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1. Introduction

Thanks to Nash’s imbedding theorem, Riemannian manifolds can be regarded as submanifolds
of Euclidean space. The notion of finite-type immersion has been used in studying submanifolds of
Euclidean space, which was initiated by B.-Y. Chen by generalizing the eigenvalue problem of the
immersion [1]. An isometric immersion x of a Riemannian manifold M into a Euclidean space E™ is
said to be of finite-type if it has the spectral decomposition as:

X=x0+x1+ -+ X

where x( is a constant vector and Ax; = A;x; for some positive integer kand A; € R,i =1,..., k. Here,
A denotes the Laplacian operator defined on M. If Ay, ..., Ay are mutually different, M is said to be
of k-type. Naturally, we may assume that a finite-type immersion x of a Riemannian manifold into a
Euclidean space is of k-type for some positive integer k.

The notion of finite-type immersion of the submanifold into Euclidean space was extended to
the study of finite-type immersion or smooth maps defined on submanifolds of a pseudo-Euclidean
space Ef' with the indefinite metric of index s > 1. In this sense, it is very natural for geometers to
have interest in the finite-type Gauss map of submanifolds of a pseudo-Euclidean space [2—4].

We now focus on surfaces of the Minkowski space E3. Let M be a surface in the 3-dimensional
Minkowski space ]Ei’ with a non-degenerate induced metric. From now on, a surface M in Ei’ means
non-degenerate, i.e., its induced metric is non-degenerate unless otherwise stated. The map G of a
surface M into a semi-Riemannian space form Q?(e) by parallel translation of a unit normal vector
of M to the origin is called the Gauss map of M, where € (= 1) denotes the sign of the vector field
G. A helicoid or a right cone in E® has the unique form of Gauss map G, which looks like the 1-type
Gauss map in the usual sense [5,6]. However, it is quite different from the 1-type Gauss map, and thus,
the authors defined the following definition.
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Definition 1. ([7]) The Gauss map G of a surface M in E3 is of pointwise 1-type if the Gauss map G of
M satisfies:

AG = f(G +C)

for some non-zero smooth function f and a constant vector C. Especially, the Gauss map G is called pointwise
1-type of the first kind if C is a zero vector. Otherwise, it is said to be of pointwise 1-type of the second kind.

Some other surfaces of E* such as conical surfaces have an interesting type of Gauss map.
A surface in E} parameterized by:

x(s,t) = p+1tB(s),

where p is a point and (s) a unit speed curve is called a conical surface. The typical conical surfaces
are a right (circular) cone and a plane.

Example 1. ([8]) Let M be a surface in E® parameterized by:
x(s,t) = (tcos?s, tsinscoss, tsins).
Then, the Gauss map G can be obtained by:

1
G=—(—sin’s, (2 — cos®s) coss, — cos’s).

V1 +cos?s

Its Laplacian turns out to be:
AG = fG+gC

for some non-zero smooth functions f, g and a constant vector C. The surface M is a kind of conical surface
generated by a spherical curve B(s) = (cos® s, sins coss, sins) on the unit sphere S?(1) centered at the origin.

Based on such an example, by generalizing the notion of the pointwise 1-type Gauss map, the
so-called generalized 1-type Gauss map was introduced.

Definition 2. ([8]) The Gauss map G of a surface M in B is said to be of generalized 1-type if the Gauss map

G satisfies:
AG = fG+gC 1)

for some non-zero smooth functions f, g and a constant vector C. If f # g, G is said to be of proper generalized
1-type.

Definition 3. A conical surface with the generalized 1-type Gauss map is called a conical surface of G-type.

Remark 1. ([8]) We can construct a conical surface of G-type with the functions f, g and the vector C if we
solve the differential Equation (1).

Here, we provide an example of a cylindrical ruled surface in the 3-dimensional Minkowski space
E? with the generalized 1-type Gauss map.

Example 2. Let M be a ruled surface in the Minkowski 3-space E3 parameterized by:
1 1
x(s, t) = (2 (sx/ s2—1—In(s+ Vs2 — 1)) , 252,t> , s>1.
Then, the Gauss map G is given by:

G=(-s,—Vs2—1,0).
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By a direct computation, we see that its Laplacian satisfies:

2 2
s s 31 s(s s 31)(1,_1,0),
(s2—1)2 (s2—-1)2

which indicates that M has the generalized 1-type Gauss map.

2. Preliminaries

Let M be a non-degenerate surface in the Minkowski 3-space E} with the Lorentz metric
ds? = —dx% + dx% + dx%, where (x1,x2,x3) denotes the standard coordinate system in E‘i’ From
now on, a surface in E? means non-degenerate unless otherwise stated. A curve in E? is said to be
space-like, time-like, or null if its tangent vector field is space-like, time-like, or null, respectively. Then,
the Laplacian A is given by:

— : 1 a
b= by 35 (Il 55),
where (g%) = ( gi]-)_l, G is the determinant of the matrix (g;;) consisting of the components of the first
fundamental form and {%;} are the local coordinate system of M.

A ruled surface M in the Minkowski 3-space E3 is defined as follows: Let I and ] be some open
intervals in the real line R. Let a = a(s) be a curve in E? defined on I and B = B(s) a transversal vector
field with &/ (s) along «. From now on, ' denotes the differentiation with respect to the parameter s
unless otherwise stated. The surface M with a parametrization given by:

x(s,t) =a(s)+1tB(s), se€l, te]

is called a ruled surface. In this case, the curve & = a(s) is called a base curve and g = B(s) a director
vector field or a ruling. A ruled surface M is said to be cylindrical if B is constant. Otherwise, it is said
to be non-cylindrical.

If we consider the causal character of the base and director vector field, we can divide a few
different types of ruled surfaces in E3: If the base curve a is space-like or time-like, the director vector
field B can be chosen to be orthogonal to a. The ruled surface M is said to be of type My or M_,
respectively, depending on & being space-like or time-like, respectively. Furthermore, the ruled surface
of type M. can be divided into three types M}, M2, and M3. If B is space-like, it is said to be of type
M or M3 if B’ is non-null or null, respectively. When B is time-like, 8’ must be space-like because
of the character of the causal vectors, which we call Mi. On the other hand, when « is time-like,
B is always space-like. Accordingly, it is also said to be of type ML or M2 if B’ is non-null or null,
respectively. The ruled surface of type M1 or M2 (resp. M3, M! or M?2) is clearly space-like (resp.
time-like).

If the base curve « is null, the ruling 8 along « must be null since M is non-degenerate. Such a
ruled surface M is called a null scroll. Other cases, such as « is non-null and § is null, or « is null and j
is non-null, are determined to be one of the types M1, M3, and M3, or a null scroll by an appropriate
change of the base curve [9].

Consider a null scroll: Let « = a(s) be a null curve in E with Cartan frame {A, B, C}, that is
A, B, C are vector fields along a in E? satisfying the following conditions:

(A,A) = (B,B) =0, (AB)=1, (AC)=(BC)=0, (CC)=1,

W' =A, C' =-aA—k(s)B,
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where a is a constant and k(s) a nowhere vanishing function. A null scroll parameterized by
x = x(s,t) = a(s) + tB(s) is called a B-scroll, which has constant mean curvature H = a and
constant Gaussian curvature K = a2. Furthermore, its Laplacian AG of the Gauss map G is given by:

AG = —24°G,

from which we see that a B-scroll is minimal if and only if it is flat [2,10].
Throughout the paper, all surfaces in E$ are smooth and connected unless otherwise stated.

3. Cylindrical Ruled Surfaces in EJ with the Generalized 1-Type Gauss Map

Let M be a cylindrical ruled surface of type M1, M! or M3 in E3. Then, M is parameterized by
a base curve ¢ and a unit constant vector  such that:

x(s, t) = a(s) +tB

satisfying (a/,a’) = &1 (= £1), (&/, ) =0, and (B, B) = &3 (= £1).

We now suppose that M has generalized 1-type Gauss map G. Then, the Gauss map G satisfies
Condition (1). We put the constant vector C = (c1, ¢z, ¢3) in (1) for some constants c1, ¢, and c3.

Suppose that f = g. In this case, the Gauss map G is of pointwise 1-type. A classification of
cylindrical ruled surfaces with the pointwise 1-type Gauss map in E? was described in [11].

If M is of type M, then M is an open part of a Euclidean plane or a cylinder over a curve of
infinite-type satisfying:

czf_%—ln|czf_%+1| = +3(s+ k) ()

if Cis null, or

\/(czf—é + 1)2 +(-32+3)~In <c2f—§ +1+ \/(czf—é +1)2 +(=¢} +c§)>

+Iny/| -3+ 3| = £3(s +k)

if C is non-null, where ¢ is some non-zero constant and k is a constant.

®)

If M is of type ML, M is an open part of a Minkowski plane or a cylinder over a curve of
infinite-type satisfying:

c2f7%+ln|c2f*%—1| = +c3(s + k) 4)
or:
2 2
\/(czfé —1) —(=c2+3)+1n (czf% -1+ \/(szé —1) +| —c%—i—c%)
©)
—Iny\/| -3+ 3| = £3(s +k)

depending on the constant vector, C, being null or non-null, respectively, for some non-zero constant c
and some constant k.

If M is of type M3, M is an open part of either a Minkowski plane or a cylinder over a curve of
infinite-type satisfying:

1
2 cAf3 -1
\/c§+c§— (c2f*% —1) R i =+ (s +k), (6)
[2, 2
¢5+c3
where c is a non-zero constant and k a constant.

We now assume that f # g. Here, we consider two cases.
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Case 1. Let M be a cylindrical ruled surface of type M1 or M!, ie., &2 = 1. Without loss of
generality, the base curve a can be put as a(s) = (a1(s), a2(s),0) parameterized by arc length s and
the director vector field B as a unit constant vector f = (0,0,1). Then, the Gauss map G of M and the
Laplacian AG of the Gauss map are respectively obtained by:

" "

G = (—ah(s),—a}(s),0) and AG = (e1a, (s),e1a; (s),0). )
With the help of (1) and (7), it immediately follows:
C= (Cl, Co, 0)

for some constants ¢ and ¢;. We also have:

"

g1, = —faly + gcy,

"
!/
g1y = —fay + gco.

®)

Firstly, we consider the case that M is of type M! . Since « is space-like, we may put:
aj(s) =sinh¢(s) and a5(s) = cosh¢(s)
for some function ¢(s) of s. Then, (8) can be written in the form:

(¢')* cosh ¢ + ¢ sinhp = — f cosh ¢ + gc1,
(¢')*sinh ¢ + ¢ coshp = — fsinh ¢ + gcy.

This implies that:
(¢')* = —f +g(crcosh ¢ — casinh ) ©)
and:
¢" = g(—cq sinh ¢ + 3 cosh ¢). (10)

In fact, ¢’ is the signed curvature of the base curve a = «a(s).

Suppose ¢ is a constant, i.e., ¢’ = 0. Then, a is part of a straight line. In this case, M is an open
part of a Euclidean plane.

Now, we suppose that ¢’ # 0. From (8), we see that the functions f and g depend only on the
parameter s, i.e., f(s,t) = f(s) and g(s,t) = g(s). Taking the derivative of Equation (9) and using (10),
we get:

3¢'¢p" = —f' + ¢'(c1 coshp — ¢y sinh ¢).

With the help of (9), it follows that:

S(@r) =7 +§ ((92+)-

Solving the above differential equation, we have:

P =kigt + 2} [s7%r (—f; + gg) ds, ki (#0)€R. (11)

We put:
¢'(s) = +4/p(s),
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where p(s) = \klg% + %g% il g_%f (—fTI + %) ds|. This means that the function ¢ is determined by
the functions f, g and a constant vector satisfying (1). Therefore, the cylindrical ruled surface M
satisfying (1) is determined by a base curve « such that:

a(s) = </ sinh4>(s)ds,/cosh(p(s)ds,O)

and the director vector field B(s) = (0,0,1).

In this case, if f and g are constant, the signed curvature ¢’ of a base curve & is non-zero constant,
and the Gauss map G is of the usual 1-type. Hence, M is an open part of a hyperbolic cylinder or a
circular cylinder [12].

Suppose that one of the functions f and g is not constant. Then, M is an open part of a cylinder
over the base curve of infinite-type satisfying (11). For a curve of finite-type in a plane of E$, see [12]
for the details.

Next, we consider the case that M is of type M. . Since a is time-like, we may put:

aj(s) = cosh¢(s) and a)(s) = sinh¢(s)

for some function ¢(s) of s.

As was given in the previous case of type M., if the signed curvature ¢’ of the base curve « is
zero, M is part of a Minkowski plane.

We now assume that ¢’ # 0. Quite similarly as above, we have:

VP kgt + 360 53 (5-S) s k(z0eR (12

or, we put:

¢'(s) = £/q(s),

2 2 _2 ! /
where q(s) = [kog3 + 385 [¢73f (f7 - %) ds|.

Case 2. Let M be a cylindrical ruled surface of type M3 . In this case, without loss of generality,
we may choose the base curve a to be a(s) = (0, a2(s), a3(s)) parameterized by arc length s and the
director vector field f as B = (1,0,0). Then, the Gauss map G of M and the Laplacian AG of the Gauss
map are obtained respectively by:

" "

G =(0,a,—a%) and AG=(0,—a3,a,). (13)
The relationship (13) and the condition (1) imply that the constant vector C has the form:
C=(0,c2,¢3)

for some constants ¢, and c3.
If f and g are both constant, the Gauss map is of 1-type in the usual sense, and thus, M is an open
part of a circular cylinder [1].
We now assume that the functions f and g are not both constant. Then, with the help of (1)
and (13), we get:
5 = fuy+ g0,

n

ay = —foy + ges.

Since a is parameterized by the arc length s, we may put:

(14)

ah(s) = cos¢p(s) and a5(s) = sing(s)
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for some function ¢(s) of s. Hence, (14) can be expressed as:

(¢")2sing — ¢ cos ¢ = fsing + gca,
(¢')*cos ¢ + ¢ sing = fcos¢p — ges.
It follows:
(¢')? = f+glcasing — c3cos ). (15)

Thus, M is a cylinder over the base curve « given by:

a(s) = (O,/cos (/ mds) ds,/sin (/ mds> ds)

and the ruling B(s) = (1,0,0), where r(s) = [f(s) + g(s) (c2sin¢(s) — c3 cos ¢(s)) |.

Consequently, we have:

Theorem 1. (Classification of cylindrical ruled surfaces in E3) Let M be a cylindrical ruled surface with
the generalized 1-type Gauss map in the Minkowski 3-space E3. Then, M is an open part of a Euclidean plane,
a Minkowski plane, a circular cylinder, a hyperbolic cylinder, or a cylinder over a base curve of infinite-type
satisfying (2)—(6), (11), (12), or (15).

4. Non-Cylindrical Ruled Surfaces with the Generalized 1-Type Gauss Map

In this section, we classify all non-cylindrical ruled surfaces with the generalized 1-type Gauss
map in E3
pinE;.

We start with the case that the surface M is non-cylindrical of type ML, Mi, or M. Then, M is
parameterized by, up to a rigid motion,

x(s,t) = a(s) + tp(s)

such that («/,8) = 0, (B,8) = €2 (= +1), and (B/,B') = e3 (= +1). Then, {B,8,B x p'} is an
orthonormal frame along the base curve «. For later use, we define the smooth functions ¢, u, Q, and R
as follows:

q=x|* = ealxs, %), u=(,p), Q=(,pxp), R=(p"pxp),

where ¢4 is the sign of the coordinate vector field x; = dx/ds. The vector fields &', B, &' x B, and
B x p” are represented in terms of the orthonormal frame {, 8/, B x '} along the base curve « as:

o' =ezuf —ere3QB x B/,
B = —eye3p — exe3RB x B,
o' x p=e3Qp —eup x p,
B xp" = —e3Rp.

Therefore, the smooth function g is given by:

(16)

q = eq(eat® + 2ut + e3u® — e263Q7).

Note that ¢ is chosen so that g takes positive values.
Furthermore, the Gauss map G of M is given by:

G=q"""?(e3Q — (esu+1)pxp). (17)
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By using the determinants of the first fundamental form and the second fundamental form, the
mean curvature H and the Gaussian curvature K of M are obtained by, respectively,

1
= —gyq t° + (2e3uR + t+uR+e3uQ —e3u' Q —ép ,
H 5 q 3/2 R 2 2 R Q/ 2R Q/ /Q QZR

(18)
K=g2Q%
Applying the Gauss and Weingarten formulas, the Laplacian of the Gauss map G of M in E is
represented by:
AG = 2gradH + (G, G) (trA%)G, (19)
where Ag denotes the shape operator of the surface M in E$ and gradH is the gradient of H. Using (18),
we get:
2gradH = 2(e1,e1)e1(H)ey + 2(ez,e2)ex(H)ep
= 2¢e4€1 (H)€1 + 28262([‘[)62
= q 7 {~ex(esu + 1) A1p — eaqBip +e3QM1 x B},
where ¢; = ﬁ, e = HXH’

Ay =3(u't + ezur’ — e3e3QQ" ) {Rt? + (2e3uR + Q')t 4+ >R + e3uQ’ — e3u'Q — £2Q*R}
— (e3t? 4+ 2ut + e3u® — £e3Q%) {R't? + (2e3u'R + 2e3uR’ + Q" )t 4+ 2uu'R + u?R’
+e3uQ” — e3u”Q — 26,QQ'R — £,Q°R'},
Bi =e3Rt® + (3uR + 2e3Q")#? + (3e3u’R + 4uQ’ — 3u'Q — £2e3Q%R)t + u®R + 2e3u°Q’
— &uQ?R — 3ezuu’ Q + e263Q%Q’.

The straightforward computation gives:
trAé = —8284q_3D1,
where:
Dy = —eg(u't + e3un’ — £2e3QQ")% + e3q{ (e20R + e31)? — e2(Q’ + e3uR + Rt)? — 263Q°}.
Thus, the Laplacian AG of the Gauss map G of M is obtained by:
AG = q 7" *[e4qB1p + {—ea(eau + 1) A1 +e3QD1 }B' + {€3QA1 — (e3u+ )D1}p x B, (20)

Now, suppose that the Gauss map G of M is of generalized 1-type. Hence, from (1), (17) and (20),
we get:
g7 [—e4qBip + {—e2(esu + 1) A1 + €3QD1}B' + {(63QA1 — (e3u +1)D1}f x B]

21
:fq71/2 (SgQ,B, — (€3Ll + t)ﬁ X ‘3/) + gC. @

If we take the indefinite scalar product to Equation (21) with B, B’ and B x B/, respectively, then
we obtain respectively,
—e2e4q 7?B1 = g (C, ), (22)

g 7*{—ezes(ezu+t) Ay + QD1 } = fq/2Q+g (C,B), (23)
q*7/2{—£2QA1 + exes(egu+t)D1} = fq*1/282£3(£3u +t)+g{(C,Bxp). (24)
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On the other hand, the constant vector C can be written as;
C=cif+cf +c3pxp,

where ¢; = €(C, B), ca = €3(C, p’), and c3 = —e2¢3(C, B x p’). Differentiating the functions c1, ¢,
and c3 with respect to s, we have:
¢} — ere3cr =0,

c1+ch —e3Re3 =0, (25)
€2¢3Rcy — ¢ = 0.

Furthermore, Equations (22)-(24) are expressed as follows:

—e407%%By = gcy, (26)
g 72 {—ex(esu+t)A; +e3QD1} = fq ' %e3Q + geo, (27)
g7 {—e3QA1 + (e3u+t)D1} = fq7 V2 (esu +t) — ges. (28)

Combining Equations (26)—(28), we have:
{—e2(e3u + t) Ay + €3QD1 }e1 + qesBica = ¢° fe3Qey, (29)

{—e3QA1 + (eu + t)D1 }o1 — qesBics = > f(e3u + t)cy. (30)
Hence, Equations (29) and (30) yield that:

— epe3A101 + Bi{ca(ezu +t) + e3Qc3} = 0. (31)
First of all, we prove:

Theorem 2. Let M be a non-cylindrical ruled surface of type MY, M3, or ML parameterized by the base curve
w and the director vector field B in E with the generalized 1-type Gauss map. If B, B, and B are coplanar along
«, then M is an open part of a plane, the helicoid of the first kind, the helicoid of the second kind or the helicoid of
the third kind.

Proof. If the constant vector C is zero, then we can pass this case to that of the pointwise 1-type Gauss
map of the first kind. Thus, according to the classification theorem in [4], M is an open part of the
helicoid of the first kind, the helicoid of the second kind, or the helicoid of the third kind.

Now, we assume that the constant vector C is non-zero. If the function Q is identically zero on M,
then M is an open part of a plane because of (18).

We now consider the case of the function Q being not identically zero. Consider a non-empty
open subset U = {s € dom(«)|Q(s) # 0} of dom(x). Since B, B/, and B” are coplanar along &, R
vanishes. Thus, c3 is a constant, and ¢!’ = —eye3cq from (25). Since the left-hand side of (31) is a
polynomial in t with functions of s as the coefficients, all of the coefficients that are functions of s must
be zero. From the leading coefficient, we have:

€0€301 QN + 2C2Q/ =0. (32)
Observing the coefficient of the term involving t2 of (31), with the help of (32), we get:

e2e301 (3u'Q + 1" Q) + 3cou'Q — 2¢5QQ" = 0. (33)
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Examining the coefficient of the linear term in ¢ of (31) and using (32) and (33), we also get:

Q{a (52(”')2 + (Q’)2> + £2630,QQ" — e3c3u'Q} = 0.

On U,
c1 (sz(ul)z + (Q/)2) + €26300QQ" — e3¢31'Q = 0. (34)

Similarly, from the constant term with respect to t of (31), we have:
ezc1 (—3u'Q" +u"Q) + e2c30Q" =0 (35)
by using (32)—(34). Combining (33) and (35), we obtain:
2e3c1t' Q'+ excou’'Q — e2c3QQ" = 0. (36)

Now, suppose that 1/ (s) # 0 at some point s € U and then #’ # 0 on an open interval U; C U.
Equation (34) yields:

£303Q = %{Cl (82(1/)2 + (Q/)z) + €2¢50,QQ' }. (37)

Substituting (37) into (36), we get:

{()? - e2(Q")*}eze1Q + €202Q) =0,

or, using ¢, = €y¢3c) in (25),
{(1)? — e2(Q")*}(e1Q)' = 0.

Suppose that ((1/)2 — &2(Q’)?)(sp) # 0 for some sy € Uy. Then, ¢1Q is constant on a component
U, containing sy of Uj.

If c; = 0 on Uy, we easily see that c; = 0 by (25). Hence, (34) yields that c3u’Q = 0, and so, c3 = 0.
Since C is a constant vector, C is zero on M. This contradicts our assumption. Thus, ¢; # 0 on Us.
From the equation c + e2e3¢1 = 0, we get:

c1 =kjcos(s+s1) or ¢ =kycosh(s+sy)

for some non-zero constants k; and s; € R (i = 1, 2). Since ¢1Q is constant, k1 and k; must be zero.
Hence, c; = 0, a contradiction. Thus, (#/)? — &2(Q")? = 0 on Uy, from which we get &, = 1 and
u' ==+Q . Ifu # —Q', thenu’ = Q' on an open subset U; in U;. Hence, (34) implies that Q" (2e3¢1Q’ +
2Q — c3Q) = 0.0n Us, we get c3Q = 2e3¢1Q’ + ¢2Q. Putting it into (35), we have:

e3c1(Q)* — e3c1QQ" — ©2QQ’ = 0. (38)

Combining (32) and (38), c1Q is constant on Uz. Similarly as above, we can derive that C is zero
on M, which is a contradiction. Therefore, we have 1/ = —Q’ on Uj. Similarly, as we just did to
the case under the assumption u’ # —(Q’, it is also proven that the constant vector C becomes zero.
It is also a contradiction, and so, U; = @. Thus, #' = 0 and Q' = 0. From (18), the mean curvature
H vanishes. In this case, the Gauss map G is of pointwise 1-type of the first kind. Hence, the open set
U is empty. Therefore, we see that if the director vector field 8, /, and B” are coplanar, the function Q
vanishes on M. Hence, M is an open part of a plane because of (18). [

From now on, we assume that R is non-vanishing, i.e.,, B A B’ A " # 0 everywhere on M.

If f = g, the Gauss map of the non-cylindrical ruled surface of type M1, ML or M3 in E3 is of
pointwise 1-type. According to the classification theorem given in [5,13], M is part of a circular cone or
a hyperbolic cone.
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Now, we suppose that f # ¢ and the constant vector C is non-zero unless otherwise stated.
Similarly as before, we develop our argument with (31). The left-hand side of (31) is a polynomial in
t with functions of s as the coefficients, and thus, they are zero. From the leading coefficient of the
left-hand side of (31), we obtain:

e2c1R' +e300R = 0. (39)

With the help of (25), c; R is constant. If we examine the coefficient of the term of t3 of the left-hand
side of (31), we get:
c1(—eze3t' R+ e2Q") + 2c0e3Q" + c3QR = 0. (40)

From the coefficient of the term involving t2 in (31), using (25) and (40), we also get:
c1(—3e2e3t' Q' + QQ'R — ere3u”"Q — Q?R’) — 3cou/ Q + 2c3QQ" = 0. (41)

Furthermore, considering the coefficient of the linear term in f of (31) and making use of
Equations (25), (40), and (41), we obtain:

Q{c1(e2(1')? + (Q)?) + c2263QQ — c3e3u'Q} = 0. (42)

Now, we consider the open set V = {s € dom(a)|Q(s) # 0}. Suppose V # @. From (42),

c1(e2(u')? 4+ (Q')?) + c26263QQ" — c3e3u'Q = 0. (43)

Similarly as above, observing the constant term in ¢ of the left-hand side of (31) with the help
of (25) and (39), and using (40), (41) and (43), we have:

Q*(2c131' Q' + cae21/ Q — c382QQ") = 0.

Since Q # 0 on V, one can have:
2c1e31’ Q' + creru’ Q — c36,QQ" = 0. (44)
Our making use of the first and the second equations in (25), (40) reduces to:
c1&2u'R — e2e3(c1Q)" — c1Q = 0. (45)

Suppose that u/(s) # 0 for some s € V. Then, u’ # 0 on an open subset V; C V. From (43), on Vi:

1
Q= E{stscl(”,)z +e3c1(Q)* + £200QQ'} (46)

Putting (46) into (44), we have {(1/)? — e2(Q")?}(e3c1Q’ + €202Q) = 0. With the help of ¢} =
€0€3Cy, it becomes:
{(')? —e2(Q")?}1Q)' = 0.
Suppose that ((1')> —e2(Q’)?) (s) # 0 on V;. Then, ¢;Q is constant on a component V; of V;.
Hence, (45) yields that:
c1Q = exciu'R. (47)

If c; = 0 on V;, (25) gives that c; = 0 and ¢3R = 0. Since R # 0, c3 = 0. Hence, the constant
vector C is zero, a contradiction. Therefore, c; # 0 on V,. From (47), Q = e,u’R. Moreover, ' is a
non-zero constant because ¢1Q and ¢ R are constants. Thus, (41) and (44) can be reduced to as follows:

c1Q'R —c1QR" +2c3Q" =0, (48)



Mathematics 2018, 6, 318 12 of 18

ezciu' Q' — e2c30Q" = 0. (49)

Upon our putting Q = &;u'R into (48), c3Q" = 0 is derived. By (49), c;u'Q" = 0. Hence, Q' = 0.
It follows that Q and R are non-zero constants on V5.

On the other hand, since the torsion of the director vector field  viewed as a curve in Ei’ is zero,
B is part of a plane curve. Moreover, B has constant curvature \/e; — e2¢3R2. Hence, B is a circle
or a hyperbola on the unit pseudo-sphere or the hyperbolic space of radius 1 in E3. Without loss of
generality, we may put:

B(s) = ;(R, cosps,sinps) or PB(s) = ;(sinh ps,cosh ps, R),

where p? = 5(1 — £3R?) and p > 0. Then, the function u = (&, ') is given by:
u = —ah(s)sinps + aj(s)cosps or u= —aj(s)coshps+ a)(s)sinhps,
!/

where a/(s) = (] (s), a5 (s), a4(s)). Therefore, we have:
u' = —(af + pal)sinps — (pa —af)cosps or u' = (—af + pab)cosh ps — (pa)j — af) sinh ps.
Since u’ is a constant, u’ must be zero. It is a contradiction on V7, and so:

(u')? = e2(Q)?

on Vj. It immediately follows that:
€y = 1

on Vj. Therefore, we get u’ = +Q’. Suppose 1/ # —Q’ on Vj. Then, ' = Q' and (43) can be written as:
Q'(2e3¢1Q" +2Q — c3Q) = 0.

Since Q' #0on 'V,
c3Q = 2£3C1Q/ + Q. (50)

Putting (50) into (40) and (41), respectively, we obtain:
e3c1Q' R+ c2QR +2e36,Q" +¢1Q" = 0, (51)
e3c1(Q)? +c1QQ'R — e3c1QQ" — c1Q°R’ — ©2QQ" = 0. (52)
Putting together Equations (51) and (52) with the help of (39), we get:
(e301Q" 4+ 2Q)(Q" 4 2e3QR) = 0.

Suppose (e3¢1Q" + c2Q)(s) # 0 on Vy. Then, Q' = —2e3QR. If we make use of it, we can derive
R(e3¢1Q’ + ¢2Q) = 0 from (51). Since R is non-vanishing, e3¢1Q" + ¢2Q = 0, a contradiction. Thus:

e301Q" +2Q =0, (53)

that is, ¢;Q is constant on each component of V;. From (45), c;Q = cju'R. Similarly as before, it is
seen that c; # 0 and u’ is a non-zero constant. Hence, Q = u/R. If we use the fact that c;Q and Q’ are
constant, cQ’ = 0 is derived from (51). Therefore, c; = 0 on each component of V;. By (53), ¢c; = 0
on each component of V;. Hence, (50) implies that c3 = 0 on each component of V;. The vector C is
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constant and thus zero on M, a contradiction. Thus, we obtain u’ = —Q’ on V;. Equation (43) with
/

u' = —Q’ gives that:
3Q = —2¢301Q" — Q. (54)

Putting (54) together with 1’ = —Q’ into (40), we have:
c1Q” = e3c1Q'R + c2QR — 2e3¢,Q’. (55)

Furthermore, Equations (39), (41), (54) and (55) give:

(e3c1Q" +2Q)(Q" —2e3QR) =0

on Vj. Suppose e30c1Q" + c2Q # 0. Then, Q" = 2e30QR, and thus, Q" = 2e3Q'R + 2e3QR’. Putting it
into (55) with the help of (39), we get:

R(e3c1Q" + Q) =0,
from which e3¢1Q" + ¢2Q = 0, a contradiction. Therefore, we get:
e3c1Q" + Q=0

on Vj. Thus, ¢1Q is constant on each component of V;. Similarly developing the argument as before,
we see that the constant vector C is zero, which contradicts our assumption. Consequently, the open
subset Vj is empty, i.e., the functions u and Q are constant on each component of V. Since Q = #/R, Q
vanishes on V. Thus, the open subset V is empty, and hence, Q vanishes on M. Thus, (18) shows that
the Gaussian curvature K automatically vanishes on M.

Thus, we obtain:

Theorem 3. Let M be a non-cylindrical ruled surface of type ML, M3, or MY parameterized by the non-null
base curve o and the director vector field B in E3 with the generalized 1-type Gauss map. If B, B/, and " are not
coplanar along «, then M is flat.

Combining Definition 3, Theorems 2 and 3, and the classification theorem of flat surfaces with the
generalized 1-type Gauss map in Minkowski 3-space in [8], we have the following:

Theorem 4. Let M be a non-cylindrical ruled surface of type M1, M3, or MY in E3 with the generalized
1-type Gauss map. Then, M is locally part of a plane, the helicoid of the first kind, the helicoid of the second kind,
the helicoid of the third kind, a circular cone, a hyperbolic cone, or a conical surface of G-type.

We now consider the case that the ruled surface M is non-cylindrical of type M2, M2 . Then, up
to a rigid motion, a parametrization of M is given by:

x(s,t) = a(s) +tp(s)

satisfying (a/, B) =0, (&/,a') = e1(= £1), (B,8) = 1,and (B, ') = 0 with g’ # 0.
Again, we put the smooth functions g and u as follows:

q=llxsl? = [(xs, x5, u= (o, B).

We see that the null vector fields p’ and B x p are orthogonal, and they are parallel. It is easily
derived as B’ = B x B'. Moreover, we may assume that f(0) = (0,0,1) and p can be taken by:

B(s) = (as,as, 1)
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for a non-zero constant 4. Then, {a’, B, ' x B} forms an orthonormal frame along the base curve a.
With respect to this frame, we can put:

!

B =eu(@ —a' xp) and o' =-up+ u;“, X B. (56)

Note that the function u is non-vanishing.
On the other hand, we can compute the Gauss map G of M such as:

G=q 12 x p—tp). (57)

We also easily get the mean curvature H and the Gaussian curvature K of M by the usual
procedure, respectively,

!/

1
H= Eq_3/2 (u’t - elt;) and K =g 2u% (58)
Upon our using (19), the Laplacian of the Gauss map G of M is expressed as:
AG = q 72 (Asa’ + BaB + Daa x B) (59)

with respect to the orthonormal frame {&/, 8, &’ x B}, where we put:
P P

"2 " 2 2 2
Ay =3¢ (uu) t+eq1q (—L; + (L;Z) +uu"t? 4 & (uu) t) +q(uu) t—3equ(u' )

+ egequ(u)? 3 + 2e4e1qut,
By =eqqu’ (4e1 — ut),
2 12 2
Dy =Bequ(u')?t? — 3(u')*? — eqq <£1uu”t2 —ut+ (uu)t) — slq(jl—g — q%t

— g (1)t — 2e4qu® — eqequ(u' )t — 2e4e1qut.

We now suppose that the Gauss map G of M is of generalized 1-type satisfying Condition (1).
Then, from (56), (57), and (59), we get:

g2 (Aga + By + Do’ x B) = fa V2 { (14 equt)a’ x p—equta’} + gC. (60)

If the constant vector C is zero, the Gauss map G is nothing but of pointwise 1-type of the first kind.
By the result of [4], M is part of the conjugate of Enneper’s surface of the second kind.

From now on, for a while, we assume that C is a non-zero constant vector. Taking the indefinite
scalar product to Equation (60) with the orthonormal vector fields &/, B, and &’ x B, respectively, we
obtain:

€1q_7/2A2 _ _fq—l/Zut +g <C, “/>, (61)
778, =g (C.p), (62
elq_7/2D2 = fq_l/z(sl + ut) - g <C/ D(/ X ﬁ> (63)

In terms of the orthonormal frame {a/, B, ' X B}, the constant vector C can be written as:
C=oc1t + 2B+ cza’ x B,

where we have put c; = ¢1(C,a’), c = (C, B), and ¢35 = —&1(C,a’ x B). Then, Equations (61)—-(63) are
expressed as follows:
e197 72 Ay = —fqV2ut + 1901, (64)
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77*By =g, (65)
e19”"/2Dy = fq V2 (&1 + ut) + e1gcs. (66)

Differentiating the functions c1, cp, and c3 with respect to the parameter s, we get:

o
¢} = —equcy — —c3,
ch = ucy + ucs, (67)
b = —Zlcl + equcy.
Combining Equations (64)—(66), we obtain:
ca(e1 +ut)Ay — {erc1 + (c1 + c3)ut} By + coutDy = 0. (68)
As before, from (68), we obtain the following:
co(uu” —3(u")?) + (1 + c3)u*u’ =0, (69)
7co(u')? — 5cyu®u’ — 7esuu’ =0, (70)
e (7(u')? = Buu”) — 11cyu®u’ — 4csuu’ =0, (71)
e (uu' — (u')?) + 4cyu®u’ = 0. (72)
Combining Equations (69) and (71), we get:
5¢o(uu'" — (u')?) — 7c1uu’ = 0. (73)

From (72) and (73), we get c;u’ = 0. Hence, Equations (70) and (72) become:
u' (cou’ — c3u®) =0, (74)

co(uu — (u')?) = 0. (75)

Now, suppose that u’(sp) # 0 at some point sy € dom(«). Then, there exists an open interval |
such that ' # 0 on J. Then, ¢; = 0 on J. Hence, (67) reduces to:

e1ulcy +u'c3 =0,
ch = ucs, (76)

b = equcy.

From the above relationships, we see that c is constant on J. In this case, if c; = 0, then c3 = 0.
Hence, C is zero on J. Thus, the constant vector C is zero on M. This contradicts our assumption.
Therefore, c; is non-zero. Solving the differential Equation (74) with the help of ¢}, = uc3 in (76), we
get u = kcp for some non-zero constant k. Moreover, since c’2 is constant, u”" = 0. Thus, Equation (75)
implies that u’ = 0, which is a contradiction. Therefore, there does not exist such a point s € dom(«)
such that u/(sp) # 0. Hence, u is constant on M. With the help of (58), the mean curvature H of M
vanishes on M. It is easily seen from (19) that the Gauss map G of M is of pointwise 1-type of the first
kind, which means (1) is satisfied with C = 0. Thus, this case does not occur.

As a consequence, we give the following classification:
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Theorem 5. Let M be a non-cylindrical ruled surface of type M3 or M2 in E3 with the generalized 1-type
Gauss map G. Then, the Gauss map G is of pointwise 1-type of the first kind and M is an open part of the
conjugate of Enneper’s surface of the second kind.

Remark 2. There do not exist non-cylindrical ruled surfaces of type M% or M in E3 with the proper
generalized 1-type Gauss map G.

5. Null Scrolls in the Minkowski 3-Space ]E?

In this section, we examine the null scrolls with the generalized 1-type Gauss map in the
Minkowski 3-space E3. In particular, we focus on proving the following theorem.

Theorem 6. Let M be a null scroll in the Minkowski 3-space E3. Then, M has generalized 1-type Gauss map
G if and only if M is part of a Minkowski plane or a B-scroll.

Proof. Suppose that a null scroll M has the generalized 1-type Gauss map. Let &« = a(s) be a null
curve in E3 and B = B(s) a null vector field along « such that (a/, B) = 1. Then, the null scroll M is
parameterized by:

x(s,t) = a(s) + tp(s)

and we have the natural coordinate frame {xs, x;} given by:
xs=a' +tp and x =B.
We put the smooth functions u, v, Q, and R by:
u=(,p), v=(p.p) Q={("p xp), R=(p"xp). (77)

Then, {a/, B, &’ x B} is a pseudo-orthonormal frame along «.
Straightforward computation gives the Gauss map G of M and the Laplacian AG of G by:

G=a'xB+tp/ xp and AG=-28"xB+2(u+tv)p xp.

With respect to the pseudo-orthonormal frame {a/, B, &’ x B}, the vector fields f/, p’ x B, and
B’ x B are represented as:

B =up—Qa' xB, B xBp=QB and B"xpB=RB—ova x§. (78)
Thus, the Gauss map G and its Laplacian AG are expressed by:
G=a'xB+tQB and AG= —2(R—uQ —tvQ)p+2va’ x B. (79)
Since M has the generalized 1-type Gauss map, the Gauss map G satisfies:
AG = fG+gC (80)
for some non-zero smooth functions f, g and a constant vector C. From (79), we get:
—2(R—uQ —toQ)B+2va’ x B = f(a' x p+tQp) + ¢C. (81)

If the constant vector C is zero, M is an open part of a Minkowski plane or a B-scroll according to
the classification theorem in [4].
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We now consider the case that the constant vector C is non-zero. If we take the indefinite inner
product to Equation (81) with &/, B, and &’ x B, respectively, we get:

—2(R—uQ—tvQ) = ftQ+gc2, gc1 =0, 20=f+gcs, (82)

where we have put
c1={(C,B), co=(C,a') and c3=(C,a’ xB).

Since g # 0, Equation (82) gives (C, B/) = 0. Together with (78), we see that c3Q = 0. Suppose that
Q(s) # 0 on an open interval [ C dom(a). Then, c3 = 0 on I. Therefore, the constant vector C can
be written as C = ¢, on [. If we differentiate C = ¢, with respect to s, ¢4 + ¢’ = 0, and thus,
c,v = 0. On the other hand, from (77) and (78), we have v = Q2. Hence, v is non-zero on I, and so,
¢ = 0. It contradicts that C is a non-zero vector. In the sequel, Q vanishes identically. Then, p’ = up,
which implies R = 0. Thus, the Gauss map G is reduced to G = &’ x 8, which depends only on the
parameter s, from which the shape operator S of M is easily derived as:

00 0 0
SZ(O 0) o SI(k(s) 0)

for some non-vanishing function k. Therefore, the null scroll M is part of a Minkowski plane or a flat
B-scroll described in Section 2 determined by A = &/, B = , C = G satisfying C' = —k(s)B. Thus,
null scrolls in E} with the generalized 1-type Gauss map satisfying (80) are part of Minkowski planes
or B-scrolls whether C is zero or not.

The converse is obvious. This completes the proof. [J

Corollary 1. There do not exist null scrolls in E3 with the proper generalized 1-type Gauss map.

Open problem: Classify ruled submanifolds with the generalized 1-type Gauss map in
Minkowski space.
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