Article

Classification Theorems of Ruled Surfaces in Minkowski Three-Space

Miekyung Choi ${ }^{1}$ and Young Ho Kim ${ }^{2, *}$
1 Department of Mathematics Education and RINS, Gyeongsang National University, Jinju 52828, Korea; mkchoi@gnu.ac.kr
2 Department of Mathematics, Kyungpook National University, Daegu 41566, Korea
* Correspondence: yhkim@knu.ac.kr; Tel.: +82-53-950-5888

Received: 16 November 2018; Accepted: 8 December 2018; Published: 11 December 2018

Abstract

By generalizing the notion of the pointwise 1-type Gauss map, the generalized 1-type Gauss map has been recently introduced. Without any assumption, we classified all possible ruled surfaces with the generalized 1-type Gauss map in a 3-dimensional Minkowski space. In particular, null scrolls do not have the proper generalized 1-type Gauss map. In fact, it is harmonic.

Keywords: ruled surface; null scroll; Minkowski space; pointwise 1-type Gauss map; generalized 1-type Gauss map; conical surface of G-type

1. Introduction

Thanks to Nash's imbedding theorem, Riemannian manifolds can be regarded as submanifolds of Euclidean space. The notion of finite-type immersion has been used in studying submanifolds of Euclidean space, which was initiated by B.-Y. Chen by generalizing the eigenvalue problem of the immersion [1]. An isometric immersion x of a Riemannian manifold M into a Euclidean space \mathbb{E}^{m} is said to be of finite-type if it has the spectral decomposition as:

$$
x=x_{0}+x_{1}+\cdots+x_{k},
$$

where x_{0} is a constant vector and $\Delta x_{i}=\lambda_{i} x_{i}$ for some positive integer k and $\lambda_{i} \in \mathbb{R}, i=1, \ldots, k$. Here, Δ denotes the Laplacian operator defined on M. If $\lambda_{1}, \ldots, \lambda_{k}$ are mutually different, M is said to be of k-type. Naturally, we may assume that a finite-type immersion x of a Riemannian manifold into a Euclidean space is of k-type for some positive integer k.

The notion of finite-type immersion of the submanifold into Euclidean space was extended to the study of finite-type immersion or smooth maps defined on submanifolds of a pseudo-Euclidean space \mathbb{E}_{s}^{m} with the indefinite metric of index $s \geq 1$. In this sense, it is very natural for geometers to have interest in the finite-type Gauss map of submanifolds of a pseudo-Euclidean space [2-4].

We now focus on surfaces of the Minkowski space \mathbb{E}_{1}^{3}. Let M be a surface in the 3-dimensional Minkowski space \mathbb{E}_{1}^{3} with a non-degenerate induced metric. From now on, a surface M in \mathbb{E}_{1}^{3} means non-degenerate, i.e., its induced metric is non-degenerate unless otherwise stated. The map G of a surface M into a semi-Riemannian space form $Q^{2}(\epsilon)$ by parallel translation of a unit normal vector of M to the origin is called the Gauss map of M, where $\epsilon(= \pm 1)$ denotes the sign of the vector field G. A helicoid or a right cone in \mathbb{E}^{3} has the unique form of Gauss map G, which looks like the 1-type Gauss map in the usual sense [5,6]. However, it is quite different from the 1-type Gauss map, and thus, the authors defined the following definition.

Definition 1. ([7]) The Gauss map G of a surface M in \mathbb{E}_{1}^{3} is of pointwise 1-type if the Gauss map G of M satisfies:

$$
\Delta G=f(G+\mathbf{C})
$$

for some non-zero smooth function f and a constant vector \mathbf{C}. Especially, the Gauss map G is called pointwise 1-type of the first kind if \mathbf{C} is a zero vector. Otherwise, it is said to be of pointwise 1-type of the second kind.

Some other surfaces of \mathbb{E}^{3} such as conical surfaces have an interesting type of Gauss map. A surface in \mathbb{E}_{1}^{3} parameterized by:

$$
x(s, t)=p+t \beta(s)
$$

where p is a point and $\beta(s)$ a unit speed curve is called a conical surface. The typical conical surfaces are a right (circular) cone and a plane.

Example 1. ([8]) Let M be a surface in \mathbb{E}^{3} parameterized by:

$$
x(s, t)=\left(t \cos ^{2} s, t \sin s \cos s, t \sin s\right) .
$$

Then, the Gauss map G can be obtained by:

$$
G=\frac{1}{\sqrt{1+\cos ^{2} s}}\left(-\sin ^{3} s,\left(2-\cos ^{2} s\right) \cos s,-\cos ^{2} s\right)
$$

Its Laplacian turns out to be:

$$
\Delta G=f G+g \mathbf{C}
$$

for some non-zero smooth functions f, g and a constant vector \mathbf{C}. The surface M is a kind of conical surface generated by a spherical curve $\beta(s)=\left(\cos ^{2} s, \sin s \cos s, \sin s\right)$ on the unit sphere $\mathbb{S}^{2}(1)$ centered at the origin.

Based on such an example, by generalizing the notion of the pointwise 1-type Gauss map, the so-called generalized 1-type Gauss map was introduced.

Definition 2. ([8]) The Gauss map G of a surface M in \mathbb{E}_{1}^{3} is said to be of generalized 1-type if the Gauss map G satisfies:

$$
\begin{equation*}
\Delta G=f G+g \mathbf{C} \tag{1}
\end{equation*}
$$

for some non-zero smooth functions f, g and a constant vector \mathbf{C}. If $f \neq g, G$ is said to be of proper generalized 1-type.

Definition 3. A conical surface with the generalized 1-type Gauss map is called a conical surface of G-type.
Remark 1. ([8]) We can construct a conical surface of G-type with the functions f, g and the vector \mathbf{C} if we solve the differential Equation (1).

Here, we provide an example of a cylindrical ruled surface in the 3-dimensional Minkowski space \mathbb{E}_{1}^{3} with the generalized 1-type Gauss map.

Example 2. Let M be a ruled surface in the Minkowski 3-space \mathbb{E}_{1}^{3} parameterized by:

$$
x(s, t)=\left(\frac{1}{2}\left(s \sqrt{s^{2}-1}-\ln \left(s+\sqrt{s^{2}-1}\right)\right), \frac{1}{2} s^{2}, t\right), \quad s \geq 1 .
$$

Then, the Gauss map G is given by:

$$
G=\left(-s,-\sqrt{s^{2}-1}, 0\right)
$$

By a direct computation, we see that its Laplacian satisfies:

$$
\Delta G=\frac{s-\sqrt{s^{2}-1}}{\left(s^{2}-1\right)^{\frac{3}{2}}} G+\frac{s\left(s-\sqrt{s^{2}-1}\right)}{\left(s^{2}-1\right)^{\frac{3}{2}}}(1,-1,0)
$$

which indicates that M has the generalized 1-type Gauss map.

2. Preliminaries

Let M be a non-degenerate surface in the Minkowski 3-space \mathbb{E}_{1}^{3} with the Lorentz metric $d s^{2}=-d x_{1}^{2}+d x_{2}^{2}+d x_{3}^{2}$, where $\left(x_{1}, x_{2}, x_{3}\right)$ denotes the standard coordinate system in \mathbb{E}_{1}^{3}. From now on, a surface in \mathbb{E}_{1}^{3} means non-degenerate unless otherwise stated. A curve in \mathbb{E}_{1}^{3} is said to be space-like, time-like, or null if its tangent vector field is space-like, time-like, or null, respectively. Then, the Laplacian Δ is given by:

$$
\Delta=-\frac{1}{\sqrt{|\mathcal{G}|}} \sum_{i, j=1}^{2} \frac{\partial}{\partial \bar{x}_{i}}\left(\sqrt{|\mathcal{G}|} g^{i j} \frac{\partial}{\partial \bar{x}_{j}}\right)
$$

where $\left(g^{i j}\right)=\left(g_{i j}\right)^{-1}, \mathcal{G}$ is the determinant of the matrix $\left(g_{i j}\right)$ consisting of the components of the first fundamental form and $\left\{\bar{x}_{i}\right\}$ are the local coordinate system of M.

A ruled surface M in the Minkowski 3-space \mathbb{E}_{1}^{3} is defined as follows: Let I and J be some open intervals in the real line \mathbb{R}. Let $\alpha=\alpha(s)$ be a curve in \mathbb{E}_{1}^{3} defined on I and $\beta=\beta(s)$ a transversal vector field with $\alpha^{\prime}(s)$ along α. From now on, ' denotes the differentiation with respect to the parameter s unless otherwise stated. The surface M with a parametrization given by:

$$
x(s, t)=\alpha(s)+t \beta(s), \quad s \in I, \quad t \in J
$$

is called a ruled surface. In this case, the curve $\alpha=\alpha(s)$ is called a base curve and $\beta=\beta(s)$ a director vector field or a ruling. A ruled surface M is said to be cylindrical if β is constant. Otherwise, it is said to be non-cylindrical.

If we consider the causal character of the base and director vector field, we can divide a few different types of ruled surfaces in \mathbb{E}_{1}^{3} : If the base curve α is space-like or time-like, the director vector field β can be chosen to be orthogonal to α. The ruled surface M is said to be of type M_{+}or M_{-}, respectively, depending on α being space-like or time-like, respectively. Furthermore, the ruled surface of type M_{+}can be divided into three types M_{+}^{1}, M_{+}^{2}, and M_{+}^{3}. If β is space-like, it is said to be of type M_{+}^{1} or M_{+}^{2} if β^{\prime} is non-null or null, respectively. When β is time-like, β^{\prime} must be space-like because of the character of the causal vectors, which we call M_{+}^{3}. On the other hand, when α is time-like, β is always space-like. Accordingly, it is also said to be of type M_{-}^{1} or M_{-}^{2} if β^{\prime} is non-null or null, respectively. The ruled surface of type M_{+}^{1} or M_{+}^{2} (resp. M_{+}^{3}, M_{-}^{1} or M_{-}^{2}) is clearly space-like (resp. time-like).

If the base curve α is null, the ruling β along α must be null since M is non-degenerate. Such a ruled surface M is called a null scroll. Other cases, such as α is non-null and β is null, or α is null and β is non-null, are determined to be one of the types $M_{ \pm}^{1}, M_{ \pm}^{2}$, and M_{+}^{3}, or a null scroll by an appropriate change of the base curve [9].

Consider a null scroll: Let $\alpha=\alpha(s)$ be a null curve in \mathbb{E}_{1}^{3} with Cartan frame $\{A, B, C\}$, that is A, B, C are vector fields along α in \mathbb{E}_{1}^{3} satisfying the following conditions:

$$
\begin{gathered}
\langle A, A\rangle=\langle B, B\rangle=0, \quad\langle A, B\rangle=1, \quad\langle A, C\rangle=\langle B, C\rangle=0, \quad\langle C, C\rangle=1 \\
\alpha^{\prime}=A, \quad C^{\prime}=-a A-k(s) B
\end{gathered}
$$

where a is a constant and $k(s)$ a nowhere vanishing function. A null scroll parameterized by $x=x(s, t)=\alpha(s)+t B(s)$ is called a B-scroll, which has constant mean curvature $H=a$ and constant Gaussian curvature $K=a^{2}$. Furthermore, its Laplacian ΔG of the Gauss map G is given by:

$$
\Delta G=-2 a^{2} G
$$

from which we see that a B-scroll is minimal if and only if it is flat $[2,10]$.
Throughout the paper, all surfaces in \mathbb{E}_{1}^{3} are smooth and connected unless otherwise stated.

3. Cylindrical Ruled Surfaces in \mathbb{E}_{1}^{3} with the Generalized 1-Type Gauss Map

Let M be a cylindrical ruled surface of type M_{+}^{1}, M_{-}^{1} or M_{+}^{3} in \mathbb{E}_{1}^{3}. Then, M is parameterized by a base curve α and a unit constant vector β such that:

$$
x(s, t)=\alpha(s)+t \beta
$$

satisfying $\left\langle\alpha^{\prime}, \alpha^{\prime}\right\rangle=\varepsilon_{1}(= \pm 1),\left\langle\alpha^{\prime}, \beta\right\rangle=0$, and $\langle\beta, \beta\rangle=\varepsilon_{2}(= \pm 1)$.
We now suppose that M has generalized 1-type Gauss map G. Then, the Gauss map G satisfies Condition (1). We put the constant vector $\mathbf{C}=\left(c_{1}, c_{2}, c_{3}\right)$ in (1) for some constants c_{1}, c_{2}, and c_{3}.

Suppose that $f=g$. In this case, the Gauss map G is of pointwise 1-type. A classification of cylindrical ruled surfaces with the pointwise 1-type Gauss map in \mathbb{E}_{1}^{3} was described in [11].

If M is of type M_{+}^{1}, then M is an open part of a Euclidean plane or a cylinder over a curve of infinite-type satisfying:

$$
\begin{equation*}
c^{2} f^{-\frac{1}{3}}-\ln \left|c^{2} f^{-\frac{1}{3}}+1\right|= \pm c^{3}(s+k) \tag{2}
\end{equation*}
$$

if \mathbf{C} is null, or

$$
\begin{align*}
& \sqrt{\left(c^{2} f^{-\frac{1}{3}}+1\right)^{2}+\left(-c_{1}^{2}+c_{2}^{2}\right)}-\ln \left(c^{2} f^{-\frac{1}{3}}+1+\sqrt{\left(c^{2} f^{-\frac{1}{3}}+1\right)^{2}+\left(-c_{1}^{2}+c_{2}^{2}\right)}\right) \tag{3}\\
& \quad+\ln \sqrt{\left|-c_{1}^{2}+c_{2}^{2}\right|}= \pm c^{3}(s+k)
\end{align*}
$$

if \mathbf{C} is non-null, where c is some non-zero constant and k is a constant.
If M is of type M_{-}^{1}, M is an open part of a Minkowski plane or a cylinder over a curve of infinite-type satisfying:

$$
\begin{equation*}
c^{2} f^{-\frac{1}{3}}+\ln \left|c^{2} f^{-\frac{1}{3}}-1\right|= \pm c^{3}(s+k) \tag{4}
\end{equation*}
$$

or:

$$
\begin{align*}
& \sqrt{\left(c^{2} f^{-\frac{1}{3}}-1\right)^{2}-\left(-c_{1}^{2}+c_{2}^{2}\right)}+\ln \left(c^{2} f^{-\frac{1}{3}}-1+\sqrt{\left(c^{2} f^{-\frac{1}{3}}-1\right)^{2}+\left|-c_{1}^{2}+c_{2}^{2}\right|}\right) \tag{5}\\
& \quad-\ln \sqrt{\left|-c_{1}^{2}+c_{2}^{2}\right|}= \pm c^{3}(s+k)
\end{align*}
$$

depending on the constant vector, \mathbf{C}, being null or non-null, respectively, for some non-zero constant c and some constant k.

If M is of type M_{+}^{3}, M is an open part of either a Minkowski plane or a cylinder over a curve of infinite-type satisfying:

$$
\begin{equation*}
\sqrt{c_{2}^{2}+c_{3}^{2}-\left(c^{2} f^{-\frac{1}{3}}-1\right)^{2}}-\sin ^{-1}\left(\frac{c^{2} f^{-\frac{1}{3}}-1}{\sqrt{c_{2}^{2}+c_{3}^{2}}}\right)= \pm c^{3}(s+k) \tag{6}
\end{equation*}
$$

where c is a non-zero constant and k a constant.
We now assume that $f \neq g$. Here, we consider two cases.

Case 1. Let M be a cylindrical ruled surface of type M_{+}^{1} or M_{-}^{1}, i.e., $\varepsilon_{2}=1$. Without loss of generality, the base curve α can be put as $\alpha(s)=\left(\alpha_{1}(s), \alpha_{2}(s), 0\right)$ parameterized by arc length s and the director vector field β as a unit constant vector $\beta=(0,0,1)$. Then, the Gauss map G of M and the Laplacian ΔG of the Gauss map are respectively obtained by:

$$
\begin{equation*}
G=\left(-\alpha_{2}^{\prime}(s),-\alpha_{1}^{\prime}(s), 0\right) \quad \text { and } \quad \Delta G=\left(\varepsilon_{1} \alpha_{2}^{\prime \prime \prime}(s), \varepsilon_{1} \alpha_{1}^{\prime \prime \prime}(s), 0\right) \tag{7}
\end{equation*}
$$

With the help of (1) and (7), it immediately follows:

$$
\mathbf{C}=\left(c_{1}, c_{2}, 0\right)
$$

for some constants c_{1} and c_{2}. We also have:

$$
\begin{align*}
& \varepsilon_{1} \alpha_{2}^{\prime \prime \prime}=-f \alpha_{2}^{\prime}+g c_{1} \\
& \varepsilon_{1} \alpha_{1}^{\prime \prime \prime}=-f \alpha_{1}^{\prime}+g c_{2} . \tag{8}
\end{align*}
$$

Firstly, we consider the case that M is of type M_{+}^{1}. Since α is space-like, we may put:

$$
\alpha_{1}^{\prime}(s)=\sinh \phi(s) \quad \text { and } \quad \alpha_{2}^{\prime}(s)=\cosh \phi(s)
$$

for some function $\phi(s)$ of s. Then, (8) can be written in the form:

$$
\begin{aligned}
\left(\phi^{\prime}\right)^{2} \cosh \phi+\phi^{\prime \prime} \sinh \phi & =-f \cosh \phi+g c_{1} \\
\left(\phi^{\prime}\right)^{2} \sinh \phi+\phi^{\prime \prime} \cosh \phi & =-f \sinh \phi+g c_{2}
\end{aligned}
$$

This implies that:

$$
\begin{equation*}
\left(\phi^{\prime}\right)^{2}=-f+g\left(c_{1} \cosh \phi-c_{2} \sinh \phi\right) \tag{9}
\end{equation*}
$$

and:

$$
\begin{equation*}
\phi^{\prime \prime}=g\left(-c_{1} \sinh \phi+c_{2} \cosh \phi\right) \tag{10}
\end{equation*}
$$

In fact, ϕ^{\prime} is the signed curvature of the base curve $\alpha=\alpha(s)$.
Suppose ϕ is a constant, i.e., $\phi^{\prime}=0$. Then, α is part of a straight line. In this case, M is an open part of a Euclidean plane.

Now, we suppose that $\phi^{\prime} \neq 0$. From (8), we see that the functions f and g depend only on the parameter s, i.e., $f(s, t)=f(s)$ and $g(s, t)=g(s)$. Taking the derivative of Equation (9) and using (10), we get:

$$
3 \phi^{\prime} \phi^{\prime \prime}=-f^{\prime}+g^{\prime}\left(c_{1} \cosh \phi-c_{2} \sinh \phi\right)
$$

With the help of (9), it follows that:

$$
\frac{3}{2}\left(\left(\phi^{\prime}\right)^{2}\right)^{\prime}=-f^{\prime}+\frac{g^{\prime}}{g}\left(\left(\phi^{\prime}\right)^{2}+f\right)
$$

Solving the above differential equation, we have:

$$
\begin{equation*}
\phi^{\prime}(s)^{2}=k_{1} g^{\frac{2}{3}}+\frac{2}{3} g^{\frac{2}{3}} \int g^{-\frac{2}{3}} f\left(-\frac{f^{\prime}}{f}+\frac{g^{\prime}}{g}\right) d s, \quad k_{1}(\neq 0) \in \mathbb{R} . \tag{11}
\end{equation*}
$$

We put:

$$
\phi^{\prime}(s)= \pm \sqrt{p(s)}
$$

where $p(s)=\left|k_{1} g^{\frac{2}{3}}+\frac{2}{3} g^{\frac{2}{3}} \int g^{-\frac{2}{3}} f\left(-\frac{f^{\prime}}{f}+\frac{g^{\prime}}{g}\right) d s\right|$. This means that the function ϕ is determined by the functions f, g and a constant vector satisfying (1). Therefore, the cylindrical ruled surface M satisfying (1) is determined by a base curve α such that:

$$
\alpha(s)=\left(\int \sinh \phi(s) d s, \int \cosh \phi(s) d s, 0\right)
$$

and the director vector field $\beta(s)=(0,0,1)$.
In this case, if f and g are constant, the signed curvature ϕ^{\prime} of a base curve α is non-zero constant, and the Gauss map G is of the usual 1-type. Hence, M is an open part of a hyperbolic cylinder or a circular cylinder [12].

Suppose that one of the functions f and g is not constant. Then, M is an open part of a cylinder over the base curve of infinite-type satisfying (11). For a curve of finite-type in a plane of \mathbb{E}_{1}^{3}, see [12] for the details.

Next, we consider the case that M is of type M_{-}^{1}. Since α is time-like, we may put:

$$
\alpha_{1}^{\prime}(s)=\cosh \phi(s) \quad \text { and } \quad \alpha_{2}^{\prime}(s)=\sinh \phi(s)
$$

for some function $\phi(s)$ of s.
As was given in the previous case of type M_{+}^{1}, if the signed curvature ϕ^{\prime} of the base curve α is zero, M is part of a Minkowski plane.

We now assume that $\phi^{\prime} \neq 0$. Quite similarly as above, we have:

$$
\begin{equation*}
\phi^{\prime}(s)^{2}=k_{2} g^{\frac{2}{3}}+\frac{2}{3} g^{\frac{2}{3}} \int g^{-\frac{2}{3}} f\left(\frac{f^{\prime}}{f}-\frac{g^{\prime}}{g}\right) d s, \quad k_{2}(\neq 0) \in \mathbb{R} \tag{12}
\end{equation*}
$$

or, we put:

$$
\phi^{\prime}(s)= \pm \sqrt{q(s)}
$$

where $q(s)=\left|k_{2} g^{\frac{2}{3}}+\frac{2}{3} g^{\frac{2}{3}} \int g^{-\frac{2}{3}} f\left(\frac{f^{\prime}}{f}-\frac{g^{\prime}}{g}\right) d s\right|$.
Case 2. Let M be a cylindrical ruled surface of type M_{+}^{3}. In this case, without loss of generality, we may choose the base curve α to be $\alpha(s)=\left(0, \alpha_{2}(s), \alpha_{3}(s)\right)$ parameterized by arc length s and the director vector field β as $\beta=(1,0,0)$. Then, the Gauss map G of M and the Laplacian ΔG of the Gauss map are obtained respectively by:

$$
\begin{equation*}
G=\left(0, \alpha_{3}^{\prime},-\alpha_{2}^{\prime}\right) \quad \text { and } \quad \Delta G=\left(0,-\alpha_{3}^{\prime \prime \prime}, \alpha_{2}^{\prime \prime \prime}\right) \tag{13}
\end{equation*}
$$

The relationship (13) and the condition (1) imply that the constant vector \mathbf{C} has the form:

$$
\mathbf{C}=\left(0, c_{2}, c_{3}\right)
$$

for some constants c_{2} and c_{3}.
If f and g are both constant, the Gauss map is of 1-type in the usual sense, and thus, M is an open part of a circular cylinder [1].

We now assume that the functions f and g are not both constant. Then, with the help of (1) and (13), we get:

$$
\begin{align*}
-\alpha_{3}^{\prime \prime \prime} & =f \alpha_{3}^{\prime}+g c_{2} \\
\alpha_{2}^{\prime \prime \prime} & =-f \alpha_{2}^{\prime}+g c_{3} \tag{14}
\end{align*}
$$

Since α is parameterized by the arc length s, we may put:

$$
\alpha_{2}^{\prime}(s)=\cos \phi(s) \quad \text { and } \quad \alpha_{3}^{\prime}(s)=\sin \phi(s)
$$

for some function $\phi(s)$ of s. Hence, (14) can be expressed as:

$$
\begin{aligned}
\left(\phi^{\prime}\right)^{2} \sin \phi-\phi^{\prime \prime} \cos \phi & =f \sin \phi+g c_{2} \\
\left(\phi^{\prime}\right)^{2} \cos \phi+\phi^{\prime \prime} \sin \phi & =f \cos \phi-g c_{3}
\end{aligned}
$$

It follows:

$$
\begin{equation*}
\left(\phi^{\prime}\right)^{2}=f+g\left(c_{2} \sin \phi-c_{3} \cos \phi\right) \tag{15}
\end{equation*}
$$

Thus, M is a cylinder over the base curve α given by:

$$
\alpha(s)=\left(0, \int \cos \left(\int \sqrt{r(s)} d s\right) d s, \int \sin \left(\int \sqrt{r(s)} d s\right) d s\right)
$$

and the ruling $\beta(s)=(1,0,0)$, where $r(s)=\left|f(s)+g(s)\left(c_{2} \sin \phi(s)-c_{3} \cos \phi(s)\right)\right|$.
Consequently, we have:
Theorem 1. (Classification of cylindrical ruled surfaces in \mathbb{E}_{1}^{3}) Let M be a cylindrical ruled surface with the generalized 1-type Gauss map in the Minkowski 3 -space \mathbb{E}_{1}^{3}. Then, M is an open part of a Euclidean plane, a Minkowski plane, a circular cylinder, a hyperbolic cylinder, or a cylinder over a base curve of infinite-type satisfying (2)-(6), (11), (12), or (15).

4. Non-Cylindrical Ruled Surfaces with the Generalized 1-Type Gauss Map

In this section, we classify all non-cylindrical ruled surfaces with the generalized 1-type Gauss map in \mathbb{E}_{1}^{3}.

We start with the case that the surface M is non-cylindrical of type M_{+}^{1}, M_{+}^{3}, or M_{-}^{1}. Then, M is parameterized by, up to a rigid motion,

$$
x(s, t)=\alpha(s)+t \beta(s)
$$

such that $\left\langle\alpha^{\prime}, \beta\right\rangle=0,\langle\beta, \beta\rangle=\varepsilon_{2}(= \pm 1)$, and $\left\langle\beta^{\prime}, \beta^{\prime}\right\rangle=\varepsilon_{3}(= \pm 1)$. Then, $\left\{\beta, \beta^{\prime}, \beta \times \beta^{\prime}\right\}$ is an orthonormal frame along the base curve α. For later use, we define the smooth functions q, u, Q, and R as follows:

$$
q=\left\|x_{s}\right\|^{2}=\varepsilon_{4}\left\langle x_{s}, x_{s}\right\rangle, \quad u=\left\langle\alpha^{\prime}, \beta^{\prime}\right\rangle, \quad Q=\left\langle\alpha^{\prime}, \beta \times \beta^{\prime}\right\rangle, \quad R=\left\langle\beta^{\prime \prime}, \beta \times \beta^{\prime}\right\rangle
$$

where ε_{4} is the sign of the coordinate vector field $x_{s}=\partial x / \partial s$. The vector fields $\alpha^{\prime}, \beta^{\prime \prime}, \alpha^{\prime} \times \beta$, and $\beta \times \beta^{\prime \prime}$ are represented in terms of the orthonormal frame $\left\{\beta, \beta^{\prime}, \beta \times \beta^{\prime}\right\}$ along the base curve α as:

$$
\begin{align*}
& \alpha^{\prime}=\varepsilon_{3} u \beta^{\prime}-\varepsilon_{2} \varepsilon_{3} Q \beta \times \beta^{\prime} \\
& \beta^{\prime \prime}=-\varepsilon_{2} \varepsilon_{3} \beta-\varepsilon_{2} \varepsilon_{3} R \beta \times \beta^{\prime} \\
& \alpha^{\prime} \times \beta=\varepsilon_{3} Q \beta^{\prime}-\varepsilon_{3} u \beta \times \beta^{\prime} \tag{16}\\
& \beta \times \beta^{\prime \prime}=-\varepsilon_{3} R \beta^{\prime}
\end{align*}
$$

Therefore, the smooth function q is given by:

$$
q=\varepsilon_{4}\left(\varepsilon_{3} t^{2}+2 u t+\varepsilon_{3} u^{2}-\varepsilon_{2} \varepsilon_{3} Q^{2}\right)
$$

Note that t is chosen so that q takes positive values.
Furthermore, the Gauss map G of M is given by:

$$
\begin{equation*}
G=q^{-1 / 2}\left(\varepsilon_{3} Q \beta^{\prime}-\left(\varepsilon_{3} u+t\right) \beta \times \beta^{\prime}\right) \tag{17}
\end{equation*}
$$

By using the determinants of the first fundamental form and the second fundamental form, the mean curvature H and the Gaussian curvature K of M are obtained by, respectively,

$$
\begin{align*}
H & =\frac{1}{2} \varepsilon_{2} q^{-3 / 2}\left(R t^{2}+\left(2 \varepsilon_{3} u R+Q^{\prime}\right) t+u^{2} R+\varepsilon_{3} u Q^{\prime}-\varepsilon_{3} u^{\prime} Q-\varepsilon_{2} Q^{2} R\right) \tag{18}\\
K & =q^{-2} Q^{2}
\end{align*}
$$

Applying the Gauss and Weingarten formulas, the Laplacian of the Gauss map G of M in \mathbb{E}_{1}^{3} is represented by:

$$
\begin{equation*}
\Delta G=2 \operatorname{grad} H+\langle G, G\rangle\left(\operatorname{tr} A_{G}^{2}\right) G \tag{19}
\end{equation*}
$$

where A_{G} denotes the shape operator of the surface M in \mathbb{E}_{1}^{3} and grad H is the gradient of H. Using (18), we get:

$$
\begin{aligned}
2 \operatorname{grad} H & =2\left\langle e_{1}, e_{1}\right\rangle e_{1}(H) e_{1}+2\left\langle e_{2}, e_{2}\right\rangle e_{2}(H) e_{2} \\
& =2 \varepsilon_{4} e_{1}(H) e_{1}+2 \varepsilon_{2} e_{2}(H) e_{2} \\
& =q^{-7 / 2}\left\{-\varepsilon_{2}\left(\varepsilon_{3} u+t\right) A_{1} \beta^{\prime}-\varepsilon_{4} q B_{1} \beta+\varepsilon_{3} Q A_{1} \beta \times \beta^{\prime}\right\}
\end{aligned}
$$

where $e_{1}=\frac{x_{s}}{\left\|x_{s}\right\|^{\prime}}, \quad e_{2}=\frac{x_{t}}{\left\|x_{t}\right\|^{\prime}}$,

$$
\begin{aligned}
A_{1}= & 3\left(u^{\prime} t+\varepsilon_{3} u u^{\prime}-\varepsilon_{2} \varepsilon_{3} Q Q^{\prime}\right)\left\{R t^{2}+\left(2 \varepsilon_{3} u R+Q^{\prime}\right) t+u^{2} R+\varepsilon_{3} u Q^{\prime}-\varepsilon_{3} u^{\prime} Q-\varepsilon_{2} Q^{2} R\right\} \\
& -\left(\varepsilon_{3} t^{2}+2 u t+\varepsilon_{3} u^{2}-\varepsilon_{2} \varepsilon_{3} Q^{2}\right)\left\{R^{\prime} t^{2}+\left(2 \varepsilon_{3} u^{\prime} R+2 \varepsilon_{3} u R^{\prime}+Q^{\prime \prime}\right) t+2 u u^{\prime} R+u^{2} R^{\prime}\right. \\
& \left.+\varepsilon_{3} u Q^{\prime \prime}-\varepsilon_{3} u^{\prime \prime} Q-2 \varepsilon_{2} Q Q^{\prime} R-\varepsilon_{2} Q^{2} R^{\prime}\right\}, \\
B_{1}= & \varepsilon_{3} R t^{3}+\left(3 u R+2 \varepsilon_{3} Q^{\prime}\right) t^{2}+\left(3 \varepsilon_{3} u^{2} R+4 u Q^{\prime}-3 u^{\prime} Q-\varepsilon_{2} \varepsilon_{3} Q^{2} R\right) t+u^{3} R+2 \varepsilon_{3} u^{2} Q^{\prime} \\
& -\varepsilon_{2} u Q^{2} R-3 \varepsilon_{3} u u^{\prime} Q+\varepsilon_{2} \varepsilon_{3} Q^{2} Q^{\prime} .
\end{aligned}
$$

The straightforward computation gives:

$$
\operatorname{tr} A_{G}^{2}=-\varepsilon_{2} \varepsilon_{4} q^{-3} D_{1}
$$

where:

$$
D_{1}=-\varepsilon_{4}\left(u^{\prime} t+\varepsilon_{3} u u^{\prime}-\varepsilon_{2} \varepsilon_{3} Q Q^{\prime}\right)^{2}+\varepsilon_{3} q\left\{\left(\varepsilon_{2} Q R+\varepsilon_{3} u^{\prime}\right)^{2}-\varepsilon_{2}\left(Q^{\prime}+\varepsilon_{3} u R+R t\right)^{2}-2 \varepsilon_{3} Q^{2}\right\} .
$$

Thus, the Laplacian ΔG of the Gauss map G of M is obtained by:

$$
\begin{equation*}
\Delta G=q^{-7 / 2}\left[-\varepsilon_{4} q B_{1} \beta+\left\{-\varepsilon_{2}\left(\varepsilon_{3} u+t\right) A_{1}+\varepsilon_{3} Q D_{1}\right\} \beta^{\prime}+\left\{\varepsilon_{3} Q A_{1}-\left(\varepsilon_{3} u+t\right) D_{1}\right\} \beta \times \beta^{\prime}\right] \tag{20}
\end{equation*}
$$

Now, suppose that the Gauss map G of M is of generalized 1-type. Hence, from (1), (17) and (20), we get:

$$
\begin{align*}
& q^{-7 / 2}\left[-\varepsilon_{4} q B_{1} \beta+\left\{-\varepsilon_{2}\left(\varepsilon_{3} u+t\right) A_{1}+\varepsilon_{3} Q D_{1}\right\} \beta^{\prime}+\left\{\left(\varepsilon_{3} Q A_{1}-\left(\varepsilon_{3} u+t\right) D_{1}\right\} \beta \times \beta^{\prime}\right]\right. \\
& \quad=f q^{-1 / 2}\left(\varepsilon_{3} Q \beta^{\prime}-\left(\varepsilon_{3} u+t\right) \beta \times \beta^{\prime}\right)+g \mathbf{C} \tag{21}
\end{align*}
$$

If we take the indefinite scalar product to Equation (21) with β, β^{\prime} and $\beta \times \beta^{\prime}$, respectively, then we obtain respectively,

$$
\begin{gather*}
-\varepsilon_{2} \varepsilon_{4} q^{-5 / 2} B_{1}=g\langle\mathbf{C}, \beta\rangle \tag{22}\\
q^{-7 / 2}\left\{-\varepsilon_{2} \varepsilon_{3}\left(\varepsilon_{3} u+t\right) A_{1}+Q D_{1}\right\}=f q^{-1 / 2} Q+g\left\langle\mathbf{C}, \beta^{\prime}\right\rangle \tag{23}\\
q^{-7 / 2}\left\{-\varepsilon_{2} Q A_{1}+\varepsilon_{2} \varepsilon_{3}\left(\varepsilon_{3} u+t\right) D_{1}\right\}=f q^{-1 / 2} \varepsilon_{2} \varepsilon_{3}\left(\varepsilon_{3} u+t\right)+g\left\langle\mathbf{C}, \beta \times \beta^{\prime}\right\rangle \tag{24}
\end{gather*}
$$

On the other hand, the constant vector \mathbf{C} can be written as;

$$
\mathbf{C}=c_{1} \beta+c_{2} \beta^{\prime}+c_{3} \beta \times \beta^{\prime}
$$

where $c_{1}=\varepsilon_{2}\langle\mathbf{C}, \beta\rangle, c_{2}=\varepsilon_{3}\left\langle\mathbf{C}, \beta^{\prime}\right\rangle$, and $c_{3}=-\varepsilon_{2} \varepsilon_{3}\left\langle\mathbf{C}, \beta \times \beta^{\prime}\right\rangle$. Differentiating the functions c_{1}, c_{2}, and c_{3} with respect to s, we have:

$$
\begin{align*}
& c_{1}^{\prime}-\varepsilon_{2} \varepsilon_{3} c_{2}=0 \\
& c_{1}+c_{2}^{\prime}-\varepsilon_{3} R c_{3}=0 \tag{25}\\
& \varepsilon_{2} \varepsilon_{3} R c_{2}-c_{3}^{\prime}=0
\end{align*}
$$

Furthermore, Equations (22)-(24) are expressed as follows:

$$
\begin{gather*}
-\varepsilon_{4} q^{-5 / 2} B_{1}=g c_{1} \tag{26}\\
q^{-7 / 2}\left\{-\varepsilon_{2}\left(\varepsilon_{3} u+t\right) A_{1}+\varepsilon_{3} Q D_{1}\right\}=f q^{-1 / 2} \varepsilon_{3} Q+g c_{2} \tag{27}\\
q^{-7 / 2}\left\{-\varepsilon_{3} Q A_{1}+\left(\varepsilon_{3} u+t\right) D_{1}\right\}=f q^{-1 / 2}\left(\varepsilon_{3} u+t\right)-g c_{3} \tag{28}
\end{gather*}
$$

Combining Equations (26)-(28), we have:

$$
\begin{gather*}
\left\{-\varepsilon_{2}\left(\varepsilon_{3} u+t\right) A_{1}+\varepsilon_{3} Q D_{1}\right\} c_{1}+q \varepsilon_{4} B_{1} c_{2}=q^{3} f \varepsilon_{3} Q c_{1}, \tag{29}\\
\left\{-\varepsilon_{3} Q A_{1}+\left(\varepsilon_{3} u+t\right) D_{1}\right\} c_{1}-q \varepsilon_{4} B_{1} c_{3}=q^{3} f\left(\varepsilon_{3} u+t\right) c_{1} . \tag{30}
\end{gather*}
$$

Hence, Equations (29) and (30) yield that:

$$
\begin{equation*}
-\varepsilon_{2} \varepsilon_{3} A_{1} c_{1}+B_{1}\left\{c_{2}\left(\varepsilon_{3} u+t\right)+\varepsilon_{3} Q c_{3}\right\}=0 \tag{31}
\end{equation*}
$$

First of all, we prove:
Theorem 2. Let M be a non-cylindrical ruled surface of type M_{+}^{1}, M_{+}^{3}, or M_{-}^{1} parameterized by the base curve α and the director vector field β in \mathbb{E}_{1}^{3} with the generalized 1-type Gauss map. If β, β^{\prime}, and $\beta^{\prime \prime}$ are coplanar along α, then M is an open part of a plane, the helicoid of the first kind, the helicoid of the second kind or the helicoid of the third kind.

Proof. If the constant vector \mathbf{C} is zero, then we can pass this case to that of the pointwise 1-type Gauss map of the first kind. Thus, according to the classification theorem in [4], M is an open part of the helicoid of the first kind, the helicoid of the second kind, or the helicoid of the third kind.

Now, we assume that the constant vector \mathbf{C} is non-zero. If the function Q is identically zero on M, then M is an open part of a plane because of (18).

We now consider the case of the function Q being not identically zero. Consider a non-empty open subset $U=\{s \in \operatorname{dom}(\alpha) \mid Q(s) \neq 0\}$ of $\operatorname{dom}(\alpha)$. Since β, β^{\prime}, and $\beta^{\prime \prime}$ are coplanar along α, R vanishes. Thus, c_{3} is a constant, and $c_{1}^{\prime \prime}=-\varepsilon_{2} \varepsilon_{3} c_{1}$ from (25). Since the left-hand side of (31) is a polynomial in t with functions of s as the coefficients, all of the coefficients that are functions of s must be zero. From the leading coefficient, we have:

$$
\begin{equation*}
\varepsilon_{2} \varepsilon_{3} c_{1} Q^{\prime \prime}+2 c_{2} Q^{\prime}=0 \tag{32}
\end{equation*}
$$

Observing the coefficient of the term involving t^{2} of (31), with the help of (32), we get:

$$
\begin{equation*}
\varepsilon_{2} \varepsilon_{3} c_{1}\left(3 u^{\prime} Q^{\prime}+u^{\prime \prime} Q\right)+3 c_{2} u^{\prime} Q-2 c_{3} Q Q^{\prime}=0 \tag{33}
\end{equation*}
$$

Examining the coefficient of the linear term in t of (31) and using (32) and (33), we also get:

$$
Q\left\{c_{1}\left(\varepsilon_{2}\left(u^{\prime}\right)^{2}+\left(Q^{\prime}\right)^{2}\right)+\varepsilon_{2} \varepsilon_{3} c_{2} Q Q^{\prime}-\varepsilon_{3} c_{3} u^{\prime} Q\right\}=0
$$

On U,

$$
\begin{equation*}
c_{1}\left(\varepsilon_{2}\left(u^{\prime}\right)^{2}+\left(Q^{\prime}\right)^{2}\right)+\varepsilon_{2} \varepsilon_{3} c_{2} Q Q^{\prime}-\varepsilon_{3} c_{3} u^{\prime} Q=0 \tag{34}
\end{equation*}
$$

Similarly, from the constant term with respect to t of (31), we have:

$$
\begin{equation*}
\varepsilon_{3} c_{1}\left(-3 u^{\prime} Q^{\prime}+u^{\prime \prime} Q\right)+\varepsilon_{2} c_{3} Q Q^{\prime}=0 \tag{35}
\end{equation*}
$$

by using (32)-(34). Combining (33) and (35), we obtain:

$$
\begin{equation*}
2 \varepsilon_{3} c_{1} u^{\prime} Q^{\prime}+\varepsilon_{2} c_{2} u^{\prime} Q-\varepsilon_{2} c_{3} Q Q^{\prime}=0 \tag{36}
\end{equation*}
$$

Now, suppose that $u^{\prime}(s) \neq 0$ at some point $s \in U$ and then $u^{\prime} \neq 0$ on an open interval $U_{1} \subset U$. Equation (34) yields:

$$
\begin{equation*}
\varepsilon_{3} c_{3} Q=\frac{1}{u^{\prime}}\left\{c_{1}\left(\varepsilon_{2}\left(u^{\prime}\right)^{2}+\left(Q^{\prime}\right)^{2}\right)+\varepsilon_{2} \varepsilon_{3} c_{2} Q Q^{\prime}\right\} \tag{37}
\end{equation*}
$$

Substituting (37) into (36), we get:

$$
\left\{\left(u^{\prime}\right)^{2}-\varepsilon_{2}\left(Q^{\prime}\right)^{2}\right\}\left(\varepsilon_{3} c_{1} Q^{\prime}+\varepsilon_{2} c_{2} Q\right)=0
$$

or, using $c_{2}=\varepsilon_{2} \varepsilon_{3} c_{1}^{\prime}$ in (25),

$$
\left\{\left(u^{\prime}\right)^{2}-\varepsilon_{2}\left(Q^{\prime}\right)^{2}\right\}\left(c_{1} Q\right)^{\prime}=0 .
$$

Suppose that $\left(\left(u^{\prime}\right)^{2}-\varepsilon_{2}\left(Q^{\prime}\right)^{2}\right)\left(s_{0}\right) \neq 0$ for some $s_{0} \in U_{1}$. Then, $c_{1} Q$ is constant on a component U_{2} containing s_{0} of U_{1}.

If $c_{1}=0$ on U_{2}, we easily see that $c_{2}=0$ by (25). Hence, (34) yields that $c_{3} u^{\prime} Q=0$, and so, $c_{3}=0$. Since \mathbf{C} is a constant vector, \mathbf{C} is zero on M. This contradicts our assumption. Thus, $c_{1} \neq 0$ on U_{2}. From the equation $c_{1}^{\prime \prime}+\varepsilon_{2} \varepsilon_{3} c_{1}=0$, we get:

$$
c_{1}=k_{1} \cos \left(s+s_{1}\right) \quad \text { or } \quad c_{1}=k_{2} \cosh \left(s+s_{2}\right)
$$

for some non-zero constants k_{i} and $s_{i} \in \mathbb{R}(i=1,2)$. Since $c_{1} Q$ is constant, k_{1} and k_{2} must be zero. Hence, $c_{1}=0$, a contradiction. Thus, $\left(u^{\prime}\right)^{2}-\varepsilon_{2}\left(Q^{\prime}\right)^{2}=0$ on U_{1}, from which we get $\varepsilon_{2}=1$ and $u^{\prime}= \pm Q^{\prime}$. If $u^{\prime} \neq-Q^{\prime}$, then $u^{\prime}=Q^{\prime}$ on an open subset U_{3} in U_{1}. Hence, (34) implies that $Q^{\prime}\left(2 \varepsilon_{3} c_{1} Q^{\prime}+\right.$ $\left.c_{2} Q-c_{3} Q\right)=0$. On U_{3}, we get $c_{3} Q=2 \varepsilon_{3} c_{1} Q^{\prime}+c_{2} Q$. Putting it into (35), we have:

$$
\begin{equation*}
\varepsilon_{3} c_{1}\left(Q^{\prime}\right)^{2}-\varepsilon_{3} c_{1} Q Q^{\prime \prime}-c_{2} Q Q^{\prime}=0 \tag{38}
\end{equation*}
$$

Combining (32) and (38), $c_{1} Q$ is constant on U_{3}. Similarly as above, we can derive that \mathbf{C} is zero on M, which is a contradiction. Therefore, we have $u^{\prime}=-Q^{\prime}$ on U_{1}. Similarly, as we just did to the case under the assumption $u^{\prime} \neq-Q^{\prime}$, it is also proven that the constant vector \mathbf{C} becomes zero. It is also a contradiction, and so, $U_{1}=\varnothing$. Thus, $u^{\prime}=0$ and $Q^{\prime}=0$. From (18), the mean curvature H vanishes. In this case, the Gauss map G is of pointwise 1-type of the first kind. Hence, the open set U is empty. Therefore, we see that if the director vector field β, β^{\prime}, and $\beta^{\prime \prime}$ are coplanar, the function Q vanishes on M. Hence, M is an open part of a plane because of (18).

From now on, we assume that R is non-vanishing, i.e., $\beta \wedge \beta^{\prime} \wedge \beta^{\prime \prime} \neq 0$ everywhere on M.
If $f=g$, the Gauss map of the non-cylindrical ruled surface of type M_{+}^{1}, M_{-}^{1} or M_{+}^{3} in \mathbb{E}_{1}^{3} is of pointwise 1-type. According to the classification theorem given in [5,13], M is part of a circular cone or a hyperbolic cone.

Now, we suppose that $f \neq g$ and the constant vector \mathbf{C} is non-zero unless otherwise stated. Similarly as before, we develop our argument with (31). The left-hand side of (31) is a polynomial in t with functions of s as the coefficients, and thus, they are zero. From the leading coefficient of the left-hand side of (31), we obtain:

$$
\begin{equation*}
\varepsilon_{2} c_{1} R^{\prime}+\varepsilon_{3} c_{2} R=0 \tag{39}
\end{equation*}
$$

With the help of (25), $c_{1} R$ is constant. If we examine the coefficient of the term of t^{3} of the left-hand side of (31), we get:

$$
\begin{equation*}
c_{1}\left(-\varepsilon_{2} \varepsilon_{3} u^{\prime} R+\varepsilon_{2} Q^{\prime \prime}\right)+2 c_{2} \varepsilon_{3} Q^{\prime}+c_{3} Q R=0 . \tag{40}
\end{equation*}
$$

From the coefficient of the term involving t^{2} in (31), using (25) and (40), we also get:

$$
\begin{equation*}
c_{1}\left(-3 \varepsilon_{2} \varepsilon_{3} u^{\prime} Q^{\prime}+Q Q^{\prime} R-\varepsilon_{2} \varepsilon_{3} u^{\prime \prime} Q-Q^{2} R^{\prime}\right)-3 c_{2} u^{\prime} Q+2 c_{3} Q Q^{\prime}=0 \tag{41}
\end{equation*}
$$

Furthermore, considering the coefficient of the linear term in t of (31) and making use of Equations (25), (40), and (41), we obtain:

$$
\begin{equation*}
Q\left\{c_{1}\left(\varepsilon_{2}\left(u^{\prime}\right)^{2}+\left(Q^{\prime}\right)^{2}\right)+c_{2} \varepsilon_{2} \varepsilon_{3} Q Q^{\prime}-c_{3} \varepsilon_{3} u^{\prime} Q\right\}=0 \tag{42}
\end{equation*}
$$

Now, we consider the open set $V=\{s \in \operatorname{dom}(\alpha) \mid Q(s) \neq 0\}$. Suppose $V \neq \varnothing$. From (42),

$$
\begin{equation*}
c_{1}\left(\varepsilon_{2}\left(u^{\prime}\right)^{2}+\left(Q^{\prime}\right)^{2}\right)+c_{2} \varepsilon_{2} \varepsilon_{3} Q Q^{\prime}-c_{3} \varepsilon_{3} u^{\prime} Q=0 \tag{43}
\end{equation*}
$$

Similarly as above, observing the constant term in t of the left-hand side of (31) with the help of (25) and (39), and using (40), (41) and (43), we have:

$$
Q^{2}\left(2 c_{1} \varepsilon_{3} u^{\prime} Q^{\prime}+c_{2} \varepsilon_{2} u^{\prime} Q-c_{3} \varepsilon_{2} Q Q^{\prime}\right)=0
$$

Since $Q \neq 0$ on V, one can have:

$$
\begin{equation*}
2 c_{1} \varepsilon_{3} u^{\prime} Q^{\prime}+c_{2} \varepsilon_{2} u^{\prime} Q-c_{3} \varepsilon_{2} Q Q^{\prime}=0 \tag{44}
\end{equation*}
$$

Our making use of the first and the second equations in (25), (40) reduces to:

$$
\begin{equation*}
c_{1} \varepsilon_{2} u^{\prime} R-\varepsilon_{2} \varepsilon_{3}\left(c_{1} Q\right)^{\prime \prime}-c_{1} Q=0 \tag{45}
\end{equation*}
$$

Suppose that $u^{\prime}(s) \neq 0$ for some $s \in V$. Then, $u^{\prime} \neq 0$ on an open subset $V_{1} \subset V$. From (43), on V_{1} :

$$
\begin{equation*}
c_{3} Q=\frac{1}{u^{\prime}}\left\{\varepsilon_{2} \varepsilon_{3} c_{1}\left(u^{\prime}\right)^{2}+\varepsilon_{3} c_{1}\left(Q^{\prime}\right)^{2}+\varepsilon_{2} c_{2} Q Q^{\prime}\right\} \tag{46}
\end{equation*}
$$

Putting (46) into (44), we have $\left\{\left(u^{\prime}\right)^{2}-\varepsilon_{2}\left(Q^{\prime}\right)^{2}\right\}\left(\varepsilon_{3} c_{1} Q^{\prime}+\varepsilon_{2} c_{2} Q\right)=0$. With the help of $c_{1}^{\prime}=$ $\varepsilon_{2} \varepsilon_{3} c_{2}$, it becomes:

$$
\left\{\left(u^{\prime}\right)^{2}-\varepsilon_{2}\left(Q^{\prime}\right)^{2}\right\}\left(c_{1} Q\right)^{\prime}=0
$$

Suppose that $\left(\left(u^{\prime}\right)^{2}-\varepsilon_{2}\left(Q^{\prime}\right)^{2}\right)(s) \neq 0$ on V_{1}. Then, $c_{1} Q$ is constant on a component V_{2} of V_{1}. Hence, (45) yields that:

$$
\begin{equation*}
c_{1} Q=\varepsilon_{2} c_{1} u^{\prime} R \tag{47}
\end{equation*}
$$

If $c_{1} \equiv 0$ on V_{2},(25) gives that $c_{2}=0$ and $c_{3} R=0$. Since $R \neq 0, c_{3}=0$. Hence, the constant vector \mathbf{C} is zero, a contradiction. Therefore, $c_{1} \neq 0$ on V_{2}. From (47), $Q=\varepsilon_{2} u^{\prime} R$. Moreover, u^{\prime} is a non-zero constant because $c_{1} Q$ and $c_{1} R$ are constants. Thus, (41) and (44) can be reduced to as follows:

$$
\begin{equation*}
c_{1} Q^{\prime} R-c_{1} Q R^{\prime}+2 c_{3} Q^{\prime}=0 \tag{48}
\end{equation*}
$$

$$
\begin{equation*}
\varepsilon_{3} c_{1} u^{\prime} Q^{\prime}-\varepsilon_{2} c_{3} Q Q^{\prime}=0 \tag{49}
\end{equation*}
$$

Upon our putting $Q=\varepsilon_{2} u^{\prime} R$ into (48), $c_{3} Q^{\prime}=0$ is derived. By (49), $c_{1} u^{\prime} Q^{\prime}=0$. Hence, $Q^{\prime}=0$. It follows that Q and R are non-zero constants on V_{2}.

On the other hand, since the torsion of the director vector field β viewed as a curve in \mathbb{E}_{1}^{3} is zero, β is part of a plane curve. Moreover, β has constant curvature $\sqrt{\varepsilon_{2}-\varepsilon_{2} \varepsilon_{3} R^{2}}$. Hence, β is a circle or a hyperbola on the unit pseudo-sphere or the hyperbolic space of radius 1 in \mathbb{E}_{1}^{3}. Without loss of generality, we may put:

$$
\beta(s)=\frac{1}{p}(R, \cos p s, \sin p s) \quad \text { or } \quad \beta(s)=\frac{1}{p}(\sinh p s, \cosh p s, R),
$$

where $p^{2}=\varepsilon_{2}\left(1-\varepsilon_{3} R^{2}\right)$ and $p>0$. Then, the function $u=\left\langle\alpha^{\prime}, \beta^{\prime}\right\rangle$ is given by:

$$
u=-\alpha_{2}^{\prime}(s) \sin p s+\alpha_{3}^{\prime}(s) \cos p s \quad \text { or } \quad u=-\alpha_{1}^{\prime}(s) \cosh p s+\alpha_{2}^{\prime}(s) \sinh p s,
$$

where $\alpha^{\prime}(s)=\left(\alpha_{1}^{\prime}(s), \alpha_{2}^{\prime}(s), \alpha_{3}^{\prime}(s)\right)$. Therefore, we have:

$$
u^{\prime}=-\left(\alpha_{2}^{\prime \prime}+p \alpha_{3}^{\prime}\right) \sin p s-\left(p \alpha_{2}^{\prime}-\alpha_{3}^{\prime \prime}\right) \cos p s \quad \text { or } \quad u^{\prime}=\left(-\alpha_{1}^{\prime \prime}+p \alpha_{2}^{\prime}\right) \cosh p s-\left(p \alpha_{1}^{\prime}-\alpha_{2}^{\prime \prime}\right) \sinh p s
$$

Since u^{\prime} is a constant, u^{\prime} must be zero. It is a contradiction on V_{1}, and so:

$$
\left(u^{\prime}\right)^{2}=\varepsilon_{2}\left(Q^{\prime}\right)^{2}
$$

on V_{1}. It immediately follows that:

$$
\varepsilon_{2}=1
$$

on V_{1}. Therefore, we get $u^{\prime}= \pm Q^{\prime}$. Suppose $u^{\prime} \neq-Q^{\prime}$ on V_{1}. Then, $u^{\prime}=Q^{\prime}$ and (43) can be written as:

$$
Q^{\prime}\left(2 \varepsilon_{3} c_{1} Q^{\prime}+c_{2} Q-c_{3} Q\right)=0
$$

Since $Q^{\prime} \neq 0$ on V,

$$
\begin{equation*}
c_{3} Q=2 \varepsilon_{3} c_{1} Q^{\prime}+c_{2} Q \tag{50}
\end{equation*}
$$

Putting (50) into (40) and (41), respectively, we obtain:

$$
\begin{gather*}
\varepsilon_{3} c_{1} Q^{\prime} R+c_{2} Q R+2 \varepsilon_{3} c_{2} Q^{\prime}+c_{1} Q^{\prime \prime}=0 \tag{51}\\
\varepsilon_{3} c_{1}\left(Q^{\prime}\right)^{2}+c_{1} Q Q^{\prime} R-\varepsilon_{3} c_{1} Q Q^{\prime \prime}-c_{1} Q^{2} R^{\prime}-c_{2} Q Q^{\prime}=0 . \tag{52}
\end{gather*}
$$

Putting together Equations (51) and (52) with the help of (39), we get:

$$
\left(\varepsilon_{3} c_{1} Q^{\prime}+c_{2} Q\right)\left(Q^{\prime}+2 \varepsilon_{3} Q R\right)=0
$$

Suppose $\left(\varepsilon_{3} c_{1} Q^{\prime}+c_{2} Q\right)(s) \neq 0$ on V_{1}. Then, $Q^{\prime}=-2 \varepsilon_{3} Q R$. If we make use of it, we can derive $R\left(\varepsilon_{3} c_{1} Q^{\prime}+c_{2} Q\right)=0$ from (51). Since R is non-vanishing, $\varepsilon_{3} c_{1} Q^{\prime}+c_{2} Q=0$, a contradiction. Thus:

$$
\begin{equation*}
\varepsilon_{3} c_{1} Q^{\prime}+c_{2} Q=0 \tag{53}
\end{equation*}
$$

that is, $c_{1} Q$ is constant on each component of V_{1}. From (45), $c_{1} Q=c_{1} u^{\prime} R$. Similarly as before, it is seen that $c_{1} \neq 0$ and u^{\prime} is a non-zero constant. Hence, $Q=u^{\prime} R$. If we use the fact that $c_{1} Q$ and Q^{\prime} are constant, $c_{2} Q^{\prime}=0$ is derived from (51). Therefore, $c_{2}=0$ on each component of V_{1}. By (53), $c_{1}=0$ on each component of V_{1}. Hence, (50) implies that $c_{3}=0$ on each component of V_{1}. The vector \mathbf{C} is
constant and thus zero on M, a contradiction. Thus, we obtain $u^{\prime}=-Q^{\prime}$ on V_{1}. Equation (43) with $u^{\prime}=-Q^{\prime}$ gives that:

$$
\begin{equation*}
c_{3} Q=-2 \varepsilon_{3} c_{1} Q^{\prime}-c_{2} Q \tag{54}
\end{equation*}
$$

Putting (54) together with $u^{\prime}=-Q^{\prime}$ into (40), we have:

$$
\begin{equation*}
c_{1} Q^{\prime \prime}=\varepsilon_{3} c_{1} Q^{\prime} R+c_{2} Q R-2 \varepsilon_{3} c_{2} Q^{\prime} \tag{55}
\end{equation*}
$$

Furthermore, Equations (39), (41), (54) and (55) give:

$$
\left(\varepsilon_{3} c_{1} Q^{\prime}+c_{2} Q\right)\left(Q^{\prime}-2 \varepsilon_{3} Q R\right)=0
$$

on V_{1}. Suppose $\varepsilon_{3} c_{1} Q^{\prime}+c_{2} Q \neq 0$. Then, $Q^{\prime}=2 \varepsilon_{3} Q R$, and thus, $Q^{\prime \prime}=2 \varepsilon_{3} Q^{\prime} R+2 \varepsilon_{3} Q R^{\prime}$. Putting it into (55) with the help of (39), we get:

$$
R\left(\varepsilon_{3} c_{1} Q^{\prime}+c_{2} Q\right)=0
$$

from which $\varepsilon_{3} c_{1} Q^{\prime}+c_{2} Q=0$, a contradiction. Therefore, we get:

$$
\varepsilon_{3} c_{1} Q^{\prime}+c_{2} Q=0
$$

on V_{1}. Thus, $c_{1} Q$ is constant on each component of V_{1}. Similarly developing the argument as before, we see that the constant vector \mathbf{C} is zero, which contradicts our assumption. Consequently, the open subset V_{1} is empty, i.e., the functions u and Q are constant on each component of V. Since $Q=u^{\prime} R, Q$ vanishes on V. Thus, the open subset V is empty, and hence, Q vanishes on M. Thus, (18) shows that the Gaussian curvature K automatically vanishes on M.

Thus, we obtain:
Theorem 3. Let M be a non-cylindrical ruled surface of type M_{+}^{1}, M_{+}^{3}, or M_{-}^{1} parameterized by the non-null base curve α and the director vector field β in \mathbb{E}_{1}^{3} with the generalized 1-type Gauss map. If β, β^{\prime}, and $\beta^{\prime \prime}$ are not coplanar along α, then M is flat.

Combining Definition 3, Theorems 2 and 3, and the classification theorem of flat surfaces with the generalized 1-type Gauss map in Minkowski 3-space in [8], we have the following:

Theorem 4. Let M be a non-cylindrical ruled surface of type M_{+}^{1}, M_{+}^{3}, or M_{-}^{1} in \mathbb{E}_{1}^{3} with the generalized 1-type Gauss map. Then, M is locally part of a plane, the helicoid of the first kind, the helicoid of the second kind, the helicoid of the third kind, a circular cone, a hyperbolic cone, or a conical surface of G-type.

We now consider the case that the ruled surface M is non-cylindrical of type M_{+}^{2}, M_{-}^{2}. Then, up to a rigid motion, a parametrization of M is given by:

$$
x(s, t)=\alpha(s)+t \beta(s)
$$

satisfying $\left\langle\alpha^{\prime}, \beta\right\rangle=0,\left\langle\alpha^{\prime}, \alpha^{\prime}\right\rangle=\varepsilon_{1}(= \pm 1),\langle\beta, \beta\rangle=1$, and $\left\langle\beta^{\prime}, \beta^{\prime}\right\rangle=0$ with $\beta^{\prime} \neq 0$.
Again, we put the smooth functions q and u as follows:

$$
q=\left\|x_{s}\right\|^{2}=\left|\left\langle x_{s}, x_{s}\right\rangle\right|, \quad u=\left\langle\alpha^{\prime}, \beta^{\prime}\right\rangle
$$

We see that the null vector fields β^{\prime} and $\beta \times \beta^{\prime}$ are orthogonal, and they are parallel. It is easily derived as $\beta^{\prime}=\beta \times \beta^{\prime}$. Moreover, we may assume that $\beta(0)=(0,0,1)$ and β can be taken by:

$$
\beta(s)=(a s, a s, 1)
$$

for a non-zero constant a. Then, $\left\{\alpha^{\prime}, \beta, \alpha^{\prime} \times \beta\right\}$ forms an orthonormal frame along the base curve α. With respect to this frame, we can put:

$$
\begin{equation*}
\beta^{\prime}=\varepsilon_{1} u\left(\alpha^{\prime}-\alpha^{\prime} \times \beta\right) \quad \text { and } \quad \alpha^{\prime \prime}=-u \beta+\frac{u^{\prime}}{u} \alpha^{\prime} \times \beta . \tag{56}
\end{equation*}
$$

Note that the function u is non-vanishing.
On the other hand, we can compute the Gauss map G of M such as:

$$
\begin{equation*}
G=q^{-1 / 2}\left(\alpha^{\prime} \times \beta-t \beta^{\prime}\right) \tag{57}
\end{equation*}
$$

We also easily get the mean curvature H and the Gaussian curvature K of M by the usual procedure, respectively,

$$
\begin{equation*}
H=\frac{1}{2} q^{-3 / 2}\left(u^{\prime} t-\varepsilon_{1} \frac{u^{\prime}}{u}\right) \quad \text { and } \quad K=q^{-2} u^{2} \tag{58}
\end{equation*}
$$

Upon our using (19), the Laplacian of the Gauss map G of M is expressed as:

$$
\begin{equation*}
\Delta G=q^{-7 / 2}\left(A_{2} \alpha^{\prime}+B_{2} \beta+D_{2} \alpha^{\prime} \times \beta\right) \tag{59}
\end{equation*}
$$

with respect to the orthonormal frame $\left\{\alpha^{\prime}, \beta, \alpha^{\prime} \times \beta\right\}$, where we put:

$$
\begin{aligned}
A_{2}= & 3 \varepsilon_{1} \frac{\left(u^{\prime}\right)^{2}}{u} t+\varepsilon_{4} \varepsilon_{1} q\left(-\frac{u^{\prime \prime}}{u}+\frac{\left(u^{\prime}\right)^{2}}{u^{2}}+u u^{\prime \prime} t^{2}+\varepsilon_{1} \frac{\left(u^{\prime}\right)^{2}}{u} t\right)+q \frac{\left(u^{\prime}\right)^{2}}{u} t-3 \varepsilon_{1} u\left(u^{\prime}\right)^{2} t^{3} \\
& +\varepsilon_{4} \varepsilon_{1} u\left(u^{\prime}\right)^{2} t^{3}+2 \varepsilon_{4} \varepsilon_{1} q u^{3} t, \\
B_{2}= & \varepsilon_{4} q u^{\prime}\left(4 \varepsilon_{1}-u t\right), \\
D_{2}= & 3 \varepsilon_{1} u\left(u^{\prime}\right)^{2} t^{3}-3\left(u^{\prime}\right)^{2} t^{2}-\varepsilon_{4} q\left(\varepsilon_{1} u u^{\prime \prime} t^{2}-u^{\prime \prime} t+\frac{\left(u^{\prime}\right)^{2}}{u} t\right)-\varepsilon_{1} q \frac{\left(u^{\prime}\right)^{2}}{u^{2}}-q \frac{\left(u^{\prime}\right)^{2}}{u} t \\
& -\varepsilon_{4}\left(u^{\prime}\right)^{2} t^{2}-2 \varepsilon_{4} q u^{2}-\varepsilon_{4} \varepsilon_{1} u\left(u^{\prime}\right)^{2} t^{3}-2 \varepsilon_{4} \varepsilon_{1} q u^{3} t .
\end{aligned}
$$

We now suppose that the Gauss map G of M is of generalized 1-type satisfying Condition (1). Then, from (56), (57), and (59), we get:

$$
\begin{equation*}
q^{-7 / 2}\left(A_{2} \alpha^{\prime}+B_{2} \beta+D_{2} \alpha^{\prime} \times \beta\right)=f q^{-1 / 2}\left\{\left(1+\varepsilon_{1} u t\right) \alpha^{\prime} \times \beta-\varepsilon_{1} u t \alpha^{\prime}\right\}+g \mathbf{C} \tag{60}
\end{equation*}
$$

If the constant vector \mathbf{C} is zero, the Gauss map G is nothing but of pointwise 1-type of the first kind. By the result of [4], M is part of the conjugate of Enneper's surface of the second kind.

From now on, for a while, we assume that \mathbf{C} is a non-zero constant vector. Taking the indefinite scalar product to Equation (60) with the orthonormal vector fields α^{\prime}, β, and $\alpha^{\prime} \times \beta$, respectively, we obtain:

$$
\begin{gather*}
\varepsilon_{1} q^{-7 / 2} A_{2}=-f q^{-1 / 2} u t+g\left\langle\mathbf{C}, \alpha^{\prime}\right\rangle, \tag{61}\\
q^{-7 / 2} B_{2}=g\langle\mathbf{C}, \beta\rangle \tag{62}\\
\varepsilon_{1} q^{-7 / 2} D_{2}=f q^{-1 / 2}\left(\varepsilon_{1}+u t\right)-g\left\langle\mathbf{C}, \alpha^{\prime} \times \beta\right\rangle \tag{63}
\end{gather*}
$$

In terms of the orthonormal frame $\left\{\alpha^{\prime}, \beta, \alpha^{\prime} \times \beta\right\}$, the constant vector \mathbf{C} can be written as:

$$
\mathbf{C}=c_{1} \alpha^{\prime}+c_{2} \beta+c_{3} \alpha^{\prime} \times \beta,
$$

where we have put $c_{1}=\varepsilon_{1}\left\langle\mathbf{C}, \alpha^{\prime}\right\rangle, c_{2}=\langle\mathbf{C}, \beta\rangle$, and $c_{3}=-\varepsilon_{1}\left\langle\mathbf{C}, \alpha^{\prime} \times \beta\right\rangle$. Then, Equations (61)-(63) are expressed as follows:

$$
\begin{equation*}
\varepsilon_{1} q^{-7 / 2} A_{2}=-f q^{-1 / 2} u t+\varepsilon_{1} g c_{1}, \tag{64}
\end{equation*}
$$

$$
\begin{gather*}
q^{-7 / 2} B_{2}=g c_{2} \tag{65}\\
\varepsilon_{1} q^{-7 / 2} D_{2}=f q^{-1 / 2}\left(\varepsilon_{1}+u t\right)+\varepsilon_{1} g c_{3} . \tag{66}
\end{gather*}
$$

Differentiating the functions c_{1}, c_{2}, and c_{3} with respect to the parameter s, we get:

$$
\begin{align*}
c_{1}^{\prime} & =-\varepsilon_{1} u c_{2}-\frac{u^{\prime}}{u} c_{3}, \\
c_{2}^{\prime} & =u c_{1}+u c_{3}, \tag{67}\\
c_{3}^{\prime} & =-\frac{u^{\prime}}{u} c_{1}+\varepsilon_{1} u c_{2} .
\end{align*}
$$

Combining Equations (64)-(66), we obtain:

$$
\begin{equation*}
c_{2}\left(\varepsilon_{1}+u t\right) A_{2}-\left\{\varepsilon_{1} c_{1}+\left(c_{1}+c_{3}\right) u t\right\} B_{2}+c_{2} u t D_{2}=0 . \tag{68}
\end{equation*}
$$

As before, from (68), we obtain the following:

$$
\begin{gather*}
c_{2}\left(2 u u^{\prime \prime}-3\left(u^{\prime}\right)^{2}\right)+\left(c_{1}+c_{3}\right) u^{2} u^{\prime}=0, \tag{69}\\
7 c_{2}\left(u^{\prime}\right)^{2}-5 c_{1} u^{2} u^{\prime}-7 c_{3} u^{2} u^{\prime}=0, \tag{70}\\
c_{2}\left(7\left(u^{\prime}\right)^{2}-3 u u^{\prime \prime}\right)-11 c_{1} u^{2} u^{\prime}-4 c_{3} u^{2} u^{\prime}=0, \tag{71}\\
c_{2}\left(u u^{\prime \prime}-\left(u^{\prime}\right)^{2}\right)+4 c_{1} u^{2} u^{\prime}=0 . \tag{72}
\end{gather*}
$$

Combining Equations (69) and (71), we get:

$$
\begin{equation*}
5 c_{2}\left(u u^{\prime \prime}-\left(u^{\prime}\right)^{2}\right)-7 c_{1} u^{2} u^{\prime}=0 . \tag{73}
\end{equation*}
$$

From (72) and (73), we get $c_{1} u^{\prime}=0$. Hence, Equations (70) and (72) become:

$$
\begin{align*}
& u^{\prime}\left(c_{2} u^{\prime}-c_{3} u^{2}\right)=0, \tag{74}\\
& c_{2}\left(u u^{\prime \prime}-\left(u^{\prime}\right)^{2}\right)=0 \tag{75}
\end{align*}
$$

Now, suppose that $u^{\prime}\left(s_{0}\right) \neq 0$ at some point $s_{0} \in \operatorname{dom}(\alpha)$. Then, there exists an open interval J such that $u^{\prime} \neq 0$ on J. Then, $c_{1}=0$ on J. Hence, (67) reduces to:

$$
\begin{align*}
& \varepsilon_{1} u^{2} c_{2}+u^{\prime} c_{3}=0, \\
& c_{2}^{\prime}=u c_{3}, \tag{76}\\
& c_{3}^{\prime}=\varepsilon_{1} u c_{2} .
\end{align*}
$$

From the above relationships, we see that c_{2}^{\prime} is constant on J. In this case, if $c_{2}=0$, then $c_{3}=0$. Hence, \mathbf{C} is zero on J. Thus, the constant vector \mathbf{C} is zero on M. This contradicts our assumption. Therefore, c_{2} is non-zero. Solving the differential Equation (74) with the help of $c_{2}^{\prime}=u c_{3}$ in (76), we get $u=k c_{2}$ for some non-zero constant k. Moreover, since c_{2}^{\prime} is constant, $u^{\prime \prime}=0$. Thus, Equation (75) implies that $u^{\prime}=0$, which is a contradiction. Therefore, there does not exist such a point $s_{0} \in \operatorname{dom}(\alpha)$ such that $u^{\prime}\left(s_{0}\right) \neq 0$. Hence, u is constant on M. With the help of (58), the mean curvature H of M vanishes on M. It is easily seen from (19) that the Gauss map G of M is of pointwise 1-type of the first kind, which means (1) is satisfied with $\mathbf{C}=0$. Thus, this case does not occur.

As a consequence, we give the following classification:

Theorem 5. Let M be a non-cylindrical ruled surface of type M_{+}^{2} or M_{-}^{2} in \mathbb{E}_{1}^{3} with the generalized 1-type Gauss map G. Then, the Gauss map G is of pointwise 1-type of the first kind and M is an open part of the conjugate of Enneper's surface of the second kind.

Remark 2. There do not exist non-cylindrical ruled surfaces of type M_{+}^{2} or M_{-}^{2} in \mathbb{E}_{1}^{3} with the proper generalized 1-type Gauss map G.

5. Null Scrolls in the Minkowski 3-Space \mathbb{E}_{1}^{3}

In this section, we examine the null scrolls with the generalized 1-type Gauss map in the Minkowski 3-space \mathbb{E}_{1}^{3}. In particular, we focus on proving the following theorem.

Theorem 6. Let M be a null scroll in the Minkowski 3-space \mathbb{E}_{1}^{3}. Then, M has generalized 1-type Gauss map G if and only if M is part of a Minkowski plane or a B-scroll.

Proof. Suppose that a null scroll M has the generalized 1-type Gauss map. Let $\alpha=\alpha(s)$ be a null curve in \mathbb{E}_{1}^{3} and $\beta=\beta(s)$ a null vector field along α such that $\left\langle\alpha^{\prime}, \beta\right\rangle=1$. Then, the null scroll M is parameterized by:

$$
x(s, t)=\alpha(s)+t \beta(s)
$$

and we have the natural coordinate frame $\left\{x_{s}, x_{t}\right\}$ given by:

$$
x_{s}=\alpha^{\prime}+t \beta^{\prime} \quad \text { and } \quad x_{t}=\beta
$$

We put the smooth functions u, v, Q, and R by:

$$
\begin{equation*}
u=\left\langle\alpha^{\prime}, \beta^{\prime}\right\rangle, \quad v=\left\langle\beta^{\prime}, \beta^{\prime}\right\rangle, \quad Q=\left\langle\alpha^{\prime}, \beta^{\prime} \times \beta\right\rangle, \quad R=\left\langle\alpha^{\prime}, \beta^{\prime \prime} \times \beta\right\rangle \tag{77}
\end{equation*}
$$

Then, $\left\{\alpha^{\prime}, \beta, \alpha^{\prime} \times \beta\right\}$ is a pseudo-orthonormal frame along α.
Straightforward computation gives the Gauss map G of M and the Laplacian ΔG of G by:

$$
G=\alpha^{\prime} \times \beta+t \beta^{\prime} \times \beta \quad \text { and } \quad \Delta G=-2 \beta^{\prime \prime} \times \beta+2(u+t v) \beta^{\prime} \times \beta
$$

With respect to the pseudo-orthonormal frame $\left\{\alpha^{\prime}, \beta, \alpha^{\prime} \times \beta\right\}$, the vector fields $\beta^{\prime}, \beta^{\prime} \times \beta$, and $\beta^{\prime \prime} \times \beta$ are represented as:

$$
\begin{equation*}
\beta^{\prime}=u \beta-Q \alpha^{\prime} \times \beta, \quad \beta^{\prime} \times \beta=Q \beta \quad \text { and } \quad \beta^{\prime \prime} \times \beta=R \beta-v \alpha^{\prime} \times \beta \tag{78}
\end{equation*}
$$

Thus, the Gauss map G and its Laplacian ΔG are expressed by:

$$
\begin{equation*}
G=\alpha^{\prime} \times \beta+t Q \beta \quad \text { and } \quad \Delta G=-2(R-u Q-t v Q) \beta+2 v \alpha^{\prime} \times \beta \tag{79}
\end{equation*}
$$

Since M has the generalized 1-type Gauss map, the Gauss map G satisfies:

$$
\begin{equation*}
\Delta G=f G+g \mathbf{C} \tag{80}
\end{equation*}
$$

for some non-zero smooth functions f, g and a constant vector \mathbf{C}. From (79), we get:

$$
\begin{equation*}
-2(R-u Q-t v Q) \beta+2 v \alpha^{\prime} \times \beta=f\left(\alpha^{\prime} \times \beta+t Q \beta\right)+g \mathbf{C} \tag{81}
\end{equation*}
$$

If the constant vector \mathbf{C} is zero, M is an open part of a Minkowski plane or a B-scroll according to the classification theorem in [4].

We now consider the case that the constant vector \mathbf{C} is non-zero. If we take the indefinite inner product to Equation (81) with α^{\prime}, β, and $\alpha^{\prime} \times \beta$, respectively, we get:

$$
\begin{equation*}
-2(R-u Q-t v Q)=f t Q+g c_{2}, \quad g c_{1}=0, \quad 2 v=f+g c_{3} \tag{82}
\end{equation*}
$$

where we have put

$$
c_{1}=\langle\mathbf{C}, \beta\rangle, c_{2}=\left\langle\mathbf{C}, \alpha^{\prime}\right\rangle \quad \text { and } \quad c_{3}=\left\langle\mathbf{C}, \alpha^{\prime} \times \beta\right\rangle .
$$

Since $g \neq 0$, Equation (82) gives $\left\langle\mathbf{C}, \beta^{\prime}\right\rangle=0$. Together with (78), we see that $c_{3} Q=0$. Suppose that $Q(s) \neq 0$ on an open interval $\tilde{I} \subset \operatorname{dom}(\alpha)$. Then, $c_{3}=0$ on \tilde{I}. Therefore, the constant vector C can be written as $\mathbf{C}=c_{2} \beta$ on \tilde{I}. If we differentiate $\mathbf{C}=c_{2} \beta$ with respect to $s, c_{2}^{\prime} \beta+c_{2} \beta^{\prime}=0$, and thus, $c_{2} v=0$. On the other hand, from (77) and (78), we have $v=Q^{2}$. Hence, v is non-zero on \tilde{I}, and so, $c_{2}=0$. It contradicts that \mathbf{C} is a non-zero vector. In the sequel, Q vanishes identically. Then, $\beta^{\prime}=u \beta$, which implies $R=0$. Thus, the Gauss map G is reduced to $G=\alpha^{\prime} \times \beta$, which depends only on the parameter s, from which the shape operator S of M is easily derived as:

$$
S=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) \quad \text { or } \quad S=\left(\begin{array}{cc}
0 & 0 \\
k(s) & 0
\end{array}\right)
$$

for some non-vanishing function k. Therefore, the null scroll M is part of a Minkowski plane or a flat B-scroll described in Section 2 determined by $A=\alpha^{\prime}, B=\beta, C=G$ satisfying $C^{\prime}=-k(s) B$. Thus, null scrolls in \mathbb{E}_{1}^{3} with the generalized 1-type Gauss map satisfying (80) are part of Minkowski planes or B-scrolls whether \mathbf{C} is zero or not.

The converse is obvious. This completes the proof.
Corollary 1. There do not exist null scrolls in \mathbb{E}_{1}^{3} with the proper generalized 1-type Gauss map.
Open problem: Classify ruled submanifolds with the generalized 1-type Gauss map in Minkowski space.

Author Contributions: M.C. computed the problems. Y.H.K. have the inspiration for the problem and polished the paper.
Funding: Y.H. Kim was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean Government (MSIP) (2016R1A2B1006974).

Acknowledgments: The authors would like to express their deep thanks to the referees for their valuable suggestions to improve the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Chen, B.-Y. Total Mean Curvature and Submanifolds of Finite Type, 2nd ed.; World Scientific: Hackensack, NJ, USA, 2015.
2. Kim, D.-S.; Kim, Y.H.; Yoon, D.W. Characterization of generalized B-scrolls and cylinders over finite type curves. Indian J. Pure Appl. Math. 2003, 33, 1523-1532.
3. Kim, Y.H.; Yoon, D.W. Ruled surfaces with finite type Gauss map in Minkowski spaces. Soochow J. Math. 2000, 26, 85-96.
4. Kim, Y.H.; Yoon, D.W. Ruled surfaces with pointwise 1-type Gauss map. J. Geom. Phys. 2000, 34, 191-205. [CrossRef]
5. Choi, M.; Kim, D.-S.; Kim, Y.H.; Yoon, D.W. Circular cone and its Gauss map. Colloq. Math. 2012, 129, 203-210. [CrossRef]
6. Choi, M.; Kim, Y.H. Characterization of the helicoid as ruled surfaces with pointwise 1-type Gauss map. Bull. Korean Math. Soc. 2001, 38, 753-761.
7. Chen, B.-Y.; Choi, M.; Kim, Y.H. Surfaces of revolution with pointwise 1-type Gauss map. J. Korean Math. Soc. 2005, 42, 447-455. [CrossRef]
8. Yoon, D.W.; Kim, D.-S.; Kim, Y.H.; Lee, J.W. Hypersurfaces with generalized 1-type Gauss map. Mathematics 2018, 6, 130. [CrossRef]
9. Kim, D.-S.; Kim, Y.H.; Yoon, D.W. Finite type ruled surfaces in Lorentz-Minkowski space. Taiwanese J. Math. 2007, 11, 1-13. [CrossRef]
10. Graves, L.K. Codimension one isometric immersions between Lorentz spaces. Trans. Am. Math. Soc. 1979, 252, 367-392. [CrossRef]
11. Choi, M.; Kim, Y.H.; Yoon, D.W. Classification of ruled surfaces with pointwise 1-type Gauss map in Minkowski 3-space. Taiwanese J. Math. 2011, 15, 1141-1161. [CrossRef]
12. Chung, H.-S.; Kim, D.-S. Finite type curves in Lorentz-Minkowski plane. Honam Math. J. 1995, 17, 41-47.
13. Jung, S.M.; Kim, Y.H. Gauss map and its applications on ruled submanifolds in Minkowski space. Symmetry 2018, 10, 218. [CrossRef]
(c) 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http:// creativecommons.org/licenses/by/4.0/).
