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Abstract: In this paper, firstly, as a generalization of derivations on a lattice, the notion of
n-derivation is introduced and some fundamental properties are investigated. Secondly, the concept of
(n,m)-derivation-homomorphism on lattices is described and important and characteristic properties
are given.
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1. Introduction

A lattice, which has many real-world applications, such as information theory [1] and
cryptanalysis [2], is defined as the following [3]:

If a nonempty set L endowed with operations “∧” and “∨” satisfies the following conditions,
then L is called a lattice.

(A) x∧ x = x, x∨ x = x;
(B) x∧ y = y∧ x, x∨ y = y∨ x;
(C) (x∧ y) ∧ z = x∧ (y∧ z), (x∨ y) ∨ z = x∨ (y∨ z);
(D) (x∧ y) ∨ x = x, (x∨ y) ∧ x = x,

for all x, y, z ∈ L.
Additionally, a lattice has the following properties:
A binary relation “≤” in a lattice L is defined by

x ≤ y if and only if x∧ y = x, x∨ y = y.

Lemma 1. Let (L,∧,∨) be a lattice. Then, ( L, ≤) is a poset and for any x, y ∈ L, x∧ y is the g.l.b. of {x,y} and
x∨ y is the l.u.b. of {x,y}.

A lattice L is called distributive if the identity (E) or (F) holds:

(E) x∧ (y∨ z) = (x∧ y) ∨ (x∧ z),
(F) x∨ (y∧ z) = (x∨ y) ∧ (x∨ z).

In any lattice, the conditions (E) and (F) are equivalent.
The notion of derivation which comes in analogy with Leibniz’s formula for derivations in

a ring introduced from the analytic theory is helpful to the research of structure and property in
the algebraic system. Many authors have studied derivations in rings, near-rings, BCI-algebras,
lattices, and various algebraic structures [4–10]. Multiderivations (e.g., biderivation, 3-derivation,
or n-derivation, in general) have been explored in (semi-) rings [11–14]. Some researchers have studied
n-derivations, (n,m)-derivations, and higher derivations on various algebraic structures, such as
triangular rings, von Neumann algebras, lattice ordered rings, and J-subspace lattice algebras [15–21].
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The notion of lattice derivation was introduced and developed by Szasz [9] and was also employed
to investigate some further properties by Ferrari [22] and Xin [10]. The definition of derivation on a
lattice L is given as the following:

Let d : L→ L be a function. d is called a derivation on L, if it satisfies the equality
d(x∧ y) = (x∧ d(y))∨ (d(x)∧ y) for all x, y ∈ L.

In [10], Xin et al. introduced the notion of derivation for a lattice and discussed some related
properties. They gave some equivalent conditions under which derivation is an isotone for lattices
with the greatest element, modular lattices, and distributive lattices, and characterized modular lattices
and distributive lattices by isotone derivation. Moreover, they proved that if d is an isotone derivation
of a lattice L, the fixed set Fixd(L) is an ideal of L and D(L) is isomorphic to L in a distributive lattice L.

Until now, researchers have studied the generalization of derivations on lattices. Some of these
studies are as follows:

• A function d : L→ L is called an f-derivation on L if there exists a function f : L→ L, such that
d (x∧ y) = (d(x) ∧ f(y)) ∨ (f(x) ∧ d(y)) [23];

• Let D : L× L→ L be a symmetric mapping. D is called a symmetric bi-derivation on L, if it
satisfies the equality: D(x∧ y, z) = (D(x, z) ∧ y) ∨ (x∧D(y, z)) [24];

• A function D : L→ L is called a generalized derivation on L if there exists a derivation d : L→ L,
such that D (x∧ y) = (D(x) ∧ y) ∨ (x∧ d(y)) [25];

• A function d : L→ L is called a generalized (f, g)-derivation of L if there exist functions
f, g : L→ L, such that d(x∧ y) = (d(x) ∧ f(y)) ∨ (g(x) ∧ d(y)) [26];

• Let D : L× L× L→ L be a permuting mapping [27]. D is called permuting tri-(f,g)-derivation of
L if there exist functions f, g : L→ L, such that D satisfies the equation

D(x∧w, y, z) = (D(x, y, z) ∧ f(w)) ∨ (g(x) ∧D(w, y, z));

• Let I = {0, 1, 2, . . . , t} or I = N = {0, 1, 2, . . .} (with t → ∞ in this case) and D = {dn}n∈I be a
family of mappings of L such that d0 = idL. D is said to be a higher derivation of length t on L if,
for every n ∈ I and a, b ∈ L, D satisfies the equality dn(a∧ b) = ∨

i+j=n
(di(a) ∧ di(b)) ([18]).

In the above studies about the generalization of the derivations on lattices, researchers
discussed some related properties. Modular lattices and distributive lattices were characterized
by isotone derivation. Moreover, they showed that the fixed set FixD(L) where D is a generalized
derivation is an ideal of L.

Our research was mainly motivated by the studies in [19–21] on n-derivations and
(n,m)-derivations on various algebraic structures. In this paper, firstly, as a generalization of derivations
on a lattice, the notion of n-derivation is introduced and some important properties are investigated.
Secondly, we consider a kind of multimapping that is either a derivation or a ∧-homomorphism
called (n,m)-derivation-homomorphism on lattices. Furthermore, its important and characteristic
properties will be described. In this paper, the investigation of the properties of derivations of lattices
is considered by a purely theoretical point of view.

2. n-Derivations on Lattices

In the following, L will denote a lattice.
A mapping D : L× L→ L is called symmetric if D(x, y) = D(y, x) holds for all x, y ∈ L.

A mapping d : L→ L defined by d(x) = D(x,x) is called a trace of D where D is a symmetric mapping.
Let n ≥ 2 be a fixed positive integer and Ln = L× L× . . .× L︸ ︷︷ ︸

n times

. A map ∆ : Ln → L is said to be

symmetric (or permutting) if the equation ∆(x1, x2, . . . , xn) = ∆(xπ(1), xπ(2), . . . , xπ(n)) holds for all
xi ∈ L and for every permutation {π(1),π(2), . . . ,π(n)}.
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The following definition introduces the notion of n-derivation for a lattice. This definition
generalizes the notions of derivation, biderivation, and 3-derivation on lattices.

Definition 1. The map ∆ : Ln → L will be called an n-derivation if ∆ is a derivation according to
all components; that is,

∆(x1 ∧ a, x2, . . . , xn) = (∆(x1, x2, . . . , xn) ∧ a) ∨ (x1 ∧ ∆(a, x2, . . . , xn)

∆(x1, x2 ∧ a, x3, . . . , xn) = (∆(x1, . . . , xn) ∧ a) ∨ (x2 ∧ ∆(x1, x2, x3, . . . , a))
. . .

∆(x1, . . . , xn−1, xn ∧ a) = (∆(x1, . . . , xn) ∧ a) ∨ (xn ∧ ∆(x1, . . . , xn−1, a))

are valid for all xi and a ∈ L.

Remark 1. Of course, an 1-derivation is a derivation and 2-derivation is a biderivation. If ∆ is symmetric,
then the above equalities are equivalent to each other. In this case, if n = 2, ∆ is symmetric biderivation, and if
n = 3, ∆ is permutting tri-derivation.

Example 1. Let L = {0,a,b,c,1} be a lattice with the following figure:
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Proof. Note that 

We define a mapping ∆ on L by ∆(x1, x2, . . . , xn) = x1 ∧ x2 ∧ . . . ∧ xn ∧ a. It is easily seen that ∆ is an
n-derivation on L.

Example 2. Consider the lattice (N ; max,min) whose associated poset is the chain (N,≤) with the usual
total order. We define a mapping ∆ on Nn by ∆(x1, x2, . . . , xn) = min(x1, . . . , xn, a) for some a ∈ N. It is
easily seen that ∆ is an n-derivation.

Recently, Çeven [24] defined symmetric biderivation and its trace for a lattice and proved
some results. In the following, we have extended his definitions and theorems to n-derivations
of lattices.

Definition 2. Let ∆ be an n-derivation on L. A map δ : L→ L defined by δ(x) = ∆(x, x, . . . , x) is called the
trace of ∆.

Proposition 1. Let ∆ be an n-derivation on L with trace δ . Then, δ(x) ≤ x for all x ∈ L.

Proof. Note that
δ(x) = ∆(x, x, . . . , x)

= ∆(x∧ x, x, . . . , x)
= (∆(x, x, . . . , x) ∧ x) ∨ (x∧ ∆(x, x, . . . , x))
= ∆(x, x, . . . , x) ∧ x
= δ(x) ∧ x,

and so δ(x) ≤ x. �
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Proposition 2. Let ∆ be an n-derivation on L. Then, ∆(x1, x2, . . . , xn) ≤ xi for all i ∈ {1, 2, . . . , n}.

Proof. Since

∆(x1, x2, . . . , xn) = ∆(x1 ∧ x1, x2, . . . , xn)

= (∆(x1, x2, . . . , xn) ∧ x1) ∨ (x1 ∧ ∆(x1, x2, . . . , xn))

= x1 ∧ ∆(x1, x2, . . . , xn)

we have ∆(x1, x2, . . . , xn) ≤ x1. Similarly, it is obtained that ∆(x1, x2, . . . , xn) ≤ xi for all i ∈
{1, 2, . . . , n}. �

Remark 2. In Propositions 1 and 2, we obtained interesting properties for any n-derivation ∆ and its trace δ;
that is, ∆(x1, x2, . . . , xn) ≤ xi for all i ∈ {1, 2, . . . , n} and δ(x) ≤ x. This means that any n-derivation and its
trace in lattices are contraction mappings. By the principle of contraction mappings, they must have fixed points.
The properties of the fixed point set of n-derivation and its trace for a lattice will be discussed in future work.

Corollary 1. Let ∆ be an n-derivation on L. Then, ∆(x1, x2, . . . , xn) ≤ ∧
i∈I

xi where I = {1, 2, . . . , n}.

The definition of a joinitive mapping for a lattice was first given in [24]. We defined the notion of
n-joinitivity for n-derivation of a lattice as the following and obtained some related results.

Definition 3. The map ∆ : Ln → L is called an n-joinitive mapping (∨−homomorphism) if ∆ is a joinitive
mapping according to all components; that is,

∆(x1 ∨ a, x2, . . . , xn) = ∆(x1, x2, . . . , xn) ∨ ∆(a, x2, . . . , xn),
∆(x1, x2 ∨ a, . . . , xn) = ∆(x1, x2, . . . , xn) ∨ ∆(x1, a, . . . , xn),

. . .
∆(x1, x2, . . . , xn ∨ a) = ∆(x1, x2, . . . , xn) ∨ ∆(x1, x2, . . . , a)

are valid for all xi and a ∈ L.

Theorem 1. Let ∆ be a permutting and joinitive n-derivation and δ be the trace of ∆. Then,

δ(x∨ y) = δ(x) ∨ ∆(x, x, . . . , x︸ ︷︷ ︸
n−1 times

, y) ∨ ∆(x, x, . . . , x︸ ︷︷ ︸
n−2 times

, y, y) ∨ . . . ∨ ∆(x, y, y, . . . , y︸ ︷︷ ︸
n−1 times

) ∨ δ(y).

Proof. Since ∆ is a permutting, joinitive n-derivation and by properties of lattice, we have

δ(x∨ y) = ∆(x∨ y, x∨ y, . . . , x∨ y︸ ︷︷ ︸
n times

)

= ∆(x, x∨ y, x∨ y, . . . , x∨ y︸ ︷︷ ︸
n−1 times

) ∨ ∆(y, x∨ y, x∨ y, . . . , x∨ y︸ ︷︷ ︸
n−1 times

)

= ∆(x, x, x∨ y, x∨ y, . . . , x∨ y︸ ︷︷ ︸
n−2 times

) ∨ ∆(x, y, x∨ y, x∨ y, . . . , x∨ y︸ ︷︷ ︸
n−2 times

) ∨ ∆(y, y, x∨ y, x∨ y, . . . , x∨ y︸ ︷︷ ︸
n−2 times

)

= . . .
= ∆(x, x, . . . , x︸ ︷︷ ︸

n times

) ∨ ∆(x, x, . . . , x︸ ︷︷ ︸
n−1 times

, y) ∨ ∆(x, x, . . . , x︸ ︷︷ ︸
n−2 times

, y, y) ∨ . . . ∨ ∆(x, y, y, . . . , y︸ ︷︷ ︸
n−1 times

) ∨ ∆(y, y, . . . , y︸ ︷︷ ︸
n times

)

= δ(x) ∨ ∆(x, x, . . . , x︸ ︷︷ ︸
n−1 times

, y) ∨ ∆(x, x, . . . , x︸ ︷︷ ︸
n−2 times

, y, y) ∨ . . . ∨ ∆(x, y, y, . . . , y︸ ︷︷ ︸
n−1 times

) ∨ δ(y)

�
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Theorem 2. Let L be a distributive lattice, ∆ be a permutting n-derivation, and δ be the trace of ∆. Then,

δ(x∧ y) = δ(x) ∨ ∆(x, x, . . . , x︸ ︷︷ ︸
n−1 times

, y) ∨ ∆(x, x, . . . , x︸ ︷︷ ︸
n−2 times

, y, y) ∨ . . . ∨ ∆(x, y, y, . . . , y︸ ︷︷ ︸
n−1 times

) ∨ δ(y)

Proof. Note that

δ(x∧ y) = ∆(x∧ y, x∧ y, . . . , x∧ y)︸ ︷︷ ︸
n times

= (x∧ ∆(y, x∧ y, . . . , x∧ y︸ ︷︷ ︸
n−1 times

)) ∨ (∆(x, x∧ y, . . . , x∧ y︸ ︷︷ ︸
n−1 times

) ∧ y)

= ∆(y, x∧ y, . . . , x∧ y︸ ︷︷ ︸
n−1 times

) ∨ ∆(x, x∧ y, . . . , x∧ y︸ ︷︷ ︸
n−1 times

)

= (x∧ ∆(y, y, x∧ y, . . . , x∧ y︸ ︷︷ ︸
n−2 times

)) ∨ (∆(y, x, x∧ y, . . . , x∧ y︸ ︷︷ ︸
n−2 times

) ∧ y)

∨(x∧ ∆(x, y, x∧ y, . . . , x∧ y︸ ︷︷ ︸
n−2 times

)) ∨ (∆(x, x, x∧ y, . . . , x∧ y︸ ︷︷ ︸
n−2 times

) ∧ y)

= ∆(y, y, x∧ y, . . . , x∧ y︸ ︷︷ ︸
n−2 times

) ∨ ∆(y, x, x∧ y, . . . , x∧ y︸ ︷︷ ︸
n−2 times

) ∨ ∆(x, x, x∧ y, . . . , x∧ y︸ ︷︷ ︸
n−2 times

)

= ∆(y, y, y, x∧ y, . . . , x∧ y︸ ︷︷ ︸
n−3 times

) ∨ ∆(y, y, x, x∧ y, . . . , x∧ y︸ ︷︷ ︸
n−3 times

)

∨∆(y, x, x, x∧ y, . . . , x∧ y︸ ︷︷ ︸
n−3 times

) ∨ ∆(y, x, y, x∧ y, . . . , x∧ y︸ ︷︷ ︸
n−2 times

)

∨∆(x, x, x, x∧ y, . . . , x∧ y︸ ︷︷ ︸
n−3 times

) ∨ ∆(x, x, y, x∧ y, . . . , x∧ y︸ ︷︷ ︸
n−3 times

)

= ∆(y, y, y, x∧ y, . . . , x∧ y︸ ︷︷ ︸
n−3 times

) ∨ ∆(y, y, x, x∧ y, . . . , x∧ y︸ ︷︷ ︸
n−3 times

)

∨∆(y, x, x, x∧ y, . . . , x∧ y︸ ︷︷ ︸
n−3 times

) ∨ ∆(x, x, x, x∧ y, . . . , x∧ y︸ ︷︷ ︸
n−3 times

)

= . . .
= δ(x) ∨ ∆(x, x, . . . , x︸ ︷︷ ︸

n−1 times

, y) ∨ ∆(x, x, . . . , x︸ ︷︷ ︸
n−2 times

, y, y) ∨ . . . ∨ ∆(x, y, y, . . . , y︸ ︷︷ ︸
n−1 times

) ∨ δ(y),

completing the proof. �

Corollary 2. Let ∆ be a n-derivation and δ be the trace of ∆.

(i) ∆(x1, x2, . . . , xn) = 0 if at least one of the components is 0.
(ii) δ(x) ∨ δ(y) ≤ δ(x∨ y) if ∆ is permutting and joinitive.
(iii) δ(x) ∨ δ(y) ≤ δ(x∧ y) if ∆ is permutting.
(iv) δ2(x) = δ(x) if L is distributive lattice and ∆ is permutting.

Proof. (i) is clear by Proposition 2, (ii) is clear by Theorem 1, and (iii) is seen from Theorem 2.
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(iv) since δ2(x) = δ(δ(x)) ≤ δ(x) by Proposition 1, we get

δ2(x) = δ(δ(x))
= δ(x∧ δ(x) , by Proposition 2.4
= δ(x) ∨ ∆(x, x, . . . , x︸ ︷︷ ︸

n−1 times

, δ(x)) ∨ ∆(x, x, . . . , x︸ ︷︷ ︸
n−2 times

, δ(x), δ(x))

∨ . . . ∨ ∆(x, δ(x), δ(x), . . . , δ(x)︸ ︷︷ ︸
n−1 times

) ∨ δ2(x) , by Theorem 2.9

= δ(x) , by Proposition 2.5.

�

3. (n,m)-Derivation-Homomorphisms on Lattices

In [19], Li and Xu introduced the notion of (n,m)-derivation-homomorphism in an associative ring.
It is a kind of multimapping that is either a derivation or a homomorphism for each component when
the other components are fixed by any given elements. In the following, this notion will be described
for lattices and used to obtain some related results. This will give a generalization of n-derivation
for lattices.

Definition 4. Let L be a lattice. The map f : Ln×m → L is called (n,m)-derivation-∧−homomorphism (shortly,
(n,m)-der-∧-hom) on a lattice if f satisfies the following conditions:

(i) For i ∈ {1,2, . . . ,n}

f(a1, . . . , ai ∧ x, . . . , an+m) = (ai ∧ f(a1, . . . , x, . . . , an+m)) ∨ (f(a1, . . . , ai, . . . , an+m)) ∧ x) (1)

(ii) For i ∈ {n + 1, . . . , n + m}

f(f(a1, . . . , ai ∧ y, . . . , an+m) = f(a1, . . . , x, . . . , an+m) ∧ f(a1, . . . , ai, . . . , an+m) (2)

Remark 3. In Definition 4, we see that (1, 0)− der−∧− hom is a derivation, (2, 0)− der−∧− hom is a
bi-derivation, and (n, 0)− der−∧− hom is an n-derivation on L. In the following, our concern will focus on
the case mn 6= 0.

Definition 5. Let f be a (n, 0)− der− ∧− hom . The map g : L→ L defined by g(a) = f(a, a, . . . , a) is
called the trace of f.

Example 3. It is easily seen that the map f : L× L→ L defined by f(x, y) = x ∧ y is a
(1, 1) − der − ∧ − hom.

Firstly, we consider (1, 1)− der−∧− hom and describe the properties of it.

Proposition 3. Let L be a lattice with at least element 0 and the greatest element of 1, and let f be
(1, 1) − der − ∧ − hom. Then

(i) f(a, b) ≤ a,
(ii) f(0, b) = 0,
(iii) f(a,0) ≤ f(a,b),
(iv) a∧ f(1, b) ≤ f(a, b) ≤ f(a, 1).

If f is also ∨−homomorphism, then
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(v) f(a, b) ≤ f(1, b)
for all a, b ∈ L.

Proof. Since f is (1, 1)− der−∧− hom, it satisfies

f(a∧ x, b) = (a∧ f(x, b)) ∨ (f(a, b) ∧ x), (3)

f(a, b∧ x) = f(a, b) ∧ f(a, x). (4)

(i) Taking x = a in Equation (3), since f(a, b) = f(a ∧ a, b) = (a ∧ f(a, b)) ∨ (f(a, b) ∧ a) = a ∧ f(a, b),
we have f(a, b) ≤ a for all a, b ∈ L.
(ii) Taking a = 0 in (i), we have f(0, b) = 0 for all b ∈ L.
(iii) Taking x = 0 in Equation (4), since f(a, 0) = f(a, b∧ 0) = f(a, b) ∧ f(a, 0), we get f(a, 0) ≤ f(a, b) for
all a, b ∈ L.
(iv) Taking x = 1 in Equation (3), since f(a, b) = f(a∧ 1, b) = (a ∧ f(1, b))∨ (f(a, b) ∧ 1) = (a ∧ f(1, b))∨
f(a, b) we have a∧ f(1, b) ≤ f(a, b). Also, taking x = 1 in Equation (4), since f(a, b) = f(a, b∧ 1) = f(a, b)∧
f(a, 1), we have f(a, b) ≤ f(a, 1).
(v) If f is ∨− homomorphism, then it satisfies f(a∨ x, b) = f(a, b)∨ f(x, b) and f(a, b∨ x) = f(a, b)∨ f(a, x).
Then, taking x = 1 in the first equality, we see that f(a, b) ≤ f(1, b) . �

Proposition 4. Let L be a lattice and f be (1, 1)− der−∧− hom with trace g. Then, for all a ∈ L,

(i) g(a) ≤ a,
(ii) f(a, g(a)) ≤ g2(a),
(iii) g2(a) = f(a, g(a)) if f is ∨− homomorphism.

Proof. (i) Since g(a) = f(a, a) = f(a ∧ a, a) = (a ∧ g(a)) ∨ (g(a) ∧ a) = a ∧ g(a), we get g(a) ≤ a for
all a ∈ L.
(ii) Since g2(a) = g(g(a)) ≤ g(a) ≤ a and f(a, b) ≤ a by Proposition 3 (i), we have

g2(a) = g(g(a))
= f(g(a), g(a))
= f(a∧ g(a), g(a))
= (a∧ g2(a)) ∨ (f(a, g(a)) ∧ g(a))
= g2(a) ∨ (f(a, g(a)) ∧ f(a, a))
= g2(a) ∨ f(a, g(a) ∧ a)
= g2(a) ∨ f(a, g(a)) .

Hence, we get f(a, g(a)) ≤ g2(a).
(iii) Using (ii), we have

g2(a) = g2(a) ∨ f(a, g(a))
= f(g(a), g(a)) ∨ f(a, g(a))
= f(g(a) ∨ a, g(a))
= f(a, g(a)) .

�

Proposition 5. Let L be a lattice and f be (1, 1)− der−∧− hom with trace g. Then

g(a) ∧ f(a, b) ∧ f(b, a) ∧ g(b) ≤ g(a∧ b).

If f is joinitive, then
g(a∨ b) = g(a) ∨ f(a, b) ∨ f(b, a) ∨ g(b)
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for all a, b ∈ L.

Proof. Note that

g(a∧ b) = f(a∧ b, a∧ b)
= (a∧ f(b, a∧ b)) ∨ (f(a, a∧ b) ∧ b)
= (a∧ f(b, a) ∧ f(b, b)) ∨ (f(a, a) ∧ f(a, b) ∧ b)
= (a∧ f(b, a) ∧ g(b)) ∨ (g(a) ∧ f(a, b) ∧ b).

Hence we have a∧ f(b, a) ∧ g(b) ≤ g(a∧ b) and g(a) ∧ f(a, b) ∧ b ≤ g(a∧ b). Therefore, we get
a∧ f(b, a) ∧ g(b) ∧ g(a) ∧ f(a, b) ∧ b ≤ g(a∧ b); that is, g(a) ∧ f(a, b) ∧ f(b, a) ∧ g(b) ≤ g(a∧ b).

Now let f be joinitive. Then

g(a∨ b) = f(a∨ b, a∨ b)
= f(a, a) ∨ f(a, b) ∨ f(b, a) ∨ f(b, b)
= g(a) ∨ f(a, b) ∨ f(b, a) ∨ g(b).

(3)

Now we consider (n, m)− der−∧− hom and describe its properties. �

Proposition 6. Let L be a lattice with the least element 0 and the greatest element 1, and let f be
(n, m) − der − ∧ − hom. Then

(i) f(a1, . . . , an, an+1, . . . , an+m) ≤ ai for i ∈ {1, 2, . . . , n},
(ii) f(a1, . . . , an, an+1, . . . , an+m)= 0 if ai = 0 for at least one i ∈ {1, 2, . . . , n},
(iii) f(a1, . . . , 0︸︷︷︸

i th place

, . . . , an+m) ≤ f(a1, . . . , ai, . . . , an+m) for i ∈ {n + 1, n + 2, . . . , n + m},

(iv) ai ∧ f(a1, . . . , 1︸︷︷︸
i th place

, . . . , an+m) ≤ f(a1, . . . , ai, . . . , an+m) for i ∈ {1, 2, . . . , n},

(v) f(a1, . . . , ai, . . . , an+m) ≤ f(a1, . . . , 1︸︷︷︸
i th place

, . . . , an+m)for i ∈ {n + 1, n + 2, . . . , n + m}

where ai ∈ L for i ∈ {1, 2, . . . , n + m}.

Proof. (i) Since, for i ∈ {1, 2, . . . , n}

f(a1, . . . , an, an+1, . . . , an+m) = f(a1, . . . , ai ∧ ai, . . . , an+m)

= (ai ∧ f(a1, . . . , ai, . . . , an+m)) ∨ (f(a1, . . . , ai, . . . , an+m) ∧ ai)

= ai ∧ f(a1, . . . , ai, . . . , an+m) ,
(4)

we get f(a1, . . . , an, an+1, . . . , an+m) ≤ ai for i ∈ {1, 2, . . . , n}.
(ii) From (i), it is clear.
(iii) Writing y = 0 in the Equation (2), we have

f(a1, . . . , 0︸︷︷︸
i th place

, . . . , an+m) = f(a1, . . . , ai ∧ 0, . . . , an+m)

= f(a1, . . . , ai, . . . , an+m) ∧ f(a1, . . . , 0︸︷︷︸
i th place

, . . . , an+m) .
(5)

Hence we see that f(a1, . . . , 0︸︷︷︸
i th place

, . . . , an+m) ≤ f(a1, . . . , ai, . . . , an+m) for

i ∈ {n+ 1, n+ 2, . . . , n+m}.
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(iv) Using Equation (1), we have

f(a1, . . . , ai, . . . , an+m) = f(a1, . . . , ai ∧ 1, . . . , an+m)

= (ai ∧ f(a1, . . . , 1, . . . , an+m)) ∨ (f(a1, . . . , ai, . . . , an+m) ∧ 1)
= (ai ∧ f(a1, . . . , 1, . . . , an+m)) ∨ (f(a1, . . . , ai, . . . , an+m).

(6)

Hence we get the desired result.
(v) Using Equation (2), we have

f(a1, . . . , ai, . . . , an+m) = f(a1, . . . , ai ∧ 1, . . . , an+m)

= f(a1, . . . , ai, . . . , an+m) ∧ f(a1, . . . , 1, . . . , an+m)
(7)

Hence we get the desired result.
From Proposition 6, we obtain the following results: If L is a lattice with the least element 0,

the greatest element is 1 and f is an (n, m)− der−∧− hom. Then

(vi) f(a1, . . . , an, an+1, . . . , an+m) ≤ a1 ∧ a2 ∧ . . . ∧ an, (by (i))
(vii) Using (iii),

f(a1, . . . , an, 0, . . . , 0) ≤ f(a1, . . . , an, an+1, 0, . . . , 0)
≤ f(a1, . . . , an, an+1, an+2, 0, . . . , 0)
≤ . . .
≤ f(a1, . . . , an, an+1, . . . , an+m).

(8)

(viii) By (iv),

a1 ∧ a2 ∧ . . . ∧ an ∧ f(1, . . . , 1, an+1, . . . , an+m) ≤ a2 ∧ . . . ∧ an ∧ f(a1, 1, . . . , 1, an+1, . . . , an+m)

≤ . . .
≤ an ∧ f(a1, . . . , an−1, 1, an+1, . . . , an+m)

≤ f(a1, . . . , an, an+m, . . . , an+m).
(9)

(ix) By (v),
f(a1, . . . , an, an+1, . . . , an+m) ≤ f(a1, . . . , an, 1, an+2, . . . , an+m)

≤ f(a1, . . . , an, 1, 1, an+3, . . . , an+m)

≤ . . .
≤ f(a1, . . . , an, 1, . . . , 1).

(10)

�

Proposition 7. Let L be a lattice and f be (n, m)− der−∧− hom (n ≥ 2) with trace g. Then

(i) g(a) ≤ a,
(ii) f(g(a), . . . , a︸︷︷︸

i th place

, . . . , g(a), g(a)︸︷︷︸
n+1 th place

, . . . , g(a)) ≤ g2(a) for i ∈ {1, 2, . . . , n},

(iii) g2(a) = f(g(a), . . . , a︸︷︷︸
i th place

, . . . , g(a), g(a)︸︷︷︸
n+1 th place

, . . . , g(a)) for i ∈ {1, 2, . . . , n}

for all a ∈ L.

Proof. (i) Since g(a) = f(a, a, . . . , a) = f(a ∧ a, a, . . . , a) = (a ∧ g(a)) ∨ (g(a) ∧ a) = a ∧ g(a), we have
g(a) ≤ a.
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(ii) Since
g2(a) = g(g(a))

= f(g(a), . . . , g(a))
= f(g(a), . . . , a∧ g(a)︸ ︷︷ ︸

i th place

, . . . , g(a)) (1 ≤ i ≤ n)

= (a∧ g2(a)) ∨ (f(g(a), . . . , a︸︷︷︸
i th place

, . . . , g(a)) ∧ g(a))

= g2(a) ∨ f(g(a), . . . , a︸︷︷︸
i th place

, . . . , g(a)) by Proposition 3.7 (i),

(11)

we get the desired result.
(iii) We have, by (ii),

g2(a) = g2(a) ∨ f(g(a), . . . , a︸︷︷︸
i th place

, . . . , g(a)) (1 ≤ i ≤ n)

= f(g(a), . . . , g(a)) ∨ f(g(a), . . . , a︸︷︷︸
i th place

, . . . , g(a))

= f(g(a), . . . , g(a) ∨ a︸ ︷︷ ︸
i th place

, . . . , g(a))

= f(g(a), . . . , a︸︷︷︸
i th place

, . . . , g(a))

(12)

�

4. Conclusions

Studies on derivations of algebraic structures started at the end of the 1950s. Algebraic structures
were characterized by using these derivations. For example, in [8], Posner proved that a ring is
commutative if the derivation defined on the ring satisfies certain conditions. Until today, many
types of derivations and many generalization of these derivations have been defined on algebraic
structures and the properties of this structures have been investigated by using these derivations.
In this paper, we introduced the notion of n-derivation and (n,m)-derivation-homomor-phism,
which are generalizations of derivation on a lattice, and proved important and characteristic
properties of them. In future work, we will discuss the properties of the fixed sets of n-derivation,
(n,m)-derivation-homomorphism, and their traces. Also, the lattices will be characterized by using
n-derivation, (n,m)-derivation-homomorphism, and their traces.
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