. mathematics ﬁw\o\w

Article

A Model and an Algorithm for a Large-Scale
Sustainable Supplier Selection and Order
Allocation Problem

Jong Soo Kim *{, Eunhee Jeon !, Jiseong Noh ¥ and Jun Hyeong Park 2

1 Department of Industrial and Management Engineering, Hanyang University, Erica Campus, Ansan 15588,

Korea; jackiejeh@naver.com (E.J.); slaylina@naver.com (J.N.)

KPMG Samjong Accounting Corp., Gangnam Finance Center, 152 Teheran-ro, Gangnam-gu, Seoul 06236,
Korea; common123@nate.com

Correspondence: pure@hanyang.ac.kr

Received: 14 November 2018; Accepted: 11 December 2018; Published: 13 December 2018 ﬁr;,e;gtfeosr

Abstract: We consider a buyer’s decision problem of sustainable supplier selection and order
allocation (SSS & OA) among multiple heterogeneous suppliers who sell multiple types of
items. The buyer periodically orders items from chosen suppliers to refill inventory to preset
levels. Each supplier is differentiated from others by the types of items supplied, selling price,
and order-related costs, such as transportation cost. Each supplier also has a preset requirement for
minimum order quantity or minimum purchase amount. In the beginning of each period, the buyer
constructs an SSS & OA plan considering various information from both parties. The buyer’s planning
problem is formulated as a mathematical model, and an efficient algorithm to solve larger instances
of the problem is developed. The algorithm is designed to take advantage of the branch-and-bound
method, and the special structure of the model. We perform computer experiments to test the accuracy
of the proposed algorithm. The test result confirmed that the algorithm can find a near-optimal
solution with only 0.82 percent deviation on average. We also observed that the use of the algorithm
can increase solvable problem size by about 2.4 times.

Keywords: optimization; integer linear programming; sustainable; supplier selection; order allocation

1. Introduction

Supplier evaluation and selection are important decisions in the management of a supply
network [1,2]. After determining suppliers to fill orders, the subsequent decision to allocate orders
to chosen suppliers follows. Recent awareness in sustainable supply chain management frequently
integrates these decisions with sustainability factors. The concept of sustainability plays an essential
role in many organization and industries with respect to environmental protection and social
responsibility [3]. As a consequence, sustainable supplier selection and order allocation (SSS &
OA) emerges as a hot issue in the area of production and logistics. Huge number of papers have
been published for this important decision problem. For example, Kuo et al. [4] developed a supplier
selection system through fuzzy AHP and DEA. Their method was successfully applied to an auto
lighting system company in Taiwan. The SSS & OA can be included in green supply chain management
to improve the performance of a supply chain. Roehrich et al. [5] did such a study for a globalized
German-based aircraft interior manufacturer and six key suppliers. There are a few commercial
systems having supplier selection and evaluation functions. eSourcing Capability Models developed
by ITSqc and CMMI-ACQ, made by SEI, are useful systems in the business area for acquiring products
and services [6,7].
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This paper studies an SSS & OA problem for a buyer who performs regular replenishment
activities with heterogeneous suppliers who sell a few types of items. The system analyzed here is
a two-stage supply chain system, which consists of a single buyer controlling inventories using a
periodic order-up-to inventory control policy, and multiple heterogeneous suppliers who can supply
items in response to orders from the buyer. The buyer sells items to end customers and replenishes
items regularly based on the inventory status and future demand forecasts. In response to an order
from the buyer, the suppliers transport the ordered amount after a constant lead time.

The problem analyzed in this paper is a buyer’s decision problem of selecting suppliers and,
at the same time, order allocation for selected suppliers. Based on such replenishment decisions,
the buyer considers various system variables and several contract terms, including minimum order
quantity (MOQ) and minimum purchase amount (MPA) requirements. The MOQ and MPA specify
that suppliers accept only those orders that exceed a predetermined minimum order quantity and
minimum order value [8-10]. Additional factors the buyer considers in the decision process include
working capital requirement and sustainability factors.

Even though several optimization model variants have been introduced for systems similar to the
one analyzed in this paper, a detailed model representing all the important characteristics of the 5SS &
OA process has not yet been analyzed. To handle larger instances of real decision processes requiring
big data and excessive computational capacity, an efficient new solution methodology is also desired
to make full use of a developed model. Considering this research need, the current paper introduces a
mathematical model and solution methodology, which are constructed by relaxation and ideas from
the branch-and-bound method.

2. Literature Review

A large number of studies dealing with the supplier selection problem have been published.
A recent survey paper reviewed 370 works in this area [11]. As stated in their review, the subjects
of supplier selection problems are very wide, ranging from criteria analysis for supplier selection to
multiple criteria inventory control problems. Among numerous topics studied in this area, our review
of previous research is narrowly focused on the supplier selection and order allocation problem of
a single buyer dealing with multiple items, as well as multiple suppliers requiring MOQ and MPA
constraints, working capital requirement constraint, and sustainability features. Thus, the basic forms
of research related to this paper can be classified into two sub-areas. The first sub-area is about supplier
selection and order allocation, while the second area is the sustainable supplier selection and order
allocation. Previous research on the two sub-areas are presented followed by a discussion on the
research gaps and contribution of this paper.

2.1. Supplier Selection and Order Allocation

To solve the supplier selection and order allocation problem, Ghorbani et al. [12] proposed a
two-phased model. At first, suppliers are evaluated according to both quantitative and qualitative
criteria resulting from SWOT analysis. Shannon entropy is used to calculate criteria weights. Then,
the results are used as an input for an integer linear programming model to allocate orders to
suppliers. Nazari-Shirkouhi et al. [13] provided an integrated linear programming model that aimed
to minimize total ordering costs and defective items. Jadidi et al. [14], [15] modeled the supplier
selection as a multi-objective optimization model where minimization of price, rejects, and lead-time
were considered as three objectives. Sodenkamp et al. [16] proposed a novel meta-approach for
collaborative multi-objective supplier selection and order allocation (SSOA)decisions by combining
multi-criteria decision analysis and linear programming. The proposed model accounted for suppliers’
performance synergy effects within a hierarchical decision-making process. Shabanpour et al. [17]
proposed efficiency improvement plans for supplier selection, including goal programming and data
envelopment analysis applications to rank sustainable suppliers.
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In addition to usual constraints included in the previous research on SSOA, our model includes
two other kinds of features practiced in the real world. The first constraint is MOQ/MPA-related
practices, and the second is limitation caused by working capital management. Research concerning
an SSOA considering the MOQ/MPA requirements was initiated by Robb and Silver [18]. Afterward,
several researchers, including Kiesmdiller et al. [9], Zhao and Katehakis [19], Zhou et al. [20], and Meena
and Sarmah [21] have studied several variants of the SSOA problems with associated requirements.
All of these studies could be categorized a basic model, because all studied a single-item problem.
More realistic multi-item problems were first analyzed by Zhou [22], and Aktin and Gergin [23].
Recently, Park et al. [10] considered an order allocation problem with the MOQ/MPA requirements
and proposed a rolling-horizon implementation strategy for solving a formulated optimization
model more efficiently. Their model, however, did not contain a sustainability feature or working
capital requirements.

Supply chain models typically only consider the physical transformation activities and disregard
the financial implications of those activities. Recently, however, the literature on supply chain
management (SCM) became aware of the real-world situation that financing and operational problems
are closely connected and, thus, optimizing the two problems jointly could improve the entire
performance of a supply chain [24,25]. However, only a few related papers were found on an SSOA
with a working capital requirement (WCR). Chao et al. [26] developed recursive equations for a
replenishment (order size determination) problem with a cash flow constraint. The problem was
for a single item without considering supplier’s perspectives, and thus could be categorized as the
primitive type of research compared with our current problem. Bendavid et al. [27] studied a buyer’s
replenishment problem with a single type of item using a more sophisticated flow balance equation for
the working capital constraint. Bian et al. [24] presented a new generic working capital requirement
model for a single-item lot sizing problem. They presented a mixed integer programming model,
including a flow balance equation, for operating working capital requirement (OWCR). To the best
of our knowledge, there is no prior work addressing the SSOA problem that also directly considered
WCR or OWCR.

2.2. Sustainable Supplier Selection and Order Allocation

The traditional supplier selection and order allocation problem has now been changed to an SSS
& OA, where sustainability triple bottom line (3BL) attributes (environmental, economic, and social)
are integrated into the selection and allocation processes [28]. The environmental factors can also be
evaluated in terms of political, economic, social, technological, and environmental aspects, as can be
seen in the well-known method named PESTEL [29]. The literature on sustainable supplier selection is
quite rich. A few prior studies include [30-48]. These studies used various kinds of methods, including
the AHP, DEMATEL, ANP, TOPSIS, multi-objective GA, DEA, and VIKOR for evaluating and selecting
desirable sustainable suppliers. All the above referenced research deals with the question of which
sustainable supplier to select. Research dealing with order allocation together with sustainable supplier
selection is in its early stages. Only five papers on SSS & OA have been noted during the literature
review. Kannan et al. [49] introduced a fuzzy TOPSIS method for supplier selection and a bi-objective
model for order allocation. Govindan et al. [50] analyzed a five-echelon supply chain for assigning
suppliers for a single product. Aktin and Gergin [23] introduced a mixed integer programming model
using 3BL index scores. Problems analyzed in these three papers can be categorized as basic SSS & OA
because they considered a single product and single period case with a deterministic demand. Recently,
more sophisticated models have been offered by Goren [51] and Ghadimi et al. [1]. The former solved
a problem with multiple products and suppliers, and formulated a bi-objective optimization model
for a single period decision. The latter analyzed a similar system, but formulated it as a multi-period
bi-objective model. However, both of these studies assumed a deterministic demand and did not
consider other realistic features, such as transportation lead time or MOQ requirement.
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2.3. Research Gap and the Contribution of This Paper

As can be found in the discussion of previous research and also in Table 1, our study is the
first attempt to analyze the most realistic and complicated SSS & OA problem representing various
important features of a real system, including transportation features (transportation lead times and
capacity of the suppliers) and buyer monetary limitations (multi-period working capital flow balances
and limitation, time value of money). Given the various aspects we are considering for this analysis,
the optimization model introduced in this paper is the most sophisticated of any existing models
representing SSS & OA activities. One of the challenges we experienced during the development
of such a large-scale model is that none of the existing methods can solve our model to a desired
accuracy within a practical time limit. For example, a problem with 20 items and 12 time periods
cannot be solved within 24 h time limit. When we consider that real-world problems can include
more than 100 items, it is necessary to fill this research gap. In response to this research challenge,
a new algorithm specifically aimed to solve such a big model is developed. During a computational
experiment, the algorithm is capable of solving such a model within a reasonable computational time
with desired accuracy.
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Table 1. Comparison of the contributions of different authors.
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3. System Description and Assumptions

The system analyzed in this paper involves two or more heterogeneous suppliers and a single
buyer. The suppliers are distinguished from each other by the type and selling prices of the items they
carry, delivery lead times, and minimum order quantity requirements. The buyer carries multiple
types of items which are sold to end customers. The items are replenished to minimize related
inventory costs based on a periodic order-up-to inventory control policy. Previous research on
inventory control frequently assumed that the end customer demand can be described by a known
probability distribution. However, since the future demand for a product can be influenced by
unforeseeable events, complete information on future demand distribution may not be available [53].
Considering this kind of real-world situation, this paper assumes that the demand of the end customers
may not belong to a theoretical probability distribution. Other assumptions are as follows:

e  There is a planned allocation schedule of money for each period during a planning horizon.

e  Money remaining at the end of a period is inflated by interest rate and carried forward to the
next period.

e  Payment for purchase and transportation costs are made as an order is placed.

e Nonzero transportation lead time exists between an order placement and the arrival of the
ordered amount.

e  Major and minor ordering costs occur when an order is placed.

e  The major ordering cost occurs as a fixed amount when an order is placed.

e  The minor ordering cost occurs in proportion to an order size.

e A supplier has limited production capacity and thus has an order size limit per order.

e A supplier has a limited number of transportation vehicles.

e Any amount of an item can be purchased at a price higher than supplier’s regular price from a
spot market.

e  3BL factor scores of each potential supplier are prepared for input to an SSS & OA decision.

Considering the characteristics of each supplier, the buyer must make an SSS & OA decision at
the beginning of each period. The objective that the buyer is trying to achieve is to minimize the net
present value of the related costs occurring throughout the planning horizon. Required notations are
as follows.

Indices:
i item number, i =1,2,---,1,
j 3BL index, j = env, eco, soc,
k supplier number, k =1,2,--- K,
; period, t =1,2,--- , T, where T denotes the end
period of the planning horizon.
Parameters:
K(i) set of suppliers who sell item i, Vi,
I(k) set of items sold by supplier k, Vk,
di demand forecast of item i during future period ¢, Vi, ¢,
Git standard deviation of error of d;;, Vi, t,
v; volume of item i, Vi,
wcey warehouse capacity of the buyer during period t, Vt,
h; holding cost of item i, Vi,
b; shortage cost of item i, Vi,
Pikt unit purchase price for item i paid by the buyer to supplier k during period ¢, Vi, k € K(i), ¢,
A unit spot market price during period t for item i, Vi, ¢,
owcly operating working capital limit in period ¢, V¢,

capt; capital originally allocated to period t, Vt,
ic inventory control related cost (holding plus shortage costs) in period f, Vt,
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rCt replenishment related cost in period ¢, V¢,

T per-period discount (interest) rate.

moqx per-period minimum order quantity specified by supplier k for item i, Vi, k,

mpay per-period minimum purchase amount set by supplier k,Vk,

mply per-period maximum purchase limit for item i specified by supplier k, Vi, k € K(i),
may major ordering cost for supplier k, Vk,

iy minor ordering cost for item i for supplier k, Vi, k € K(i),

SCjk jth 3BL factor score of supplier k, Vj, k,

targetj;  jth 3BL factor target score of period ¢, Vj, ¢,

I supplier ks lead time, Vk,

St freight fair per vehicle of supplier k during period t, Vt, k,

vck volume capacity per vehicle of supplier k, Vk,

N number of vehicles available for transportation of supplier k in period t, Vk,

~ purchase already made at the start of past period ¢ and in delivery of item 7 from supplier k,
Tikt Vi, ke K(i), t=—1,-2,-- 11,

IPjg inventory position of item i at the start of planning, Vi,

M very large number.

Decision variables:

IP; inventory position of item i at the end of period t, Vi, ¢,
I Pl.'t" positive part of IP;;, Vi, t,
1Py negative part of IP;;, Vi, t,
Xik1 purchase amount of item i from supplier k during the present period (period 1), Vi, k € K(i),
Xikt planned purchase amount of item 7 from supplier k during future period ¢, Vi, k € K(i), t =2,---,T,
x5 purchase quantity of item i from the spot market for the present period, Vi,
x5 planned purchase quantity of item 7 from the spot market for period t, Vi, t =2,--- , T,
RLj replenishment level of item 7 after the arrival of orders scheduled to arrive at the start of period t, Vi, f,
0jt positive deviation from target j; in period ¢,
zxzztoq binary integer for controlling the minimum order quantity requirement, Vi, k, ¢,
“lr(ntpa binary integer for controlling the minimum purchase amount requirement, Vk, f,
%m binary integer for controlling major ordering cost, Vk, ¢,
%1 binary integer for controlling minor ordering cost, Vi, k, ¢,
0; safety factor of item i, Vi.

4. Model Formulation

4.1. Relevant Costs

Cost factors included in the total cost of our model are inventory-related costs (holding and
shortage costs) and replenishment-related costs (major and minor ordering costs, transportation,
and purchase costs). Inventory-related costs are the sum of inventory holding and shortage costs
incurred during the planning horizon, and are expressed as in Equation (1).

I
. 1 _
icr =Y <2hi(RLit + IP;]) + b;IP; ) Vt. 1)
i=1
Transportation cost of period t is

K
Y fuNVi.
k=1

Purchase cost is the sum of the payment to suppliers and spot market.
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Z Z plktxlkt+zspltx1t

i=1keK(i

Major and minor ordering costs are as follows:

Zmakﬁkt +Z Z mllk:Blkt

i=1keK(i

Replenishment-related cost is the sum of the cost factors in Equation (2).

K 1
rey = Y (magBMA + fynoy) + 'Zlk %(‘) (Pikexixe -+ mig D)
— 1= e 1

I 2)
+ Y spixi, Vt
i=1

The total cost function of the model (TC) is the present value of inventory control cost plus
replenishment-related cost incurred during the planning horizon. When we use a discounting factor r
to account for the time value of money, the cost function can be written as

T
1
TC =) ——(ict +rcy).
t; 1+

4.2. Operating Working Capital Requirement

In practice, many firms are financially constrained; therefore, their ability to manage their
inventories is directly affected by many factors, including their operating working capitals. To represent
this financial constraint, the following equations are included.

icy + rey < owcly, Vt, 3)

owcly = capty + (1 + ) (owcly—1 — rep—q —icy—1), vt 4)

Equation (3) specifies that the cost occurring during period ¢ is limited by an operating working
capital limit (OWCL) in that period. The equation was based on the cash-to-cash methodology found
in Theodore Farris and Hutchison [54], and Hofmann and Kotzab [55]. Consequently, we assumed that
the OWCR for replenishing a unit of product depends on the money invested in the related operations,
for example, purchasing, setup, transportation, inventory holding, and shortage costs. Also, as in
Bian et al. [24], it is assumed that the profit portion of the sales revenue is not accounted for in the
OWCR. Profit can be allocated to other higher priority objectives of the firm (e.g., debt reduction,
dividend payments, or internal and external investment). Thus, the profit portion of a firm’s activities
was not represented in our model (e.g., Equations (3) and (4)). Equation (4) models monetary flow
during two adjacent periods and ensures that the OWCL in period t equals the sum of the operating
working capital (OCM) allocated to period t and the money left in the previous period inflated by
interest and forwarded to the current period.

4.3. 3BL Target Constraints

K

1
Z 2 jkﬁf}ff —0j; = targetjy, vj, t. 5)

i=1k=1

As stated in Aktin and Gergin [23], corporate sustainability is concerned with the integration
of environmental, economical, and social dimensions, called the triple-bottom-line (3BL), into the
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company processes. In response to this need, SSS & OA decisions try to combine the 3BL
sustainability factors into supplier selection and order allocation activities. A practical way to find
good sustainable procurement strategies is to measure sustainability scores for all potential suppliers.
Then, the completed 3BL factor scores of each supplier are input to a mathematical model formulated
for supplier selection and order allocation. Equation (5) performs this kind of function. It states that all
selected suppliers’ combined 3BL score should at least equal to a preset target score for environmental,
economical, and social dimensions.

4.4. Mathematical Programming Model

In this section, we define a mixed integer programming model to solve the SSS & OA problem.
The proposed MIP model can be defined as follows:

MIP1: Min TC
s.t.
IPpa+ L Xt r Xikt—1, + r Xikt—1, + X5 = RLjt ,
keK(1)|1=0 ke K@) >1 ke K@)l >1 ‘
t—1, <0 t—1 >0 ©)
Vi, t,
RLjy —d; = IPy, Vi, t, )
IPy = IPf —IP;, Vi t, ®)
K I I
¥ (magBptt +funog) + X L (ki + migBi) + ¥ pis,
- i=1 keK(i) i=1 9
= rct, Vi,
L1 .
Z; <2hi (RL; +IP]) + bl-IPl.t) = icy, Vt, (10)
1=
icy + rep < owcly, Vi, (11
owcly = capty + (1 + ) (owcly—1 — rep—q —ici—q1), Vi, (12)
Ipit > Giéit/ VZ, £ (13)
Xige < mply, Vi, k € K(i), ¢, (14)
X < May,?, Vi, k € K(i), t, (15)
X > moqy — M(1— a) ), Vi, k € K(i), ¢, (16)
Y ik < Mag”, VK, t, (17)
icl(k)
mpa
Z Pikt Xikt > mpay — M(]' - lxkt )/ Vkr £ (18)
icI(k)
I K i
Z E sCikBis — 0jt = target, Vj,t, (19)
i=1k=1
Y. xiue < MBRY, Yk t, (20)
icl(k)
X < MBYL, Vi, k € K(i),t, 1)
I
ZviRLit S wcy, Vt, (22)
i=1
Y oy < vcgnog, Yk, t, (23)

ieK(i)
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X >0, aly,?, M 0or 1, Vi k € K(i), ¢, (24)

zx;;pa, %A, Oor1, nvy, nonnegative integer, Vk, t, (25)
x%, RLy, IP}, IP; >0, IPy, unrestricted, Vi, ¢, (26)
0jt >0, Vj, t, 27)

0;, unrestricted, Vi, (28)

M, large number. (29)

The objective function in Equation (1) is to minimize the present value of the expected total cost,
which is the sum of the inventory and replenishment-related costs. Equation (6) enforces that the
replenishment level of item i is the sum of the initial inventory, spot market purchases, and orders
scheduled to arrive from each supplier during the period. Equation (7) regulates that the net inventory
of item i at the end of period ¢ is equal to the inventory position at the start of the period, minus the
depletion due to the demand of item i during period t. Equation (8) sets that, at the end of period ¢,
the net inventory of item i, IP; ;, is equal to the on-hand inventory level of item i at the end of period ¢,
I Piﬁ, minus the shortage level of item i at the end of period ¢, IP;.

Equations (9)—(12) enforce the operating working capital limit. Equations (13) and (14) describe
the customer service level and maximum purchase limit set by a supplier, respectively. Equations
(15) and (16) are for the minimum order quantity requirement. Term mog;; in the constraint is the
minimum order size of supplier k, and agfq is a binary variable used to enforce the relationship as
planned. The variable M is a very large number used to activate the minimum order constraint only
when an order is placed. As a consequence, if the buyer purchases item 7 from supplier k, the term D(:.Z?q
will become 1 in Equation (15), thereby validating Equation (16) and enforcing the minimum order
size requirement. The next constraints, described by Equations (17) and (18), concern the minimum
purchase amount requirement. If the buyer purchases an item from supplier k, Equation (17) makes
the term tx;:;pa equal to 1. Equation (18), in this case, forces the purchase amount to be at least the
minimum purchase amount (mpay). Equation (19) concerns the 3BL target constraint. Equations (20)
and (21) control the major and minor ordering occurrences. The following Equations (22) and (23)
address the buyer’s warehouse capacity and supplier’s transportation capacity, respectively.

MIP1 has 5IKT + 3IT + 4KT + JT + 5T constraints and 3IKT + 5IT + 3KT + |JT + I variables.
If a contract problem has a weekly planning grid with a one year planning period (52 weeks) and
10 suppliers with 20 items, 58,136 constraints and 37,086 variables are present. It is possible to solve the
size of MIP1 using commercially available software tools (GAMS, LINGO etc.). However, if the size of
MIP1 grows considerably large for real-world applications, a prohibitive computational burden will
result. In other words, expanding the size of the system requires an excessive computational resource.
Considering this difficulty, a faster and reasonably accurate algorithm is needed for real life problems.
The next section discusses such an algorithm.

5. Solution Method

5.1. Conceptual View of the Proposed Algorithm

The algorithm introduced in this section is referred to as the branch-and-freeze (BF) algorithm.
The logical idea behind the BF algorithm is to solve relaxed problems (sub-problems) of the original
problem in a manner similar to the branch-and-bound method. We observed that the MOQ and MPA
constraints in Equations (15)—(18) are computationally burdensome because of the binary variables
involved and the large number of constraints, amounting to the total 2IKT + KT. Based on this
observation, the sub-problems are created by removing the MOQ and MPA constraints of the original
problem, MIP1. When the sub-problem is solved, one of three cases can occur, as illustrated in Figure 1.
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The first of the three cases is that a solution to a sub-problem also satisfies the MOQ and MPA
constraints of all suppliers, which we call complete feasibility (CF) case. In Figure 1 below, the CF
case is represented by the left-most branch. In this case, the solution is also optimal to MIP1. Since,
the original problem is solved optimally, the algorithm stops. The second case occurs when the MOQ
and MPA constraints are satisfied partially, which is the situation where the solution to a sub-problem
satisfies the two constraints of all suppliers up to a certain intermediate period, but not to the end of
the planning horizon. This case is named partial feasibility (PF). When PF occurs, the algorithm stores
the current output up to the satisfied period, which is called freezing. For the remaining periods that
are not frozen, a new condensed problem is generated by adding the MOQ and MPA constraints of
the supplier(s) whose constraints were violated in the previous run. In Figure 1 below, this process
is denoted by the circle with FC (freezing and condensing). When the condensed problem is solved
afterwards, it results in one of the three cases already explained above.

The final case, which is in the right most side of Figure 1, is the complete infeasibility (CI) case,
where the sub-problem’s output can satisfy none of the suppliers’ MOQ and MPA constraints, even at
the starting period. If this happens, a new sub-problem is created by adding all of the removed
constraints. This process is denoted by a circle with an R (restoring) inside. When a restored problem
is solved, one of the same three cases can occur. A node is fathomed when the stop condition is met
after CF, or no additional constraint is available for addition after PF or CI. The best feasible solution
to the original problem is the best feasible solution found until all end nodes are fathomed. If there is
no feasible solution found up to that point, the original problem is infeasible.

Solve a sub
problem

Partial Feasibility (PF)

Complete
Infeasibility
(&)

Complete
Feasibility
(CF)

CF PF CI

RR IR

Figure 1. Conceptual view of the branch-and-freeze (BF) algorithm.

C 1
O @

5.2. Branch-and-Freeze (BF) Algorithm
The BF algorithm can be described formally as follows:
Step 1: (Initialize)

Let the current period be period 1.
Set the current inventory level, z;o = 0 fori = 1,2,--- , I.
Forecast demand for all future periods, d;; fort =1,2,--- ,T.

Step 2: (Generate sub-problem for the first run)

Construct the sub-problem by removing the MOQ and MPA constraints (Equations (15)—(18)
from MIP1).

Step 3: (Run sub-problem)

Run the current sub-problem.
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Step 4: (Check status and branch)

Step 4.1 Check the output of Step 3. If status is PF or CF, go to Step 4.3.
Step 4.2 (Complete feasibility case)

Algorithm found a feasible solution. Stop.

Step 4.3 (Partial feasibility or complete infeasibility case)

If there is no constraint to add, the given problem is infeasible. Stop.
Go to Step 5 if status is PF. Otherwise, go to Step 6.

Step 5: (Partial feasibility case)

Step 5.1 (Freeze the output)

Freeze the output for the feasible periods.

Step 5.2 (Re-initialize)

Let the starting period be the first infeasible period.

Reset the current inventory level to the net inventory level of the last feasible period.

Reset the forecast of demand from the starting to the end periods of the planning horizon.

Step 5.3 (Prepare a sub-problem)

Prepare a new sub-problem by adding the MOQ or MPA constraints of the supplier(s),
which caused infeasibility during the previous run. Go to Step 3.

Step 6: (Complete Infeasibility case)

Prepare a new sub-problem by adding the MOQ or MPA constraints of the supplier(s),
which caused infeasibility during the previous run. Go to Step 3.

Start

{ Initialize >

Run the current
sub-problem

CF
Check status

PF or CI
Are th{ere No
constraints Stop
to add?
Yes
CI
PF or CI? Prepare a new| |
sub problem
PF
|| Prepare a new | | Freeze &
sub problem Reinitialize

( Stop )

Figure 2. Flow chart of the BF algorithm.
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Step 1 is for the initialization required for the first planning run. The constraint relaxation that is
required to solve MIP1 without the MOQ and MPA constraints is done in Step 2. After initialization
and relaxation, a relaxed version of MIP1 (sub-problem) is solved in Step 3. In Step 4, the output of the
previous run is evaluated for status. Based on the status, the algorithm stops or proceeds to Steps 5 or 6
when there is (are) a constraint(s) to add. Figure 2 shows the flow of the algorithm. Figure 3 illustrates
an implementation of the algorithm.

Planning horizon

Input Zio <— Initialization in Step 1
| | | ! | | | | ! | | | |
I I 1 I 1 | I f 1 1 1 I |

Output Xik1  Xik2 e Xik12 < Output of the first run

The output of periods 1 and 2 satisfied the MOQ/MPA constraints. Freeze the output.

Xijd  Xik2
Add the MOQ/MPA constraints which caused infeasibility.
Run the sub-problem covering periods 3-12.

2,0 (Zi0 = 2 from Step 5.2) <— Re-initialization in Step 5.2.
| | | | | | | | | | |
I I 1 1 1 I I I 1 1 I
Xik3  Xika e Xik12 < Output of the second run

The output of periods 3-7 satisfied the MOQ/MPA constraints. Freeze the output.

Xik1  Xik2  Xik3 e Xijk,7

Add the MOQ/MPA constraints which caused infeasibility.
Run the sub-problem covering periods 8-12.
2,0 (2i0 = 2,7 from Step 5.2) <— Re-initialization in Step 5.2.
|

Xij8  Xik9 e Xika12 < Output of the third run

The output of periods 8-12 satisfied the MOQ/MPA constraints. A feasible solution is found. The algorithm stops.

1111'1111#1154‘1 rIII%IIIEIIIEIII

Xik1 Xik2 Xik3 Xik4 Xik5 Xike Xik7 Xik8 Xik9 Xik10 Xik11 Xik12

#A4 Stored (freezed) output

Figure 3. Implementation diagram of the BF algorithm.

6. Numerical Experiments

In this chapter, numerical experiments are carried out with two objectives in mind. The first
objective of the numerical experiment is to test the accuracy of the BF algorithm by comparing it with
a commercially available software tool (GAMS/XPRESS solver). The second experiment explores the
maximum size of MIP1 that can be solved by the BF algorithm and by commercial software tools
(GAMS/XPRESS and GAMS/COINGLPK solvers). The results of these two numerical experiments
will determine the effectiveness of the BF algorithm. The GAMS used in the numerical experiment is a
very popular modeling language containing many powerful solvers. Thus, it is a suitable competitor
for verifying the accuracy and identifying the maximum solvable problem size of the BF algorithm.
The experiments were performed on a PC with Microsoft 7 OS, 3.4GHz Intel i5 CPU, and 16 GB RAM.

6.1. Accuracy Test of the BF Algorithm

The purpose of this experiment is to identify the accuracy of the BF algorithm by comparing
the results obtained using our algorithm with those of the GAMS/XPRESS solver. The comparative
experiment is performed with the assumption that the item’s demand is generated from a stationary
demand process. Most previous studies on inventory management performed experiments
by assuming that demand follows a stationary demand process, such as a Poisson or normal
distribution [56]. For our problem, many relevant studies, including Robb and Silver [18],
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Chen et al. [57], and Zhou [22], also assumed a normal distribution. This experiment is also carried
out similarly by assuming a normal distribution assumption. The number of item types is set to
five. The actual demand data for each item were generated from five different normal distributions
(N(400,20%), N(600,30%), N(700,40%), N(800,40%), N(900,50%)). Each item’s demand forecast is
prepared using the forecasting module of SPSS.

To obtain the average total cost, the experiment was repeated 10 times for each setting. The average
cost obtained in this manner is plugged into the following percent deviation measure to identify the
accuracy of the BF algorithm.

BF algorithm’ cost — GAMS'cos t o

GAMS' cos t 100.

Percent deviation =

The experimental design is as follows:

e  There are 10 suppliers in the system.

e  Transportation lead time is zero.

e  Each supplier can deliver all five types of items.

e  The unit period length is four weeks.

e  The planning horizon length is sized to 48 weeks, which amounts to 1 year.

Other input parameters were prepared as shown in Tables 2-6.

Table 2. Input parameters for the comparative experiment.

Warehouse Capacity of Buyer (wcy) Very Large Number (M) Discount Factor (r) Initial Inventory Level (IP;))
5000.00 107 0.01 0

Table 3. Input parameters for each item.

Item Holding Cost (h;)  Shortage Cost (b;) Volume (v;) Spot Market Price (p3,)
All items N(2, 0.12) N(15, 1%) 2.00 N(27,12)

N denotes a normal distribution.

Table 4. Input parameters for each supplier.

Supplier Minimum Purchase Amount (mpay) Major Ordering Cost (may)

All suppliers 20x 1.0 x d N(250, 10%)

d is the forecast average for the planning horizon.

Table 5. Input parameters for each item of each supplier.

Supplier Minimum Order Quantity (mpa;,)  Minor Ordering Cost (mij)

Item1to5 Item1to 5
All suppliers N(1, 0.22) x d; N(1.5, 0.22)

d ; denotes the average of forecasts for item j at the planning horizon.

Table 6. Input parameters for each period.

Supplier Purchase Price (p;;,) for All Period Maximum Purchase Limit (mpl;;) for All Period

Item1to5 Item1to5
All suppliers N(20, 1?) N(3, 0.5%) x d
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The results of the first experiment are summarized in Table 7. Using the BF algorithm instead of
commercial solvers (GAMS/XPRESS solver), the average total discounted cost increased by 0.82%.
The reason for this was the inventory and shortage appearing at the end of the planning horizon.
However, the proposed BF algorithm can offer a result very close to the optimum solution. Thus,
it seems that the BF algorithm is able to find a near-optimal solution, even though it is a heuristic
algorithm mainly developed to solve larger instances of the problem which cannot be solved by any
other existing tools.

Table 7. Summary of the accuracy test results.

Average Standard Average Number
Method ]lg‘i,sirjgztl:ctlug(l)zlt Percent Deviation of AvefraiiieCPU of Sub-Problems
u Deviation (%) Percent Deviation Solved
GAMS $805,041.43 - - 1.467 s -
BF algorithm $811,630.50 0.82% 0.34% 2.920s 5.5

6.2. Experiment to Estimate the Maximum Solvable Problem Size of the BF Algorithm

Various software tools developed to solve optimization models have a maximum size limit
on the problem which can be solved within a reasonable computational time. Considering this
limitation, we attempted to estimate the maximum problem size that can be solved by the BF
algorithm. More specifically, the maximum size of problems that can be solved by commercial
software tools and the BF algorithm was estimated for comparison. In the experiment, GAMS/XPRESS
and GAMS/COINGLPK solvers were selected for comparison. The planning horizon of the problem
was fixed to 12 time periods, and the number of suppliers was set to 10 times the number of items.
The maximum computational time limit was set to 24 h. We increased the number of items until each
method could not find a solution within the time limit. Other input parameters were set as shown in
Section 5.1 (Tables 2—6), and demand data were generated using a normal distribution.

Table 8. Summary of the results for the maximum problem size test.

Size of the Problem That Can Be Solved (Number of Items, Number

GAMS Solver of Constraints, and Number of Variables)
GAMS Solver BF Algorithm
COINGLPK (12, 92,688, 56,928) (17,182,268, 111,233)
XPRESS (69, 2,892,300, 1,743,045) (108, 7,054,224, 4,244,544)

The results of the experiment are summarized in Table 8, and show that the BF algorithm could
considerably increase the solvable problem size. The BF algorithm using the COINGLPK to solve
sub-problems can double the solvable problem size compared with a naive use of the COINGLPK.
Moreover, for the XPRESS case, the size increased approximately 2.4 times in terms of the number of
constraints. Thus, it is expected that buyers will be aided in effective decision-making upon using this
method for solving real-world complex problems.

7. Managerial Implications

7.1. Academic Implications

In this paper, we studied a sustainable supplier selection and order allocation problem. This is the
first attempt to develop a model for the most realistic and complicated SSS & OA problem representing
various important features of a real system. A new algorithm specifically designed to solve such a
large-scale model is developed. The algorithm performed as expected by increasing solvable problem
size considerably. In this way, we have done some initiating academic research in SSS & OA that will
help researchers study related follow-up problems.
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7.2. Managerial Implications

This study provides valuable insights for firms that regularly make a supplier selection and order
allocation decisions. The model and solution method of this paper helps managers to make the SSS &
OA decision more systematically. They can prepare a cost-minimizing plan quickly and easily after
they complete a computerized planning system. The model is flexible and customizable, and can be
modified based on the actual needs of a firm. Output of the developed system provides an efficient SSS
& OA plan and, also, some useful additional information, which can be used for many what-if analyses.
For example, the dual price of Equation (19) is an incremental cost for raising the 3BL target value by
one unit. A firm trying to achieve more stringent sustainability performance can use the estimated cost
to make an investment decision for improving a production or logistics system for better sustainability.
Thus, good implementation of the model and algorithm of this research will result in better decisions
on reducing costs, increasing profitability, and improving customer service sustainability. The final
result will be enhanced competitiveness and improved financial status.

8. Conclusions

This paper presents models representing an SSS & OA problem for a buyer replenishing from
two or more heterogeneous suppliers with MOQ and MPA constraints, operating working capital
limits, and a 3BL sustainability target requirement. A mixed-integer programming model can find a
cost-minimizing SSS & OA plan of choosing order-fulfilling suppliers and allocate the order amount
for each select supplier. Since the size of a completed model for a real-life application is too big to
implement it naively, a fast heuristic algorithm, called a BF algorithm, was also developed for such a
large-scale implementation.

The logical idea behind the BF algorithm is two-fold, relaxation and branching. Observing that the
MOQ and MPA constraints of the model are very computationally burdensome because of the binary
variables included and large number of constraints involved, the algorithm creates sub-problems by
relaxing (removing) the MOQ and MPA constraints of the original problem. When the sub-problem is
created, a procedure similar to the branch-and-bound method is employed to solve the sub-problems
efficiently. Several types of experiments were conducted using the GAMS solvers and IBM SPSS
statistics package to verify the validity of the proposed model and to test the accuracy of the developed
algorithm. The test result confirmed that the algorithm can find a near-optimal solution with only
0.82 percent deviation on average.

Another test was done to find how much larger a model can be solved when using the proposed
algorithm compared with a direct one-time use of popular commercial solvers. The test result showed
that the use of the BF algorithm can increase solvable problem size by as much as 2.4 times. It was
verified that a model with 7 million constraints and 9 million variables can be handled by our algorithm.
All in all, the test results can be summarized as the BF algorithm is an effective tool for handling
complex real-life applications. Buyers faced with a large-scale system will, thus, be able to handle such
large-scale decision problems without much difficulties.

There are some related research topics that require exploration. Further research may incorporate
the supplier’s perspective into the current problem to extend to a supplier-buyer problem. Also,
the single objective of the current model can be extended to allow bi- or multi-objective functions
to consider quantitative targets and qualitative preferences at the same time. Then, another kind of
solution methodology should be developed to solve such a multi-objective optimization model of
realistic size. Finally, the current model describes SSS & OA activities in a two-stage supply chain
composed of a single buyer and several suppliers. These simple stages can be extended to a more
complex case, such as a three-stage model, including another layer of suppliers or manufacturers.
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