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Abstract: In this paper, an SIQR (Susceptible, Infected, Quarantined, Recovered) epidemic model
with vaccination, elimination, and quarantine hybrid strategies is proposed, and the dynamics of
this model are analyzed by both theoretical and numerical means. Firstly, the basic reproduction
number R0, which determines whether the disease is extinct or not, is derived. Secondly, by LaSalles
invariance principle, it is proved that the disease-free equilibrium is globally asymptotically stable
when R0 < 1, and the disease dies out. By Routh-Hurwitz criterion theory, we also prove that the
disease-free equilibrium is unstable and the unique endemic equilibrium is locally asymptotically
stable when R0 > 1. Thirdly, by constructing a suitable Lyapunov function, we obtain that the
unique endemic equilibrium is globally asymptotically stable and the disease persists at this endemic
equilibrium if it initially exists when R0 > 1. Finally, some numerical simulations are presented to
illustrate the analysis results.

Keywords: basic reproductive number; equilibrium; stability; SIQR epidemic model; vaccination;
elimination

1. Introduction

As we know, infectious diseases cause the loss of billions of lives and bring great pain to millions of
families. The whole world has devoted efforts to avoid the outbreak of the disease. Mathematical models
have become important tools in analyzing the spread and control of infectious diseases. Almost 250 years
ago, Bernoulli presented some works on human epidemiology with the help of mathematical models.
Toward the beginning of the 2nd quarter of the 20th century, Kermack and McKendric [1] established
the classical SIR model on epidemiology. Later on, many mathematical models had been proposed for
the transmission dynamics of infectious diseases [2–9]. In recent years, some works have been studied
for mathematical analysis of human diseases and epidemic models also utilising dynamical system
approaches as stability analysis, LaSalle’s invariance principle, Routh-Hurwitz criterion, or Lyapunov
function in combination with numerical studies [10–14]. These models provided theoretical and
quantitative bases for the prevention and control of infectious diseases.

Quarantine is the most direct control strategy for the spread of infectious disease. It has been used
to reduce the transmission of human diseases such as leprosy, plague, cholera, typhus, yellow fever,
smallpox, diphtheria, tuberculosis 25, and measles etc, and also been used to tackle animal diseases
such as rinderpest, foot and mouth disease, psittacosis, asian fowl plague, and rabies etc. Hence, it is
very important to study the infectious disease models with quarantine [15–18]. Vaccination is
considered to be the most effective intervention strategy. It has been used to tackle diseases such
as measles, mumps, rubella, diphtheria, tetanus, influenza, polio, etc. Recently, the epidemiological
models with vaccination strategy have been analyzed by many authors in [19–27]. For example,
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Li et al. [19] discussed the global analysis of SIS epidemic model with a simple vaccination and
multiple endemic equilibria; Liu et al. [20] established two SVIR models by considering the time
for them to obtain immunity and the possibility for them to be infected before this; Trawicki [21]
proposes a new SEIRS model with vital dynamics (birth and death rates), vaccination, and temporary
immunity provides a mathematical description of infectious diseases and corresponding spread in
biology; T.K. Kar et al. [23] focused on the study of a nonlinear mathematical SIR epidemic model
with a vaccination program, and the results showed that an accurate estimation of the efficiency of
vaccination is necessary to prevent and control the spread of disease. We also refer the readers to [26,27]
for relative studies on this respect. Elimination is also an effective measure to eliminate the source
of infection, it is that the infected individuals were killed when they are found. It has been used to
tackle diseases caused by animals or spreading in animals such as avian in uenza, tuberculosis, tetanus,
rotavirus infection, etc. However, these models only consider a single prevention and control strategy,
there is scarce research on the hybrid case of these strategies.

Our objective of this paper is to consider an SIQR model with vaccination, elimination, and
quarantine hybrid strategies. The rest of the paper is organized as follows. In Section 3, we formulate an
SIQR model with vaccination, elimination and quarantine hybrid strategies. In Section 4, we determine
the basic reproduction number R0 and obtain the existence of equilibriums. In Section 5, we discuss
and analyze the local stability and the global stability of the equilibriums by Routh-Hurwitz criterion
theory and constructing suitable Lyapunov functions. In Section 6, we carry out numerical simulations
to illustrate the theoretical results. In Section 7, we present some discussions and illustrations about
the characteristics of different prevention and control strategies according to the expression of the basic
reproductive number R0. In the last section, we give a conclusion and prospect for the research work.

2. Model Formulation

In this section, we formulate an SIQR model with vaccination, elimination, and quarantine
hybrid strategies.

We assume that the total population is divided into four distinct epidemiological subclasses of
individuals which are susceptible, infectious, quarantine, and recovered (removed) with sizes denoted
by S(t), I(t), Q(t), and R(t), respectively. The total population size at time t is denoted by N(t),
with N(t) = S(t) + I(t) + Q(t) + R(t). We establish the following SIQR epidemic model of ordinary
differential equations 

dS
dt = Λ− βSI − µS− pS,
dI
dt = βSI − (µ + α1 + γ + q + δ)I,
dQ
dt = δI − (ε + µ + α2)Q,
dR
dt = pS + γI + εQ− µR.

(1)

where Λ is the recruitment rate of the population, µ is the natural death rate of the population, α1 is the
disease-related death rate of the infective class, α2 is the disease-related death rate of the quarantine
class, β is the effective contact rate between the susceptible class and the infective class, γ is the natural
recovery rate of the infective class, p is the vaccination rate of the susceptible class, δ is the quarantine
rate of the infective class, ε is the removed rate from the quarantine class to the recovered class, q is the
elimination rate of the infective class.

3. Equilibrium and Basic Reproductive Number

In this section, we determine the basic reproduction number R0 and obtain the existence of the
disease-free equilibrium E0 and the endemic equilibrium E∗ of system (1).

Summing up the four equations of system (1) and denoting

N(t) = S(t) + I(t) + Q(t) + R(t),
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having
N′(t) = Λ− µN − (α1 + q)I − α2Q ≤ Λ− µN.

By solving the formula of N′(t), we obtain

N(t) ≤ N(0)e−µt +
Λ
µ
(1− e−µt),

thus
lim

t→+∞
sup(N(t)) =

Λ
µ

.

From biological considerations, we study system (1) in the the following feasible region

D =

{
(S, I, Q, R)|S ≥ 0, I ≥ 0, Q ≥ 0, R ≥ 0, S + I + Q + R ≤ Λ

µ

}
.

Set the right sides of system (1) equal zero, that is,
Λ− βSI − µS− pS = 0,

βSI − (µ + α1 + γ + q + δ)I = 0,

δI − (ε + µ + α2)Q = 0,

pS + γI + εQ− µR = 0.

(2)

We determine a disease-free equilibrium E0

(
Λ

µ+p , 0, 0, Λp
(µ+p)µ

)
of system (1) using (2). Further,

if Λβ > (µ + p)(µ + α1 + γ + q + δ), we obtain an unique endemic equilibrium E∗(S∗, I∗, Q∗, R∗) of
system (1) using (2), where

S∗ =
µ + α1 + γ + q + δ

β
, I∗ =

µ + p
β

(
Λ

µ + p
β

µ + α1 + γ + q + δ
− 1
)

,

Q∗ =
δ

µ + α2 + ε

µ + p
β

(
Λ

µ + p
β

µ + α1 + γ + q + δ
− 1
)

, R∗ =
γI∗ + pS∗ + εQ∗

µ
.

Define
R0 =

Λ
µ + p

β

µ + α1 + γ + q + δ
.

The R0 is called the basic reproduction number of system (1). It is easy to obtain the following theorem.

Theorem 1. For system (1), there is always a disease-free equilibrium E0, and there is also an unique endemic
equilibrium E∗ when R0 > 1.

4. Global Stability of Equilibriums

In this section, we study the global stability of the disease-free equilibrium E0

(
Λ

µ+p , 0, 0, Λp
(µ+p)µ

)
and the endemic equilibrium E∗(S∗, I∗, Q∗, R∗) of system (1) by Routh-Hurwitz criterion theory and
LaSalle’s invariance principle.

Theorem 2. If R0 < 1, the disease-free equilibrium E0 of system (1) is locally asymptotically stable. If R0 > 1,
the disease-free equilibrium E0 is unstable.
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Proof. The Jacobian matrix of system (1) at the disease-free equilibrium E0 is

J(E0) =


−µ− p 0 0 0

0 β Λ
µ+p − (µ + α1 + γ + q + δ) 0 0

0 δ −µ− α2 − ε 0
p γ ε −µ

 .

The four eigenvalues of matrix J(E0) are

λ1 = −µ− p, λ2 =
β

µ + α1 + γ + q + δ
(R0 − 1), λ3 = −(µ + α2 + ε), λ4 = −µ.

Obviously, if R0 < 1, we have the relation λ2 < 0. Therefore, all eigenvalues of matrix J(E0) have
negative real parts. Hence, the disease-free equilibrium E0 is locally asymptotically stable. If R0 > 1,
we get the relation λ2 > 0. Therefore, the matrix J(E0) has at least an eigenvalue with positive real
part. Thus, the disease-free equilibrium E0 is unstable. This completes the proof.

Theorem 3. If R0 < 1, the disease-free equilibrium E0 of system (1) is globally asymptotically stable.

Proof. Consider the following Lyapunov function

V(t) = I(t).

Calculating the derivative of V(t) along the positive solution of system (1), it follows that

dV
dt

∣∣∣∣
(1)

=
dI
dt

∣∣∣∣
(1)

= βSI − (µ + α1 + γ + q + δ)I

= (βS− (µ + α1 + γ + q + δ)) I

≤
(

β
Λ

µ + p
− (µ + α1 + γ + q + δ)

)
= (µ + α1 + γ + q + δ)(R0 − 1)I

≤ 0.

Furthermore, V′ = 0 only if I = 0. The maximum invariant set in {(S, I, Q, R)|V′ = 0} is the
singleton {E0}. When R0 < 1, according to LaSalle’s invariance principle [28,29], it follows that

lim
t→+∞

I(t) = 0.

Then, we obtain the limit equations of system (1)
dS
dt = Λ− µS− pS,
dQ
dt = −(ε + µ + α2)Q,
dR
dt = pS + εQ− µR.

So, the disease-free equilibrium E0 is globally attractive in the region D. Therefore, the disease-free
equilibrium E0 of system (1) is globally asymptotically stable when R0 < 1 combined with the local
asymptotical stability of the disease-free equilibrium E0. Thus we complete the proof.

Theorem 4. If R0 > 1, the endemic equilibrium E∗ of system (1) is locally asymptotically stable.
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Proof. The Jacobian matrix of system (1) at the endemic equilibrium E∗ is

J(E∗) =


−µ− p− βI∗ −βS∗ 0 0

βS∗ β Λ
µ+p − (µ + α1 + γ + q + δ) 0 0

0 δ −µ− α2 − ε 0
p γ ε −µ

 .

The two eigenvalues of matrix J(E∗) are

λ3 = −(µ + α2 + ε), λ4 = −µ.

The other two eigenvalues are also the eigenvalues of following matrix

J∗(E∗) =

(
−µ− p− βI∗ −βS∗

βS∗ β Λ
µ+p − (µ + α1 + γ + q + δ)

)

=

(
R0 −βS∗

βS∗ (µ + α1 + γ + q + δ)(R0 − 1)

)
Obviously, if R0 > 1, it follows that

tr(J∗(E∗)) = R0 + (µ + α1 + γ + q + δ)(R0 − 1) > 0,

det(J∗(E∗)) = R0(R0 − 1)(µ + α1 + γ + q + δ) + β2(S∗)2 > 0.

Therefore, all eigenvalues of matrix J(E∗) have negative real parts. According to Routh-Hurwitz
criterion, we obtain the endemic equilibrium E∗ of system (1) is locally asymptotically stable. Thus the
proof is completed.

The global asymptotic stability of the endemic equilibrium is proved below.

Theorem 5. If R0 > 1, the endemic equilibrium E∗ of system (1) is globally asymptotically stable.

Proof. Since the front two equations of system (1) can be independent, we consider the
following subsystem {

dS
dt = Λ− βSI − µS− pS,
dI
dt = βSI − (µ + α1 + γ + q + δ)I.

(3)

Consider the following Liapunov function

V(t) =
1
2
(S− S∗)2 + S∗

(
I − I∗ − I∗ln

I∗

I

)
.

Calculating the derivative of V(t) along the positive solution of system (3), it follows that

dV
dt

∣∣∣∣
(3)

= (S− S∗)S′ + S∗(I − I∗)
I′

I
+ (Q−Q∗)Q′ + (R− R∗)R′

= −(µ + p)(S− S∗)2 − βI(S− S∗)2

≤ 0.
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Obviously, we can obtain that V(t) is positive definite and V′(t) is negative definite. Hence,
the solution (S∗, I∗) of system (3) is globally asymptotically stable. When R0 > 1, any solutions of
system (3) converge to (S∗, I∗), equivalently, lim

t→+∞
S(t) = S∗, lim

t→+∞
I(t) = I∗.

Then prove: lim
t→+∞

Q(t) = Q∗, lim
t→+∞

R(t) = R∗.

Consider the third equation of system (1), we derive limit equation

dQ
dt

= δI∗ − (ε + µ + α2)Q. (4)

It is easy to show that Q∗ is the solution of Equation (4) and Q∗ is globally asymptotically
stable. According to the relation between limit system and original system, we therefore obtain that
lim

t→+∞
Q(t) = Q∗. In the same way, we also obtain that lim

t→+∞
R(t) = R∗.

Noting that if R0 > 1, the endemic equilibrium E∗ of system (1) is locally asymptotically stable,
we conclude that if R0 > 1, the endemic equilibrium E∗ of system (1) is globally asymptotically stable.
This completes the proof.

5. The Numerical Simulation

In this section, we give numerical simulations to illustrate the main theoretical results above.
In system (1), let Λ = 0.26, µ = 0.02, q = 0.12, α1 = 0.1, α2 = 0.01, γ = 0.1, p = 0.05,

δ = 0.12, ε = 0.3. When β = 0.1, by computing, we derive R0 = 0.8075 < 1 and system (1) has a
disease-free equilibrium E0 = (3.735, 0, 0, 9.265). And we set twelve initial conditions (1.5, 2.5, 1, 4.6),
(4, 0.4, 6, 2.5), (5.5, 3.8, 0.5, 2), (0.8, 1.6, 2.1, 8.9), (3, 5.1, 1.8, 2), (4.2, 1.5, 2, 3.2), (6.5, 2.5, 1, 1.5), (1.3, 0.4, 2, 9.5),
(8.5, 0.8, 0.5, 0.5), (4.8, 1.6, 2.1, 4.3), (3.6, 3.1, 4.8, 0.9), and (0.5, 0.1, 1.4, 10.1), the numerical simulation is
shown in Figure 1. From Theorem 3, it follows that E0 is globally asymptotically stable. Figure 1 shows
the dynamic behaviors of system (1).
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Figure 1. Variational curves of S, I, Q, and R with time t when R0 = 0.8075 < 1.

In system (1), let Λ = 0.26, µ = 0.02, q = 0.12, α1 = 0.1, α2 = 0.01, γ = 0.1, p = 0.05,
δ = 0.12, ε = 0.3. When β = 0.3, by computing, we derive R0 = 2.4224 > 1 and system (1) has
an endemic equilibrium E∗ = (1.535, 0.3321, 0.1221, 7.313). We set the same initial conditions as in
Figure 1, the numerical simulation is shown in Figure 2. From Theorem 5, we notice that E∗ is globally
asymptotically stable. Numerical simulation illustrates this fact in Figure 2.
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Figure 2. Variational curves of S, I, Q, and R with time t when R0 = 2.4224 > 1.

In addition, we set the same initial conditions and parameters as in Figure 2 and obtain the
following illustrations (see Figures 3–5). The reproduction number R1 for quarantine-free (δ = 0)
and vaccination-free (p = 0) model is R1 = 11.4706 > 1, the numerical simulation is shown in
Figure 3. The reproduction number R2 for elimination-free (q = 0) and vaccination-free (p = 0) model
is R2 = 11.47 > 1, the numerical simulation is shown in Figure 4. The reproduction number R3

for elimination-free (q = 0) and quarantine-free (δ = 0) model is R3 = 5.0649 > 1, the numerical
simulation is shown in Figure 5.
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Figure 3. Variational curves of S, I, and R with time t when R1 = 11.4706 > 1 for the same initial
values and parameters of Figure 2 except δ = p = 0.
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Figure 4. Variational curves of S, I, Q, and R with time t when R2 = 11.47 > 1 for the same initial
values and parameters of Figure 2 except p = q = 0.
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Figure 5. Variational curves of S, I, and R with time t when R3 = 5.0649 > 1 for the same initial values
and parameters of Figure 2 except q = δ = 0.

6. Discussions

In this section, we discuss and analyze the characteristics of different prevention and control
strategies according to the basic reproductive number R0.
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From the expression of the basic reproduction number R0, we see that the basic reproduction
number R0 is dependent on the prevention and control coefficients p, q, and δ. Calculating the
derivative of R0 about p, q, and δ, respectively, having

∆p =
∂R0

∂p
= − βΛ

(µ + p)2(µ + α1 + γ + q + δ)
. (5)

∆δ =
∂R0

∂δ
= − βΛ

(µ + p)(µ + α1 + γ + q + δ)2 . (6)

∆q =
∂R0

∂q
= − βΛ

(µ + p)(µ + α1 + γ + q + δ)2 . (7)

From the mathematical meaning of the derivative, we know that ∆p, ∆q, and ∆δ indicates rate of
change the percentage of vaccination per unit, elimination per unit, and quarantine per unit for the
basic reproduction number R0, respectively. Using (5) and (7), having ∆p < 0, ∆q < 0, and ∆δ < 0.
Hence, vaccination, elimination and quarantine strategy can reduce the basic reproduction number R0,
which is favourable to control the prevalence of diseases.

According to Formulas (6) and (7), from the perspective of R0, the effect of the quarantine
strategy on R0 is the same as that of the elimination strategy. In particular, the effect of quarantine
strategy on the epidemic state of diseases is the same as that of elimination strategy. Numerical
simulations also illustrate this fact (see Figures 3 and 4). However, from the practical perspective,
quarantine strategy entails high treatment costs, whereas elimination strategy requires smaller costs.
Therefore, elimination strategy can be used to reduce diseases in the animal populations. But for
some populations, the elimination strategy is not feasible, and the quarantine strategy is no doubt an
alternative way. According to the Formula (5) and (7), ∆p = ∆δ, and having

∆p
∆δ

=
∆p
∆q

=
µ + α1 + γ + q + δ

µ + p
.

When p = q, ∆p > ∆q, it is showed that the vaccination strategy is better than the quarantine
strategy or elimination strategy(see Figures 4–6).

However, from a practical point of view, because the susceptible S(t) is normally greater than the
infectious I(t) and quarantine Q(t), the cost of raising the proportion of unit vaccination is much higher
than the cost of raising the unit quarantine or elimination. Therefore, the hybrid control strategies
should be considered in the practical implementation for the prevention and control of infectious
diseases, which makes the cost and benefit are optimal.

7. Conclusions

In this paper, we formulated an SIQR epidemic model with vaccination, elimination, and
quarantine hybrid strategies, and studied the dynamics of this disease model by means of both
theoretical and numerical ways. For this model, we defined the basic reproduction number R0 which
completely determines the dynamical behavior of system (1). When R0 < 1, as is shown in Theorem 3,
the disease-free equilibrium is globally asymptotically stable (see Figure 1), and the disease always
dies out eventually. When R0 > 1, Theorem 5 tell us that the unique endemic equilibrium is globally
asymptotically stable (see Figure 2), and the disease persists at the endemic equilibrium level if it is
initially present. Some numerical simulations were performed to illustrate the analysis results. Finally,
we discussed and analyzed the characteristics of different control strategies according to the basic
reproductive number R0. We obtained that vaccination strategy is better than quarantine strategy
(see Figures 4–6), elimination strategy is the same as quarantine strategy (see Figures 3 and 4), and
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vaccination, elimination, and quarantine hybrid strategies are the best for optimizing cost and benefit
(see Figures 2–5).
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Figure 6. Variational curves and variational curved surface of R0 with p and q.

Interestingly, the stability of the equilibrium of the model is under the influence of hybrid control
strategies. We believe that our study findings offer guidance in facing up to the disease. In addition,
we would like to point out here that the model (1) leaves us a problem: We take the vaccination
parameter as constant in the model, but it would be beneficial if we take it as a time dependable
function due to reality. We leave this (anon-autonomous infectious disease model) for future work.
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