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Abstract: In this paper, we present a systematic and unified investigation for the Apostol-Bernoulli
polynomials, the Apostol-Euler polynomials and the Apostol-Genocchi polynomials. By applying the
generating-function methods and summation-transform techniques, we establish some higher-order
convolutions for the Apostol-Bernoulli polynomials, the Apostol-Euler polynomials and the
Apostol-Genocchi polynomials. Some results presented here are the corresponding extensions
of several known formulas.

Keywords: Apostol-Bernoulli polynomials; Apostol-Euler polynomials; Apostol-Genocchi
polynomials; convolution identities; stirling numbers of the first and second kind

1. Introduction

Throughout this paper, C and C× denote the set of complex numbers and the set of complex
numbers excluding zero, respectively. We also denote by N and N∗ the set of positive integers and the
set of non-negative integers, respectively. For α, λ ∈ C, the generalized Apostol-Bernoulli polynomials
B(α)n (x; λ), the generalized Apostol-Euler polynomials E (α)n (x; λ) and the generalized Apostol-Genocchi
polynomials G(α)n (x; λ) of order α are defined by the following generating functions (see, e.g., [1–4]):(

t
λet − 1

)α

ext =
∞

∑
n=0
B(α)n (x; λ)

tn

n!
(1)

(
|t| < 2π when λ = 1; |t| < | log λ| when λ 6= 1; 1α := 1

)
,(

2
λet + 1

)α

ext =
∞

∑
n=0
E (α)n (x; λ)

tn

n!
(2)

(
|t| < π when λ = 1; |t| < | log(−λ)| when λ 6= 1; 1α := 1

)
and (

2t
λet + 1

)α

ext =
∞

∑
n=0
G(α)n (x; λ)

tn

n!
(3)

(
|t| < π when λ = 1; |t| < | log(−λ)| when λ 6= 1; 1α := 1

)
.
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In particular, the polynomials Bn(x; λ), En(x; λ) and Gn(x; λ) given by

Bn(x; λ) = B(1)n (x; λ), En(x; λ) = E (1)n (x; λ)

and
Gn(x; λ) = G(1)n (x; λ)

are called the Apostol-Bernoulli polynomials, the Apostol-Euler polynomials and the Apostol-Genocchi
polynomials, respectively. The Apostol-Bernoulli numbers Bn(λ), the Apostol-Euler numbers
En(λ) and the Apostol-Genocchi numbers Gn(λ) are expressed by means of the Apostol-Bernoulli
polynomials, the Apostol-Euler polynomials and the Apostol-Genocchi polynomials, as follows:

Bn(λ) = Bn(0; λ), En(λ) = 2nEn

(
1
2

; λ

)
and Gn(λ) = Gn(0; λ). (4)

Furthermore, the case α = λ = 1 in (1), (2) and (3) gives the Bernoulli polynomials Bn(x), the Euler
polynomials En(x) and the Genocchi polynomials Gn(x), that is,

Bn(x) = B(1)n (x; 1), En(x) = E (1)n (x; 1) and Gn(x) = G(1)n (x; 1).

Also the case λ = 1 in (4) gives the Bernoulli numbers Bn, the Euler numbers En and the Genocchi
numbers Gn as follows:

Bn = Bn(0), En = 2nEn

(
1
2

)
and Gn = Gn(0).

Recently, the above-defined generalized Apostol-Bernoulli polynomials, the generalized
Apostol-Euler polynomials and the generalized Apostol-Genocchi polynomials was unified by the
following generating function (see, for example, [5]):(

21−κtκ

βbet − ab

)α

ext =
∞

∑
n=0
Y (α)

n,β (x; κ, a, b)
tn

n!
(5)

(
|t| < 2π when β = a; |t| < log

(
β

a

)
when β 6= a;

κ, β ∈ C; a, b ∈ C×; 1α := 1

)
.

It is worth mentioning that the case α = 1 in (5) was constructed by Ozden et al. [6,7]. It is easily
seen that the polynomials Yn,β(x; κ, a, b) given by

Yn,β(x; κ, a, b) = Y (1)
n,β(x; κ, a, b) (6)

can be regarded as a generalization and unification of the Apostol-Bernoulli polynomials,
the Apostol-Euler polynomials and the Apostol-Genocchi polynomials with, of course, suitable choices
of the parameter a, b and β. We refer to the recent works [8–13] on these Apostol-type polynomials
and numbers.

In the present paper, we shall be concerned with some higher-order convolutions for the
Apostol-Bernoulli polynomials, the Apostol-Euler polynomials and the Apostol-Genocchi polynomials.
The idea stems from the higher-order convolutions for the Bernoulli polynomials due to Agoh
and Dilcher [14], Bayad and Kim [15] and Bayad and Komatsu [16]. We establish several
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higher-order convolutions for the Apostol-Bernoulli polynomials, the Apostol-Euler polynomials
and the Apostol-Genocchi polynomials by making use of the generating-function methods and
summation-transform techniques. It turns out that several interesting known results are obtainable as
special cases of our main results.

This paper is organized as follows. In Section 2, we first give the higher-order convolution
for the polynomials defined by (5) Yn,β(x; κ, a, b) and then present the corresponding higher-order
convolutions for the Apostol-Bernoulli polynomials, the Apostol-Euler polynomials and the
Apostol-Genocchi polynomials. Moreover, several corollaries and consequences of our main
theorems are also deduced. Section 3 is devoted to the proofs of the main results by applying the
generating-function methods and summation-transform techniques.

2. Main Results

As usual, by (λ
n) we denote the binomial coefficients given, for λ ∈ C, by(

λ

0

)
= 1 and

(
λ

n

)
=

λ(λ− 1) · · · (λ− n + 1)
n!

(n ∈ N).

The multinomial coefficient (
n

r1, · · · , rk

)
is given, for n, r1, · · · , rk ∈ N∗ (k ∈ N), by(

n
r1, · · · , rk

)
=

n!
r1! · · · rk!

(k ∈ N).

We also denote by s(n, k) the Stirling numbers of the first kind and by S(n, k) the Stirling
numbers of the second kind, which are usually defined by the following generating functions (see,
for example, [17,18]):[

ln(1 + t)
]k

k!
=

∞

∑
n=k

s(n, k)
tn

n!
and

(et − 1)k

k!
=

∞

∑
n=k

S(n, k)
tn

n!
.

For k ∈ N and i1, · · · , ik, n ∈ N∗, we write[
fi1(x1) + · · ·+ fik (xk)

]n

= ∑
l1+···+lk=n
(l1,··· ,lk = 0)

(
n

l1, · · · , lk

)
fi1+l1(x1) · · · fik+lk (xk), (7)

where fij(xj) (1 5 j 5 k) is a sequence of polynomials. The case when fn(x) = Bn(x) in (7) was first
studied by Agoh and Dilcher [14] who proved an existence theorem and also derived some explicit
expressions for k = 3 involving the Bernoulli polynomials. We now state the following higher-order
convolution for the general Apostol-type polynomials Yn,β(x; κ, a, b) defined by (5).

Theorem 1. Let d be a positive integer and let

y = x1 + · · ·+ xd.

Then, for an integer κ and for m, n ∈ N∗,
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∑
i1+···+id=m
(i1,··· ,id = 0)

(
m

i1, · · · , id

)[
Yi1,β(x1; κ, a, b) + · · ·+ Yid ,β(xd; κ, a, b)

]n

=

(
21−κ

ab

)d−1
(m + n)!
(d− 1)!

d

∑
i=1

s(d, i)
i−1

∑
j=0

j! ·
(

i− 1
j

)(
κ + j− 1

j

)

·
i−1−j

∑
l=0

(
i− 1− j

l

)
(−1)l yi−1−j−l(

m + n + j− (d− 1)κ
)
!

· Ym+n+j+l−(d−1)κ,β(y; κ, a, b).

We first deduce some special cases of Theorem 1. By taking

α = 1, β = λ, κ = 0, a = −1 and b = 1

in (5), we have
Yn,λ(x; 0,−1, 1) = En(x; λ) (n ∈ N∗). (8)

Thus, by applying (8) to Theorem 1, we get the following higher-order convolution for the
Apostol-Euler polynomials.

Corollary 1. Let d be a positive integer and let

y = x1 + · · ·+ xd.

Then, for m, n ∈ N∗,

∑
i1+···+id=m
(i1,··· ,id = 0)

(
m

i1, · · · , id

)[
Ei1(x1; λ) + · · ·+ Eid(xd; λ)

]n

=
(−2)d−1

(d− 1)!

d

∑
i=1

s(d, i)
i−1

∑
l=0

(
i− 1

l

)
(−1)l yi−1−l Em+n+l(y; λ).

Obviously, in the case when m = 0, Corollary 1 yields the following further special case for d ∈ N
and n ∈ N∗: [

E0(x1; λ) + · · ·+ E0(xd; λ)
]n

=
(−2)d−1

(d− 1)!

d

∑
i=1

s(d, i)
i−1

∑
l=0

(
i− 1

l

)
(−1)l yi−1−l En+l(y; λ), (9)

which, upon setting i 7→ i + 1, corresponds to the following result for the Apostol-Euler polynomials
due to Bayad and Kim [15] Theorem 4:

∑
l1+···+ld=n
(l1,··· ,ld = 0)

(
n

l1, · · · , ld

)
El1(x1; λ) · · · Eld(xd; λ)

=
(−2)d−1

(d− 1)!

d−1

∑
i=0

(−1)is(d, i + 1)
i

∑
l=0

(
i
l

)
(−y)l En+i−l(y; λ).

If we change the order of the summation on the right-hand side of (9), we get
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[
E0(x1; λ) + · · ·+ E0(xd; λ)

]n

=
2d−1

(d− 1)!

d−1

∑
l=0

(−1)d−1−l En+l(y; λ)
d

∑
i=l+1

(
i− 1

l

)
s(d, i)yi−1−l (10)

=
2d−1

(d− 1)!

d−1

∑
l=0

(−1)l En+d−l−1(y; λ)
d

∑
i=d−l

(
i− 1

d− 1− l

)
s(d, i)yi−d+l .

In particular, upon setting λ = 1 in (10), we find for d ∈ N and n ∈ N∗ that (see, for example,
ref. [19] Theorem 5)

∑
l1+···+ld=n
(l1,··· ,ld = 0)

(
n

l1, · · · , ld

)
El1(x1) · · · Eld(xd)

=
2d−1

(d− 1)!

d−1

∑
l=0

(−1)l En+d−l−1(y)
l

∑
i=0

(
d + i− l − 1

i

)
s(d, d + i− l)yi.

If we take α = κ = b = 1 in (5), we obtain the following relationships for n ∈ N∗:

Yn,λ(x; 1, 1, 1) = Bn(x; λ) and Yn,λ/2

(
x; 1,−1

2
, 1
)
= Gn(x; λ). (11)

Consequently, Theorem 1 can be applied in conjunction with (11) in order to obtain
the corresponding higher-order convolutions for the Apostol-Bernoulli polynomials and
the Apostol-Genocchi polynomials. We proceed now to give here some much simpler
expressions for the higher-order convolutions for the Apostol-Bernoulli polynomials and the
Apostol-Genocchi polynomials.

Theorem 2. Let d ∈ N and let
y = x1 + · · ·+ xd.

Then, for m, n ∈ N∗ (m + n = d),

∑
i1+···+id=m
(i1,··· ,id = 0)

(
m

i1, · · · , id

)[
Bi1(x1; λ) + · · ·+ Bid(xd; λ)

]n

=
(m + n)!

(m + n− d)! · (d− 1)!

d

∑
i=1

s(d, i)
i−1

∑
j=0

(
i− 1

j

)
(−1)j yi−1−j

m + n + j + 1− d
Bm+n+j+1−d(y; λ).

For λ = 1, Theorem 2 reduces to the following higher-order convolution for the Bernoulli polynomials:

∑i1+···+id=m
(i1,··· ,id = 0)

( m
i1,··· ,id)

[
Bi1(x1) + · · ·+ Bid(xd)

]n

= (m+n)!
(m+n−d)!·(d−1)! ∑d

i=1 s(d, i)∑i−1
j=0 (

i−1
j )

(−1)j yi−1−j

m+n+j+1−d Bm+n+j+1−d(y)
(12)

(y = x1 + · · ·+ xd; d ∈ N; m, n ∈ N∗; m + n = d).

For a different expression than that given by (12) in its special case when

x1 = · · · = xd = x,

see a known result [16] Corollary 4.
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If we set m = 0 in Theorem 2, we get[
B0(x1; λ) + · · ·+ B0(xd; λ)

]n

=
n!

(n− d)! · (d− 1)!

d

∑
i=1

(−1)i−1 s(d, i)
i−1

∑
j=0

(
i− 1

j

)
(−y)i−1−j

n + j + 1− d
Bn+j+1−d(y; λ) (13)

(y = x1 + · · ·+ xd; n, d ∈ N; n = d).

For r ∈ N and m, n ∈ N∗, it is known that (see, for example, [20] Theorem 1.2)

∑m
k=0 (

m
k )xm−k fn+k+r(y)

〈n+k+1〉r −∑n
k=0 (

n
k)(−x)n−k fm+k+r(x+y)

〈m+k+1〉r
= (−1)n+1xm+n+1

(r−1)!

∫ 1
0 tm(1− t)n fr−1(x + y− xt) dt,

(14)

where 〈λ〉n denotes the rising factorial of order n given by

〈λ〉0 = 1 and 〈λ〉n = λ(λ + 1) · · · (λ + n− 1) (n ∈ N; λ ∈ C),

and { fn(x)}∞
n=0 is a sequence of polynomials generated by

∞

∑
n=0

fn(x)
tn

n!
= F(t)e(x− 1

2 )t, (15)

with F(t) being a formal power series. Thus, by taking

F(t) =
te

t
2

λet − 1

in (15) and substituting n− d for m, i− 1 for n, y for x and 0 for y in (14), we find (for positive integers
i, d, n with n = d) that

∑n−d
j=0 (n−d

j )yn−d−j Bi+j(λ)

i+j −∑i−1
j=0 (

i−1
j )(−y)i−1−j Bn+j+1−d(y;λ)

n+j+1−d

= (−1)i yn−d+i ∫ 1
0 tn−d (1− t)i−1 B0(y− yt) dt.

(16)

It is easily seen from the properties of the Beta function B(α, β) and the Gamma function Γ(z) that

B(m + 1, n + 1) =
∫ 1

0 tm(1− t)n dt = Γ(m+1)Γ(n+1)
Γ(m+n+2)

= m!·n!
(m+n+1)! (m, n ∈ N∗).

(17)

Let δ1,λ be a Kronecker symbol given by

δ1,λ =


1 (λ = 1)

0 (λ 6= 1).

Since B0(x; λ) = 1 when λ = 1 and B0(x; λ) = 0 when λ 6= 1 (see, for example, [3]), by setting

B0(x; λ) = δ1,λ

in (16), with the help of (17), we have

∑i−1
j=0 (

i−1
j )(−y)i−1−j Bn+j+1−d(y;λ)

n+j+1−d = ∑n−d
j=0 (n−d

j )yn−d−j Bi+j(λ)

i+j

−(−1)i yn−d+i δ1,λ
(n−d)!·(i−1)!
(n−d+i)! .

(18)
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We find from (13) and (18) the following formula due to Bayad and Kim [15] Theorem 5 for sums
of products of the Apostol-Bernoulli polynomials:

∑ i1+···+id=n
(i1,··· ,id = 0)

( n
i1,··· ,id)Bi1(x1; λ) · · · Bid(xd; λ)

= n!
(d−1)! ∑d

i=1(−1)i−1 s(d, i)∑n−d
j=0

Bi+j(λ)

j!·(n−d−j)!·(i+j) yn−d−j

+δ1,λ
n!

(d−1)! ∑d
i=1 s(d, i) (i−1)!

(n−d+i)! yn−d+i

(19)

(y = x1 + · · ·+ xd; n, d ∈ N; n = d).

Upon changing the order of the summation on the right-hand side of (13), we get[
B0(x1; λ) + · · ·+ B0(xd; λ)

]n

= n!
(n−d)!·(d−1)! ∑d−1

j=0 (−1)j Bn+j+1−d(y;λ)
n+j+1−d ∑d

i=j+1 (
i−1

j )s(d, i)yi−1−j

= (−1)d−1 n!
(n−d)!·(d−1)! ∑d−1

j=0 (−1)j Bn−j(y;λ)
n−j ∑d−1

i=d−1−j (
i

d−1−j)s(d, i + 1)yi−(d−1−j),

(20)

which, in the special case when λ = 1, yields the following famous formula for the Bernoulli
polynomials due to Dilcher [19] Theorem 3:

∑
i1+···+id=n
(i1,··· ,id = 0)

(
n

i1, · · · , id

)
Bi1(x1) · · · Bid(xd)

= (−1)d−1
(

n
d

)
d

d−1

∑
j=0

(−1)j

[
j

∑
i=0

(
d + i− j− 1

i

)
s(d, d + i− j)yi

]
Bn−j(y)

n− j
(21)

(y = x1 + · · ·+ xd; n, d ∈ N; n = d).

Let pn,m(x) denote a polynomial given by (see, for example [21,22])

pn,m(x) =
(−1)n−m−1

(n− 1)!

n−1

∑
k=m

(
k
m

)
s(n, k + 1)xk−m. (22)

Then, by applying (20) and (22), we get

∑
i1+···+id=n
(i1,··· ,id = 0)

(
n

i1, · · · , id

)
Bi1(x1; λ) · · · Bid(xd; λ)

=
(−1)d−1 n!
(n− d)!

d−1

∑
j=0

pd,d−1−j(y)
Bn−j(y; λ)

n− j

(y = x1 + · · ·+ xd; n, d ∈ N; n = d),

which is a generalization of the following result given by Kim and Hu [22] Theorem 1.2 for the
Apostol-Bernoulli numbers:
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∑
i1+···+id=n
(i1,··· ,id = 0)

(
n

i1, · · · , id

)
Bi1(λ) · · · Bid(λ)

=



(−1)n+d+1 n!
(n− d)!

d−1
∑

j=0
pd,d−1−j(d)

Bn−j

(
1
λ

)
n− j

(n > d)

n! · pn,0(n) B1(λ)− n!
n−2
∑

j=0
pn,n−1−j(n)

Bn−j(
1
λ )

n− j
(n = d).

Theorem 3. Let d ∈ N and let
y = x1 + · · ·+ xd.

Then, for m, n ∈ N∗ (m + n = d),

∑
i1+···+id=m
(i1,··· ,id = 0)

(
m

i1, · · · , id

)[
Gi1(x1; λ) + · · ·+ Gid(xd; λ)

]n

=
(−2)d−1 · (m + n)!

(m + n− d)! · (d− 1)!

d

∑
i=1

s(d, i)
i−1

∑
j=0

(
i− 1

j

)
(−1)j yi−1−j

m + n + j + 1− d
Gm+n+j+1−d(y; λ).

In its special case when m = 0, Theorem 3 immediately yields[
G0(x1; λ) + · · ·+ G0(xd; λ)

]n

=
(−2)d−1 · n!

(n− d)! · (d− 1)!

d

∑
i=1

s(d, i)
i−1

∑
j=0

(
i− 1

j

)
(−1)j yi−1−j

n + j + 1− d
Gn+j+1−d(y; λ) (23)

(y = x1 + · · ·+ xd; n, d ∈ N; n = d).

By a similar consideration to that for (19), we can obtain the following formula for the
Apostol-Genocchi polynomials:

∑
i1+···+id=n
(i1,··· ,id = 0)

(
n

i1, · · · , id

)
Gi1(x1; λ) · · · Gid(xd; λ)

=
(−2)d−1 · n!
(d− 1)!

d

∑
i=1

(−1)i−1 s(d, i)
n−d

∑
j=0

Gi+j(λ)

j! · (n− d− j)! · (i + j)
yn−d−j

(y = x1 + · · ·+ xd; n, d ∈ N; n = d).

By changing the order of the summation on the right-hand side of (23), we find that

∑
i1+···+id=n
(i1,··· ,id = 0)

(
n

i1, · · · , id

)
Gi1(x1; λ) · · · Gid(xd, λ)

= 2d−1
(

n
d

)
d

d−1

∑
j=0

(−1)j

[
j

∑
i=0

(
d + i− j− 1

i

)
s(d, d + i− j)yi

]
Gn−j(y; λ)

n− j
(24)

(y = x1 + · · ·+ xd; n, d ∈ N; n = d).

Finally, upon setting λ = 1 in (24), gives a formula for sums of products of the Genocchi
polynomials, which is analogous to (21).
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3. Proofs of Theorems

Before giving the proofs of Theorems 1–3, we recall the following auxiliary results which will be
needed in our proofs.

Lemma 1. ([23] Theorem 3.1 and Theorem 3.2) Let α, λ ∈ C and n ∈ N∗. Then

∂n

∂tn

{
1

1− λeαt

}
= αn

n+1

∑
k=1

(−1)n+k−1

(1− λeαt)k (k− 1)! · S(n + 1, k).

Furthermore, for n ∈ N,

1
(1− λeαt)n =

n

∑
k=1

(−1)n−k

(n− 1)! · αk−1
∂k−1

∂tk−1

{
1

1− λeαt

}
· s(n, k). (25)

Lemma 2. ([20] Equations (2.6) and (3.11)) Let n ∈ N∗. Then

ext ∂n

∂tn {F(y, t)} =
∞

∑
m=0

[
n

∑
k=0

(
n
k

)
(−x)n−k fm+k(x + y)

]
tm

m!
. (26)

Moreover, for r ∈ N,

ext ∂n

∂tn {G(y, t)} =
∞

∑
m=0

[
n

∑
k=0

(
n
k

)
(−x)n−k fm+k+r(x + y)

〈m + k + 1〉r

+
(−1)n+1 xm+n+1

(r− 1)!

∫ 1

0
tm(1− t)n fr−1(x + y− xt) dt

]
tm

m!
, (27)

where

F(y, t) =
∞

∑
m=0

fm(y)
tm

m!
,

G(y, t) =
∞

∑
m=0

fm+r(y)
〈m + 1〉r

tm

m!
,

and the sequence { fn(x)}∞
n=0 is given as in Equation (15).

Proof of Theorem 1. First of all, by setting α = 1 in (25), we get

1
(λet − 1)n =

n

∑
k=1

(−1)k−1

(n− 1)!
∂k−1

∂tk−1

{
1

λet − 1

}
· s(n, k) (n ∈ N),

which, for d ∈ N, yields(
21−κ

ab

)d
· tκd e(x1+···+xd)t[

(
β
a )

b et−1
]d

=
(

21−κ

ab

)d
·∑d

i=1
(−1)i−1

(d−1)! tκd eyt ∂i−1

∂ti−1

{
1

(
β
a )

bet−1

}
· s(d, i).

(28)

Let ν ∈ N and let the function fν(t) be differentiable with respect to t. If we set

fν(t) =
21−κtκ

βb et − ab exνt,
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then it is clear from (5) that for l ∈ N∗,

∂l

∂tl {fν(t)} =
∞

∑
n=0
Yn+l,β(xν; κ, a, b)

tn

n!
. (29)

By differentiating both sides of (28) m times with respect to t, with the help of the general Leibniz
rule presented in [18] (pp. 130–133), we obtain

∑i1+···+id=m
(i1,··· ,id = 0)

( m
i1,··· ,id)

∂i1

∂ti1
{f1(t)} · · · ∂id

∂tid
{fd(t)}

=
(

21−κ

ab

)d
∑d

i=1
(−1)i−1

(d−1)!
∂m

∂tm

{
tκdeyt ∂i−1

∂ti−1

{
1

(
β
a )

bet−1

}}
· s(d, i).

(30)

We now denote by [tn] f (t) the coefficient of tn in f (t) for n ∈ N∗. Then, by making use of the
operation

[
tn

n!

]
on both sides of (30) in conjunction with (29), we find that

∑i1+···+id=m
(i1,··· ,id = 0)

( m
i1,··· ,id)

[
Yi1,β(x1; κ, a, b) + · · ·+ Yid ,β(xd; κ, a, b)

]n

=
(

21−κ

ab

)d−1
∑d

i=1
(−1)i−1

(d−1)! · s(d, i)
[

tn

n!

]
∂m

∂tm

{
tκdeyt ∂i−1

∂ti−1

{
21−κ

βbet−ab

}}
.

(31)

Also, by using the Leibniz rule, we have

∂i−1

∂ti−1

{
21−κ

βb et − ab

}
=

∂i−1

∂ti−1

{
21−κtκ

βbet − ab ·
1
tκ

}
=

i−1

∑
j=0

(
i− 1

j

)
∂i−1−j

∂ti−1−j

{
21−κtκ

βbet − ab

}
· ∂j

∂tj

{
1
tκ

}
(i ∈ N)

and
∂j

∂tj

{
1
tκ

}
= (−1)j j! ·

(
κ + j− 1

j

)
1

tκ+j (j ∈ N∗).

It follows from the above two identities that

tκd eyt ∂i−1

∂ti−1

{
21−κ

βbet − ab

}
=

i−1

∑
j=0

(−1)j j! ·
(

i− 1
j

)
eyt ∂i−1−j

∂ti−1−j

{
21−κ tκ

βbet − ab

}
·
(

κ + j− 1
j

)
t(d−1)κ−j. (32)

If we replace F(y, t) in (26) by

F(0, t) =
21−κtκ

βbet − ab =
∞

∑
l=0
Y l,β(0; κ, a, b)

tl

l!
,

we find for n ∈ N∗ that

ext ∂n

∂tn

{
21−κ tκ

βbet − ab

}
=

∞

∑
l=0

[
n

∑
ν=0

(
n
ν

)
(−x)n−νYl+ν,β(x; κ, a, b)

]
tl

l!
. (33)
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Thus, by applying (33) to (32), we obtain

tκd eyt ∂i−1

∂ti−1

{
21−κ

βb et − ab

}
=

∞

∑
l=0

i−1

∑
j=0

i−1−j

∑
ν=0

j! ·
(

i− 1
j

)(
i− 1− j

ν

)(
κ + j− 1

j

)

· (−1)i−1−ν yi−1−j−ν Yl+ν,β(y; κ, a, b)
t(d−1)κ+l−j

l!
,

which readily yields

∂m

∂tm

{
tκd eyt ∂i−1

∂ti−1

{
21−κ

βb et − ab

}}
= m! ·

∞

∑
l=0

i−1

∑
j=0

i−1−j

∑
ν=0

(−1)i−1−ν j!

·
(

i− 1
j

)(
i− 1− j

ν

)(
κ + j− 1

j

)(
(d− 1)κ + l − j

m

)
· yi−1−j−ν Yl+ν,β(y; κ, a, b)

t(d−1)κ+l−m−j

l!
,

that is, for n ∈ N∗,[
tn

n!

]
∂m

∂tm

{
tκd eyt ∂i−1

∂ti−1

{
21−κ

βb et − ab

}}

= (m + n)! ·
i−1

∑
j=0

i−1−j

∑
ν=0

(−1)i−1−ν j! ·
(

i− 1
j

)(
i− 1− j

ν

)(
κ + j− 1

j

)

· yi−1−j−ν
Ym+n+j+ν−(d−1)κ,β(y; κ, a, b)(

m + n + j− (d− 1)κ
)
!

. (34)

Finally, Theorem 1 would follow by applying (34) to (31). �

Proof of Theorem 2. It is easily seen from (11) and (31) that, for d ∈ N and m, n ∈ N∗,

∑i1+···+id=m
(i1,··· ,id = 0)

( m
i1,··· ,id)

[
Bi1(x1; λ) + · · ·+ Bid(xd; λ)

]n

= ∑d
i=1

(−1)i−1

(d−1)!

[
tn

n!

]
∂m

∂tm

{
td eyt ∂i−1

∂ti−1

{
1

λet−1

}}
· s(d, i).

(35)

Since B0(x; λ) = 1 when λ = 1 and B0(x; λ) = 0 when λ 6= 1, by setting

B0(x; λ) = δ1,λ,

we get
1

λet − 1
− δ1,λ

t
=

∞

∑
l=0
Bl+1(0; λ)

tl

(l + 1)!
,

where δ1,λ is the Kronecker symbol. Hence, by putting r = 1 and replacing G(y, t) in (27) by

G(0, t) =
1

λet − 1
− δ1,λ

t
=

∞

∑
l=0
Bl+1(0; λ)

tl

(l + 1)!
,



Mathematics 2019, 6, 329 12 of 14

and making use of (17), we find for n ∈ N∗ that

ext ∂n

∂tn

(
1

λet − 1
− δ1,λ

t

)
=

∞

∑
l=0

[
n

∑
ν=0

(
n
ν

)
(−x)n−ν Bl+ν+1(x; λ)

l + ν + 1

+(−1)n+1 δ1,λ
n! · l!

(n + l + 1)!
xn+l+1

]
tl

l!
,

which, together with the exponential series for ext, yields

ext ∂n

∂tn

{
1

λet−1

}
= ∑∞

l=0

[
∑n

ν=0 (
n
ν)(−x)n−ν Bl+ν+1(x;λ)

l+ν+1

]
tl

l!

+(−1)n n! · δ1,λ ∑n
l=0

xl tl−n−1

l! .
(36)

It follows from (36) that

td eyt ∂i−1

∂ti−1

{
1

λet−1

}
= ∑∞

l=0

[
∑i−1

ν=0 (
i−1

ν )(−y)i−1−ν Bl+ν+1(y;λ)
l+ν+1

]
td+l

l!

+(−1)i−1(i− 1)! · δ1,λ ∑i−1
l=0

yl

l! td+l−i (d, i ∈ N).
(37)

If we now partially differentiate both sides of (37) m times with respect to t, then

∂m

∂tm

{
td eyt ∂i−1

∂ti−1

{
1

λet − 1

}}

= m! ·
∞

∑
l=0

(
d + l

m

)[ i−1

∑
ν=0

(
i− 1

ν

)
(−y)i−1−ν Bl+ν+1(y; λ)

l + ν + 1

]
td+l−m

l!

+ (−1)i−1(i− 1)! ·m! · δ1,λ

i−1

∑
l=0

(
d + l − i

m

)
yl

l!
td+l−i−m,

which, for m, n ∈ N∗ (m + n = d), yields

[
tn

n!

]
∂m

∂tm

{
tdeyt ∂i−1

∂ti−1

{
1

λet−1

}}
= (m+n)!

(m+n−d)! ∑i−1
ν=0 (

i−1
ν )(−y)i−1−ν Bm+n+ν+1−d(y;λ)

m+n+ν+1−d .

(38)

By applying (38) to (35), we are led to Theorem 2. �

Proof of Theorem 3. From (11) and (31), we find for d ∈ N and m, n ∈ N∗ that

∑i1+···+id=m
(i1,··· ,id = 0)

( m
i1,··· ,id)

[
Gi1(x1; λ) + · · ·+ Gid(xd; λ)

]n

= (−2)d−1 ·∑d
i=1

(−1)i−1

(d−1)!

[
tn

n!

]
∂m

∂tm

{
td eyt ∂i−1

∂ti−1

{
2

λet+1

}}
· s(d, i).

(39)

Since (see, for example, [2])
G0(x; λ) = 0,

by applying (3) we have
2

λet + 1
=

∞

∑
n=0
Gn+1(0; λ)

tn

(n + 1)!
.

Hence, by setting r = 1 and taking

G(0, t) =
2

λet + 1
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in (27), we find for n ∈ N that

ext ∂n

∂tn

{
2

λet + 1

}
=

∞

∑
l=0

[
n

∑
ν=0

(
n
ν

)
(−x)n−ν Gl+ν+1(x; λ)

l + ν + 1

]
tl

l!
. (40)

It follows from (40) that

td eyt ∂i−1

∂ti−1

{
2

λet + 1

}
=

∞

∑
l=0

[
i−1

∑
ν=0

(
i− 1

ν

)
(−y)i−1−ν Gl+ν+1(y; λ)

l + ν + 1

]
td+l

l!
,

which implies, for m ∈ N∗ and i, d ∈ N, that

∂m

∂tm

{
td eyt ∂i−1

∂ti−1

{
2

λet+1

}}
= m! ·∑∞

l=0 (
d+l
m )
[
∑i−1

ν=0 (
i−1

ν )(−y)i−1−ν Gl+ν+1(y;λ)
l+ν+1

]
td+l−m

l! . (41)

By making use of (41), we find for m, n ∈ N∗ and i, d ∈ N that

[
tn

n!

]
∂m

∂tm

{
td eyt ∂i−1

∂ti−1

{
1

λet + 1

}}

=
(m + n)!

(m + n− d)!

i−1

∑
ν=0

(
i− 1

ν

)
(−y)i−1−ν Gm+n+ν+1−d(y; λ)

m + n + ν + 1− d
. (42)

Finally, by applying (42) to (39), we conclude the proof of Theorem 3. �

4. Conclusions and Observation

In the paper, we have given a systematic and unified investigation for the Apostol-Bernoulli
polynomials, the Apostol-Euler polynomials and the Apostol-Genocchi polynomials. By applying
the generating-function methods and summation-transform techniques, we have established some
higher-order convolutions for the Apostol-Bernoulli polynomials, the Apostol-Euler polynomials and
the Apostol-Genocchi polynomials.

The methods shown in this paper may be applied to other families of special polynomials. In a
similar way, some results may be obtained.
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