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Abstract: The study of field spectra based on fractional-order differentials has rarely been reported,
and traditional integer-order differentials only perform the derivative calculation for 1st-order
or 2nd-order spectrum signals, ignoring the spectral transformation details between 0th-order to
1st-order and 1st-order to 2nd-order, resulting in the problem of low-prediction accuracy. In this paper,
a spectral quantitative analysis model of soil-available phosphorus content based on a fractional-order
differential is proposed. Firstly, a fractional-order differential was used to perform a derivative
calculation of original spectral data from 0th-order to 2nd-order using 0.2-order intervals, to obtain
11 fractional-order spectrum data. Afterwards, seven bands with absolute correlation coefficient
greater than 0.5 were selected as sensitive bands. Finally, a stepwise multiple linear regression
algorithm was used to establish a spectral estimation model of soil-available phosphorus content
under different orders, then the prediction effect of the model under different orders was compared
and analyzed. Simulation results show that the best order for a soil-available phosphorus content
regression model is a 0.6 fractional-order, the coefficient of determination (R2), root mean square
error (RMSE), and ratio of performance to deviation (RPD) of the best model are 0.7888, 3.348878,
and 2.001142, respectively. Since the RPD value is greater than 2, the optimal fractional model
established in this study has good quantitative predictive ability for soil-available phosphorus content.

Keywords: soil-available phosphorus content; field hyperspectral data; fractional derivative; stepwise
multiple regression

1. Introduction

Soil-available phosphorus refers to inorganic phosphorus or small molecular organic phosphorus
that can be directly absorbed and utilized by plants [1–3]. Its content refers to the amount of phosphorus
that can be absorbed by seasonal crops. It is an important indicator for evaluating the phosphorus
supply capacity of soil phosphorus. Soil-phosphorus deficiency affects crop growth, while soil
phosphorus in surplus for a long time increases the risk of soil phosphorus flowing into water bodies
and creating potential ecological problems. The content of available phosphorus in soil varies with
soil type, climate, fertilization level, irrigation, cultivation practices, and so on. Therefore, real-time
detection of soil-available phosphorus content can provide a scientific reference for rational application
of phosphate fertilizer and improvement of phosphate-fertilizer utilization. The traditional method
for detecting soil-available phosphorus content is to adopt laboratory chemical reagents to measure,
which has the disadvantage of being a cumbersome procedure, high-cost, and time-consuming [4–6].
Visible near-infrared spectroscopy has the characteristics of rapid, non-destructive, and low-cost
detection [7–9]; it can analyze a large number of soil samples in a short time, and realize real-time
online measurement of soil parameters.
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A traditional integer-order differential method is widely used to process soil-spectral
signals [10,11], but its description of the physical model is only an approximation, which largely ignores
the authenticity of the system. Fractional calculus generalizes the order of traditional integer calculus
to the field of fractions. Compared with traditional integer-order calculus, its greatest advantage lies
in its memory and inheritance properties, which makes it more accurate and effective to describe
certain physical phenomena by using fractional-order differential equations. It has been proved that
fractional-order systems are more in line with natural laws and engineering physics phenomena.
Fractional-order systems can better reflect the performance of dynamic systems and can more clearly
describe the physical characteristics of the system. The composition of soil is very complex—it is mainly
a mixture of minerals, organic matter, living organisms, water, and air. Fractional-order differential
algorithms can be used to determine the inflection point of a soil spectral-reflectance curve and can
perform baseline correction to eliminate background noise and atmospheric influence, distinguish
overlapping spectra, and improve detection signal-to-noise ratio. It also can reduce the impact of soil
type, sample size, and other factors; and excavate the spectral absorption characteristics.

In recent years, scholars have introduced fractional-order differentials into the field of spectral
analysis, mainly focusing on the spectra of corn, wheat, and diesel in public collections; a few literature
sources relate to soil spectra collected in an ideal indoor condition. For example, Kharintsev et al. [12]
used a fractional derivative algorithm to separate the overlapping spectral features and extracted
spectral characteristics, such as half-width and amplitude, showing that fractional differentials had
certain feasibility in spectral analysis applications. Zheng et al. [13] utilized the Savitzky–Golay (SG)
fractional derivative to preprocess near-infrared spectroscopy datasets for corn, wheat, and diesel;
simulations showed that the preprocessing effect after fractional derivation was better than integer
order. Zhang et al. [14] preprocessed the indoor spectrum of saline soil in Xinjiang by a fractional
derivative algorithm; simulations showed that the effect of a fractional differential was significantly
better than that of an integer-order differential. Wang et al. [15] studied the hyperspectral detection of
chromium content by fractional differential algorithms and found that the 1.8-order differential model
was the optimal model.

Some scholars, however, have applied the fractional-order differential method to study soil spectra
under an indoor controllable light source with ideal conditions. The indoor soil spectrum does not take
into account the influence of complex factors in the field and a prediction model established by the
indoor spectrum is difficult to extend directly into the field. At present, there are relatively few studies
on soil-available phosphorus and the study of field spectra based on fractional-order differentials
has rarely been reported. Therefore, this paper took the desert soil in Xinjiang as the research object
to collect the field spectral signals. We studied the application of the Grünwald–Letnikov fractional
differential in field spectrum data preprocessing and feature extraction, and fully exploited the useful
information in the spectrum for the prediction model of available phosphorus content to obtain
effective sensitive bands. In addition, the dynamic law of spectrum data with fractional order changes
was discussed and the optimal scheme of fractional spectral modeling sought. Moreover, the research
of this paper has enriched the method of soil hyperspectral-data preprocessing, improved the accuracy
of hyperspectral prediction models of available phosphorus content, and provided scientific support
and application reference for local precision agriculture.

2. Materials and Methods

2.1. Research Area

The study area is located between the northern foot of the Tianshan Mountains and the southern
margin of the Junggar Basin (87◦44′–88◦46′ E, 43◦29′–45◦45′ N). It belongs to the territory of Fukang in
Xinjiang and has a pH value of 7.76–8.98. The characteristics of the Fukang terrain are low in the north
and high in the south, with the landforms of mountainous in the south, plains in the middle, and deserts
in the north. Fukang is a moderately temperate desert climate with plenty of light in the area. The average
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temperature in this region is 6.7 ◦C, the highest temperature is 39.7 ◦C, and the lowest temperature is
−26.2 ◦C. The precipitation in this area is scarce, but the surface evaporation is very large.

2.2. Sampling Point Layout and Measurement of Available Phosphorus Content

In mid-May 2017, we arranged five sampling lines from south to north in the study area,
with sampling line spacings of 600–800 m. Five sampling points on each sampling line were selected to
represent the soil background in this area, the sampling distance was 300–500 m. A total of 25 sampling
points was obtained and Global Positioning System (GPS) positioning was performed. The position
distribution of the sampling points is shown in Figure 1.
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Figure 1. Distribution of sampling points.

Soil samples of 0–10 cm were collected from each sampling point, were numbered into bags,
and brought back to the laboratory. All of the soil samples were air-dried naturally, had impurities
removed, and were sieved through a 1 mm aperture. Then they were sent to the Xinjiang Institute
of Ecology and the Geography of the Chinese Academy of Sciences to determine soil-available
phosphorus content.

2.3. Field Spectral Data Acquisition

The ASD FieldSpec® 3Hi-Res (Malvern Panalytical Ltd, Malvern, UK) spectrometer was used
to acquire field spectra on 9–23 May 2017. Its measured spectral range is 350–2500 nm, the sampling
interval of the spectrum was 1.3 nm at 350–1000 nm, 2 nm at 1000–2500 nm, and the re-sampling
interval was 1 nm. Since weather conditions affect the spectral measurement, in order to reduce
the data error caused by weather conditions, the spectral measurement was selected to be carried
out at 11:00–15:00 o’clock local time in sunny, cloudless, and windless weather. Before each spectral
measurement, the spectrometer needed to be calibrated with a white board to remove dark current
effects. Spectral probes were placed at a vertical distance of 15 cm above the surface of sampling
points to represent the characteristics of this area. The ground surface was flat, with no cracks, and no
weeds around. Spectral acquisition was performed in the same manner for each point, by selecting
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five position points close to the soil background value within a range of 1 m. Ten spectral curves were
repeatedly measured at each sampling point, for a total of 50, and the mean value was taken as the
actual measured spectrum value of the sampling point.

Before performing the subsequent data analysis, firstly, the SG smoothing method was used to
smooth the spectrum, and then the spectral reflectances at 350 nm–400 nm in the ultraviolet bands and
2400 nm–2500 nm in the short-wavelength infrared bands were eliminated, because the signal-to-noise
ratio of these bands was relatively low. Finally, the wavelength bands (1355–1410 nm, 1820–1942 nm)
located in the moisture absorption zone were eliminated because these bands have a great influence
on the accuracy of the spectral inversion of available phosphorus content.

2.4. Fractional Derivative

At present, the expressions of fractional differential mainly include Riemann–Liouville,
Grünwald–Letnikov, and Caputo [16–18], and the most commonly used expressions are
Grünwald–Letnikov (G–L) expressions. The G–L differential is defined by:

aDv
t s(t) = lim

h→0
sv

h(t) = lim
h→0

h−v ∑
0≤r<∞

C−v
r s(t− rh) (1)

where the coefficient is:

C−v
r =

(−ν)(−ν+ 1) · · · (−ν+ r− 1)
r!

. (2)

According to the definition in Equation (1), suppose that the duration of signal s(t) is t ∈ [a, t].
Because we used the ASD Field Spec® 3Hi-Res spectrometer to collect field spectra, the re-sampling
interval was 1 nm, and therefore, the signal duration for [a, t] was divided equally into equal intervals
of h = 1, then n can be defined as follows:

n =

[
t− a

h

]h−1
= [t− a]. (3)

We can further deduce that the v-order fractional differential form expression of the signal s(t) is:

dνs(t)
dtν ≈ s(t) + (−ν)s(t− 1) + (−ν)(−ν+1)

2 s(t− 2)+
(−ν)(−ν+1)(−ν+2)

6 s(t− 3)+
. . . + Γ(−ν+1)

n!Γ(−ν+n+1) s(t− n).
(4)

From Equation (4), the difference coefficient of fractional differential can be described as follows:

a0 = 1, a1 = −ν, a2 = (−ν)(−ν+1)
2 ,

a3 = (−ν)(−ν+1)(−ν+2)
6 , . . . , an = Γ(−ν+1)

n!Γ(−ν+n+1)
(5)

where, v is an order, the 0th-order differential of function s(t) is s(t) itself which does not perform
differential processing. For v = 1 and 2, respectively, Equation (4) agrees with the 1st and 2nd-order
differential formulas when the differential window scale is$= 1.

2.5. Stepwise Multiple Linear Regression

Stepwise multiple linear regression (SMLR) is an optimization process based on a general
multivariate regression analysis method [19,20]. The multiple linear regression model is a regression
model composed of multiple independent variables that reveals the linear relationship between
multiple independent variables and dependent variables.

Y is a dependent variable. X1, X2, . . . , Xm are m known independent variables and the number of
samples is n. In the regression equations, the independent variable Xi(i = 1, 2, . . . , k) gives a significant



Mathematics 2018, 6, 330 5 of 11

effect to Y. For different fractional orders, we need to find which factors Xi contribute to Y. Selection
and rejection of independent variables for stepwise multiple regression analysis method is determined
by the F statistic. The SMLR method is given as follows.

Step 1: Choose one variable xk1 from m variables to establish a linear regression equation:

y = a0 + a(1)k1
xk1 . (6)

Step 2: Select the second of the remaining m− 1 variables that has the most significant effect on y
and establish a binary regression equation:

y = a0 + a(1)k1
xk1 + a(2)k2

xk2 . (7)

Check whether it is significant or not. If it is not, return to step one. If it is, continue to find the
next variable.

Step 3: The regression equation is obtained.

y = a0 + a(1)k1
xk1 + a(2)k2

xk2 + . . . + a(k−1)
kk

xkk
, k ≤ m. (8)

2.6. Model Accuracy Verification Method

In order to evaluate comprehensively the accuracy of the SMLR quantitative estimation model,
we selected three accuracy evaluation indicators [21]: root mean square error (RMSE), coefficient of
determination (R2), and ratio of performance to deviation (RPD). R2 was divided into the coefficient of
determination for the calibration set (R2

c) and the coefficient of determination for the verification set
(R2

p). The definition of RMSE, R2, and RPD can be described as follows:

RMSE =

√
1
n

n

∑
i=1

(Pi −Mi)
2 (9)

R2 =
SSR
SST

(10)

RPD =
SD

RMSE
(11)

where, n is the number of samples. Mi is the measured value of the i-th sample. Pi is the predicted
value of the i-th sample. SSR represents the regression sum of squares. SST represents the sum of
squares. SD is the standard deviation of validation sample. RMSE is the root mean square error of
validation set.

When 0.66 ≤ R2 ≤ 0.80, the model fitting effect is better [22]. When 0.81 ≤ R2 ≤ 0.90, the model
fitting result is very good. When R2 ≥ 0.90, the model fitting effect is excellent. The closer the RMSE is
to 0, the model has higher prediction accuracy and stronger the prediction ability.

When the RPD is greater than 2.5, it indicates that the model has strong predictive ability [23].
When the RPD is between 2.0 and 2.5, it indicates that the model has good quantitative prediction
ability. When the RPD is between 1.8 and 2.0, it indicates that the model has quantitative predictive
ability. When RPD is between 1.4 and 1.8, it indicates that the model has general quantitative prediction
ability. When RPD is between 1.0 and 1.4, it indicates that the model only has the ability to distinguish
between high and low values. When RPD is less than 1.0, it indicates that the model does not have
predictive power.

For the calibration set, when R2
c is larger, and RMSE is smaller, then the modeling accuracy of

calibration set will be higher, and the model will be more stable. In addition, for the verification set,
when R2

p and RPD are larger, and RMSE is smaller, the prediction model has higher prediction accuracy.
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3. Results and Discussion

3.1. Correlation Coefficient

Original spectral reflectance was programmed in Matlab R2015a software (MathWorks, Natick,
MA, USA), and the correlation coefficient between available phosphorus content and original
spectral reflectance was calculated at 0.2-order intervals, with a total of 11 fractional differentials.
The 0.05 significance test level in this area was *P0.05 = 0.396. Figure 2 shows the results of fractional
processing of the original spectrum. The abscissa represents the wavelength and the ordinate represents
the differential value of the spectral reflectance after fractional differential calculation. It can be seen
from the simulation results that the original spectral reflectance has bands that passed 0.05 significance
test from 0th-order, and the number of passed bands is large. Moreover, as the fractional order changes,
more information in the original spectral data is mined, and its subtle changes are more obvious.
Taking the differential values of 700 nm and 800 nm in Figure 2a as an example, we found that the
subtle changes in the original spectral image were amplified and, by observing Figure 2b–d, some of
the details were more pronounced. As the fractional order increased, sharper peaks appeared in the
spectral curve.
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3.2. Modeling Process for Quantitative Analysis Model

The steps of the quantitative analysis model established in this paper are as follows:

Step 1: Calculate the fractional differential value of 11 fractional differentials spectral reflectance
between 0th-order and 2nd-order using Equation (4).

Step 2: Calculate the correlation coefficient between spectral reflectance and available phosphorus
content and perform a 0.05 significance test.
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Step 3: Statistically calculate the absolute value of the maximum correlation coefficient after the
11th-order fractional differential transformation and its corresponding wavelength.

Step 4: Select the bands whose absolute value of maximum correlation coefficient with each fractional
order is greater than 0.5 as the sensitive bands.

Step 5: Establish the SMLR model.
Step 6: All fractional spectral data and its corresponding sensitive bands are obtained by traversing

0th-order to 2nd-order at intervals of 0.2 step.

The flow chart of the quantitative analysis model for soil-available phosphorus content is shown
in Figure 3.
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3.3. Model Optimal Wavelength Selection

We have calculated the absolute value of the maximum correlation coefficient and its
corresponding band information after the 11th-order fractional differential processing, which was
shown in Table 1. The absolute value of the maximum correlation coefficient was 0.81085,
the corresponding band was 2283 nm, and the order was 0.6. According to Table 1, the band with
absolute value of maximum correlation coefficient greater than 0.5 is selected as the sensitive band,
and there are seven bands in the study area. The selected bands are 1179, 2047, 2165, 2283, 2364, 2365,
and 2393 nm, respectively.

3.4. Establishment Stepwise Multiple Linear Regression Model

Fifteen randomly selected samples from 25 soil samples were used to establish a model, and the
other 10 samples were used as a validation set. Taking soil-available phosphorus content as a dependent
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variable, spectral reflectance was used as an independent variable for the sensitive bands 1179, 2047,
2165, 2283, 2364, 2365, and 2393 nm. The SMLR model was established to estimate available phosphorus
content (Table 2).

Table 1. Absolute value of maximum correlation coefficient of the 11th-order differential and its
corresponding band.

Fractional Order Correlation Coefficient Band

0.0 0.67076 2393
0.2 0.70252 2365
0.4 0.76698 2364
0.6 0.81085 2283
0.8 0.76230 2047
1.0 0.72828 2165
1.2 0.78561 2165
1.4 0.78276 2165
1.6 0.77828 1179
1.8 0.74803 1179
2.0 0.76187 2283

In Table 2, Y is the soil-available phosphorus content, R 1179, R 2047, R 2165, R 2283, R 2364, R 2365
and R 2393 represent spectral reflectance values in the 1179, 2047, 2165, 2283, 2364, 2365, and 2393 nm
wavelength bands. R2 is 0.424 in 0th-order, R2 is 0.591 in integer 1st-order, and R2 is 0.644 in integer
2nd-order. After performing the fractional differential transformation by 0.4-order, 0.6-order, 0.8-order,
1.2-order, 1.4-order, 1.6-order and 1.8-order, R2 has a certain degree of improvement. Among them,
the 1.6-order improves the most and reaches 0.865. The RMSE is 5.13826 at 0th-order, 4.3324598 at
1st-order, and 4.040979 at 2nd-order. After fractional differential processing, RMSE decreased, and the
lowest value of RMSE is 2.491789.

Table 2. Stepwise multiple linear regression (SMLR) model for soil-available phosphorus content.

Fractional Order R2 RMSE Regression Equation

0.0 0.424 5.138126 Y = −7.877 + 73.319 × R2393
0.2 0.487 4.849662 Y = 11.929 + 713.184 × R2365 − 646.632 × R2165
0.4 0.761 3.309459 Y = 12.091 + 1852.579 × R2364 − 1605.108 × R1179
0.6 0.750 3.382826 Y = 17.181 − 7257.243 × R2283 − 13134.640 × R2047 − 57458.127 × R1179
0.8 0.744 3.427327 Y = −3.514 + 9907.544 × R2047 − 4796.115 × R2165
1.0 0.591 4.3324598 Y = 12.962 − 11610.572 × R2165
1.2 0.718 3.595593 Y = 13.174 − 11574.405 × R2165
1.4 0.809 2.961901 Y = 19.099 − 7691.730 × R2165 + 80915.009 × R1179
1.6 0.865 2.491789 Y = 16.654 − 8411.379 × R2165 + 75168.550 × R1179 − 1140.389 × R2365
1.8 0.824 2.865772 Y = 17.240 − 7227.992 × R2283 − 13268.074 × R2047 − 63874.358 × R1179 + 1008.311 × R2365
2.0 0.644 4.040979 Y = 19.020 − 8316.207 × R2283

RMSE: root mean square error.

3.5. Predictive Model Accuracy Comparison

The root mean square error, R2 and RPD were used as reference indexes for model evaluation
(Table 3). Regression equations for 0.4-order, 0.6-order, 1.6-order and 1.8-order have relatively high
R2 and RPD values and relatively low RMSE values, indicating that these four differential orders
have better prediction performance than other cases. The RPD value is greater than 2 at the 0.6-order,
which indicates that the model has better prediction ability. The RPD values are between 1.4 and 2 in
the range of 0.6, 1.6h, and 1.8-order, which indicates that the corresponding model predictability is
general, and the available phosphorus content can be quantitatively estimated.

3.6. Selection Best Prediction Model

In order to obtain the best predictive model of available phosphorus content, 10 samples were
used to verify the relationship between the measured and predicted values in Figure 4. For the
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0.6-order, the verification set sample data points are all distributed along the 1:1 straight line, and the
prediction correlation is better than for other orders. In general, based on the SMLR model of 0.6-order,
the R2 is higher, the RMSE is the smallest, and the RPD is the largest. Therefore, this model is the best
prediction model for the available potassium content.
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the range of 0.6, 1.6h, and 1.8-order, which indicates that the corresponding model predictability is 

general, and the available phosphorus content can be quantitatively estimated. 

Table 3. Accuracy evaluation for the SMLR prediction model. 

Fractional Order 2R  RMSE RPD 

0.0 0.4193 7.462748 1.120282 

0.2 0.4698 6.570987 1.091302 

0.4 0.6977 3.997434 1.594921 

0.6 0.7888 3.348878 2.001142 
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3.6. Selection Best Prediction Model 

In order to obtain the best predictive model of available phosphorus content, 10 samples were 
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order, the 
2R  is higher, the RMSE is the smallest, and the RPD is the largest. Therefore, this model 
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Table 3. Accuracy evaluation for the SMLR prediction model.

Fractional Order R2 RMSE RPD

0.0 0.4193 7.462748 1.120282
0.2 0.4698 6.570987 1.091302
0.4 0.6977 3.997434 1.594921
0.6 0.7888 3.348878 2.001142
0.8 0.7318 4.791680 0.951661
1.0 0.4503 6.810229 0.385937
1.2 0.3158 7.303034 0.339882
1.4 0.0156 9.784626 0.296595
1.6 0.8389 3.250759 1.657943
1.8 0.7356 4.291305 1.476663
2.0 0.3095 10.349263 1.088459

4. Conclusions

In this paper, the spectra of desert soils were collected in a field environment, and the spectral data
were preprocessed using the Grünwald–Letnikov fractional differential. The seven sensitive bands
were identified by the correlation analysis method. The bands estimated soil-available phosphorus
content are 1179, 2047, 2165, 2283, 2364, 2365, and 2393 nm. According to varied fractional derivatives,
we obtained different regression equations where different sensitive bands were independent variables.
The fractional derivative played an important role to in finding major independents and the SMLR
model and gave the regressive relationships. An optimal fractional prediction model for soil-available
phosphorus content was finally provided. The method proved to be efficient in this study. In the
future, we will consider neural network, machine learning, and similar algorithms to improve the
prediction accuracy and other applications in the spectrum analysis field.
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