Mackey–Glass model of respiratory dynamics with
several delays. Int. J. Biomath. 2014, 7, 1450029. [CrossRef]

15. Ding, H.S.; Liu, Q.L.; Nieto, J.J. Existence of positive almost periodic solutions to a class of hematopoiesis
model. Appl. Math. Model. 2015, 40, 3289–3297. [CrossRef]

16. Liu, G.; Yan, J.; Zhang, F. Existence and global attractivity of unique positive periodic solution for a model of
hematopoiesis. J. Math. Anal. Appl. 2007, 334, 157–171. [CrossRef]

17. Wang, X.; Zhang, H. A new approach to the existence, nonexistence and uniqueness of positive almost
periodic solution for a model of hematopoiesis. Nonlinear Anal. Real World Appl. 2010, 11, 60–66. [CrossRef]

18. Guo, Y. Existence and exponential stability of pseudo almost periodic solutions for Mackey-Glass equation
with time-varying delay. IAENG Int. J. Appl. Math. 2016, 46, 71–75.

19. Gyllenberg, M.; Hanski, I.; Lindström, T. Contiuous versus discrete single species population models with
adjustable reproductive strategies. Bull. Math. Biol. 1997, 59, 619–705. [CrossRef]

20. Mccrorie, J.R. Deriving the exact discrete analog of a continuous time system. Econom. Theory 2000,
16, 998–1015. [CrossRef]

21. Cheban, D.; Mammana, C. Invariant manifolds, global attractors and almost periodic solutions of
nonautonomous difference equations. Nonlinear Anal. Theory, Methods Appl. 2004, 56, 465–484. [CrossRef]

22. Li, Y.K.; Wang, C. Almost periodic functions on time scales and applications. Discret. Dyn. Nat. Soc. 2011,
2011, 727068. [CrossRef]

23. Györi, I.; Ladas, G. Oscillation Theory of Delay Differential Equations with Applications; Clarendon Press: Oxford,
UK, 1991.

24. Yao, Z. New results on existence and exponential stability of the unique positive almost periodic solution for
hematopoiesis model. Appl. Math. Modell. 2015, 39, 7113–7123. [CrossRef]

25. Zhang, H.; Yang, M.; Wang, L. Existence and exponential convergence of the positive almost periodic
solution for a model of hematopoiesis. Appl. Math. Lett. 2013, 26, 38–42. [CrossRef]

26. Liu, B. New results on the positive almost periodic solutions for a model of hematopoiesis. Nonlinear Anal.
Real World Appl. 2014, 17, 252–264. [CrossRef]

27. Gopalsamy, K.; Trofimchuk, S.I.; Bantsur, N.R. A note on global attractivity in models of hematopoiesis.
Ukr. Math. J. 1998, 50, 3–12. [CrossRef]

28. Liz, E.; Pinto, M.; Tkachenko, V.; Trofimchuk, S. A global stability criterion fora family of delayed population
models. Q. Appl. Math. 2005, 63, 56–70. [CrossRef]

29. Braverman, E.; Saker, S.H. Permanence, oscillation and attractivity of the discrete hematopoiesis model with
variable coefficients. Nonlinear Anal. Theory Methods Appl. 2007, 67, 2955–2965. [CrossRef]

30. Yao, Z. Existence and global attractivity of the unique positive periodic solution for discrete hematopoiesis
model. Topol. Methods Nonlinear Anal. 2015, 45, 423–437. [CrossRef]

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1155/2009/127510
http://dx.doi.org/10.1016/j.amc.2012.10.052
http://dx.doi.org/10.1016/j.amc.2012.12.043
http://dx.doi.org/10.1142/S1793524514500296
http://dx.doi.org/10.1016/j.apm.2015.10.020
http://dx.doi.org/10.1016/j.jmaa.2006.12.015
http://dx.doi.org/10.1016/j.nonrwa.2008.10.015
http://dx.doi.org/10.1007/BF02458425
http://dx.doi.org/10.1017/S0266466600166071
http://dx.doi.org/10.1016/j.na.2003.09.009
http://dx.doi.org/10.1155/2011/727068
http://dx.doi.org/10.1016/j.apm.2015.03.003
http://dx.doi.org/10.1016/j.aml.2012.02.034
http://dx.doi.org/10.1016/j.nonrwa.2013.12.003
http://dx.doi.org/10.1007/BF02514684
http://dx.doi.org/10.1090/S0033-569X-05-00951-3
http://dx.doi.org/10.1016/j.na.2006.09.056
http://dx.doi.org/10.12775/TMNA.2015.021
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction and Preliminaries
	Boundedness and Extinction of Solutions 
	Existence of the Almost Periodic Positive Solution
	Exponential Convergence 
	Examples and Numerical Simulations
	Conclusions
	References

