
mathematics

Article

Hybrid Second Order Method for Orthogonal
Projection onto Parametric Curve in n-Dimensional
Euclidean Space

Juan Liang 1,2,†, Linke Hou 3,†,*, Xiaowu Li 4,†,* , Feng Pan 4,†, Taixia Cheng 5,† and Lin Wang 4,†

1 Data Science and Technology, North University of China, Taiyuan 030051, Shanxi, China;
liangjuan76@126.com

2 Department of Science, Taiyuan Institute of Technology, Taiyuan 030008, Shanxi, China
3 Center for Economic Research, Shandong University, Jinan 250100, Shandong, China
4 College of Data Science and Information Engineering, Guizhou Minzu University, Guiyang 550025, Guizhou,

China; panf@vip.163.com (F.P.); wanglin@gzmu.edu.cn (L.W.)
5 Graduate School, Guizhou Minzu University, Guiyang 550025, Guizhou, China; lissacheng@163.com
* Correspondence: abram75@163.com (L.H.); lixiaowu002@126.com (X.L.);

Tel.: +86-135-0640-1186 (L.H.); +86-187-8613-2431 (X.L.)
† These authors contributed equally to this work.

Received: 16 October 2018; Accepted: 28 November 2018; Published: 5 December 2018
����������
�������

Abstract: Orthogonal projection a point onto a parametric curve, three classic first order algorithms
have been presented by Hartmann (1999), Hoschek, et al. (1993) and Hu, et al. (2000) (hereafter,
H-H-H method). In this research, we give a proof of the approach’s first order convergence and its
non-dependence on the initial value. For some special cases of divergence for the H-H-H method,
we combine it with Newton’s second order method (hereafter, Newton’s method) to create the hybrid
second order method for orthogonal projection onto parametric curve in an n-dimensional Euclidean
space (hereafter, our method). Our method essentially utilizes hybrid iteration, so it converges
faster than current methods with a second order convergence and remains independent from the
initial value. We provide some numerical examples to confirm robustness and high efficiency of
the method.

Keywords: point projection; intersection; parametric curve; n-dimensional Euclidean space; Newton’s
second order method; fixed point theorem

1. Introduction

In this research, we will discuss the minimum distance problem between a point and a parametric
curve in an n-dimensional Euclidean space, and how to gain the closest point (footpoint) on the curve
as well as its corresponding parameter, which is termed as the point projection or inversion problem of
a parametric curve in an n-dimensional Euclidean space. It is an important issue in the themes such as
geometric modeling, computer graphics, computer-aided geometry design (CAGD) and computer
vision [1,2]. Both projection and inversion are fundamental for a series of techniques, for instance, the
interactive selection of curves and surfaces [1,3], the curve fitting [1,3], reconstructing curves [2,4,5]
and projecting a space curve onto a surface [6]. This vital technique is also used in the ICP (iterative
closest point) method for shape registration [7].

The Newton-Raphson algorithm is deemed as the most classic one for orthogonal projection
onto parametric curve and surface. Searching the root of a polynomial by a Newton-Raphson
algorithm can be found in [8–12]. In order to solve the adaptive smoothing for the standard finite
unconstrained minimax problems, Polak et al. [13] have presented a extended Newton’s algorithm

Mathematics 2018, 6, 306; doi:10.3390/math6120306 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0002-9923-0011
http://dx.doi.org/10.3390/math6120306
http://www.mdpi.com/journal/mathematics
http://www.mdpi.com/2227-7390/6/12/306?type=check_update&version=2

Mathematics 2018, 6, 306 2 of 23

where a new feedback precision-adjustment rule is used in their extended Newton’s algorithm.
Once the Newton-Raphson method reaches its convergence, two advantages emerge and it converges
very fast with high precision. However, the result relies heavily on a good guess of initial value in the
neighborhood of the solution.

Meanwhile, the classic subdivision method consists of several procedures: Firstly, subdivide
NURBS curve or surface into a set of Bézier sub-curves or patches and eliminate redundancy or
unnecessary Bézier sub-curves or Bézier patches. Then, get the approximation candidate points. Finally,
get the closest point through comparing the distances between the test point and candidate points.
This technique is reflected in [1]. Using new exclusion criteria within the subdivision strategy,
the robustness for the projection of points on NURBS curves and surfaces in [14] has been
improved than that in [1], but this criterion is sometimes too critical. Zou et al. [15] use subdivision
minimization techniques which rely on the convex hull characteristic of the Bernstein basis to
impute the minimum distance between two point sets. They transform the problem into solving
of n-dimensional nonlinear equations, where n variables could be represented as the tensor product
Bernstein basis. Cohen et al. [16] develop a framework for implementing general successive subdivision
schemes for nonuniform B-splines to generate the new vertices and the new knot vectors which are
satisfied with derived polygon. Piegl et al. [17] repeatedly subdivide a NURBS surface into four
quadrilateral patches and then project the test point onto the closest quadrilateral until it can find
the parameter from the closest quadrilateral. Using multivariate rational functions, Elber et al. [11]
construct a solver for a set of geometric constraints represented by inequalities. When the dimension
of the solver is greater than zero, they subdivide the multivariate function(s) so as to bind the function
values within a specified domain. Derived from [11] but with more efficiency, a hybrid parallel
method in [18] exploits both the CPU and the GPU multi-core architectures to solve systems under
multivariate constraints. Those GPU-based subdivision methods essentially exploit the parallelism
inherent in the subdivision of multivariate polynomial. This geometric-based algorithm improves
in performance compared to the existing subdivision-based CPU. Two blending schemes in [19]
efficiently remove no-root domains, and hence greatly reduce the number of subdivisions. Through a
simple linear combination of functions for a given system of nonlinear equations, no-root domain
and searching out all control points for its Bernstein-Bézier basic with the same sign must be satisfied
with the seek function. During the subdivision process, it can continuously create these kinds of
functions to get rid of the no-root domain. As a result, van Sosin et al. [20] efficiently form various
complex piecewise polynomial systems with zero or inequality constraints in zero-dimensional or
one-dimensional solution spaces. Based on their own works [11,20], Bartoň et al. [21] propose a new
solver to solve a non-constrained (piecewise) polynomial system. Two termination criteria are applied
in the subdivision-based solver: the no-loop test and the single-component test. Once two termination
criteria are satisfied, it then can get the domains which have a single monotone univariate solution.
The advantage of these methods is that they can find all solutions, while their disadvantage is that
they are computationally expensive and may need many subdivision steps.

The third classic methods for orthogonal projection onto parametric curve and surface
are geometry methods. They are mainly classified into eight different types of geometry
methods: tangent method [22,23], torus patch approximating method [24], circular or spherical
clipping method [25,26], culling technique [27], root-finding problem with Bézier clipping [28,29],
curvature information method [6,30], repeated knot insertion method [31] and hybrid geometry
method [32]. Johnson et al. [22] use tangent cones to search for regions with satisfaction of distance
extrema conditions and then to solve the minimum distance between a point and a curve, but it
is not easy to construct tangent cones at any time. A torus patch approximatively approaches for
point projection on surfaces in [24]. For the pure geometry method of a torus patch, it is difficult to
achieve high precision of the final iterative parametric value. A circular clipping method can remove
the curve parts outside a circle with the test point being the circle’s center, and the radius of the
elimination circle will shrink until it satisfies the criteria to terminate [26]. Similar to the algorithm [26],

Mathematics 2018, 6, 306 3 of 23

a spherical clipping technique for computing the minimum distance with clamped B-spline surface
is provided by [25]. A culling technique to remove superfluous curves and surfaces containing no
projection from the given point is proposed in [27], which is in line with the idea in [1]. Using Newton’s
method for the last step [1,25–27], the special case of non-convergence may happen. In view of the
convex-hull property of Bernstein-Bézier representations, the problem to be solved can be formulated
as a univariate root-finding problem. Given a C1 parametric curve c(t) and a point p, the projection
constraint problem can be formulated as a univariate root-finding problem 〈c′(t), c(t)− p〉 = 0 with a
metric induced by the Euclidean scalar product in Rn. If the curve is parametrized by a (piece-wise)
polynomial, then the fast root-finding schemes as a Bézier clipping [28,29] can be used. The only issue
is the C1 discontinuities that can be checked in a post-process. One advantage of these methods is that
they do not need any initial guess on the parameter value. They adopt the key technology of degree
reduction via clipping to yield a strip bounded of two quadratic polynomials. Curvature information
is found for computing the minimum distance between a point and a parameter curve or surface
in [6,30]. However, it needs to consider the second order derivative and the method [30] is not fit for
n-dimensional Euclidean space. Hu et al. [6] have not proved the convergence of their two algorithms.
Li et al. [33] have strictly proved convergence analysis for orthogonal projection onto planar parametric
curve in [6]. Based on repeated knot insertion, Mørken et al. [31] exploit the relationship between a
spline and its control polygon and then present a simple and efficient method to compute zeros of
spline functions. Li et al. [32] present the hybrid second order algorithm which orthogonally projects
onto parametric surface; it actually utilizes the composite technology and hence converges nicely with
convergence order being 2. The geometric method can not only solve the problem of point orthogonal
projecting onto parametric curve and surface but also compute the minimum distance between
parametric curves and parametric surfaces. Li et al. [23] have used the tangent method to compute
the intersection between two spatial curves. Based on the methods in [34,35], they have extended to
compute the Hausdorff distance between two B-spline curves. Based on matching a surface patch
from one model to the other model which is the corresponding nearby surface patch, an algorithm
for solving the Hausdorff distance between two freeform surfaces is presented in Kim et al. [36],
where a hierarchy of Coons patches and bilinear surfaces that approximate the NURBS surfaces
with bounding volume is adopted. Of course, the common feature of geometric methods is that the
ultimate solution accuracy is not very high. To sum up, these algorithms have been proposed to exploit
diverse techniques such as Newton’s iterative method, solving polynomial equation roots methods,
subdividing methods, geometry methods. A review of previous algorithms on point projection and
inversion problem is obtained in [37].

More specifically, using the tangent line or tangent plane with first order geometric information,
a classical simple and efficient first order algorithm which orthogonally project onto parametric curve
and surface is proposed in [38–40] (H-H-H method). However, the proof of the convergence for the
H-H-H method can not be found in this literature. In this research, we try to give two contributions.
Firstly, we give proof that the algorithm is first order convergent and it does not depend on the
initial value. We then provide some numerical examples to show its high convergence rate. Secondly,
for several special cases where the H-H-H method is not convergent, there are two methods (Newton’s
method and the H-H-H method) to combine our method. If the H-H-H method’s iterative parametric
value is satisfied with the convergence condition of the Newton’s method, we then go to Newton’s
method to increase the convergence process. Otherwise, we go on the H-H-H method until its iterative
parametric value is satisfied with the convergence condition of the Newton’s method, and we then
turn to it as above. This algorithm not only ensures the robustness of convergence, but also improves
the convergence rate. Our hybrid method can go faster than the existing methods and ensures the
independence to the initial value. Some numerical examples verify our conclusion.

The rest of this paper is arranged as follows. In Section 2, convergence analysis of the H-H-H
method is presented. In Section 3, for several special cases where the H-H-H method is not convergent,
an improved our method is provided. Convergence analysis for our method is also provided in this

Mathematics 2018, 6, 306 4 of 23

section. In Section 4, some numerical examples for our method are verified. In Section 5, conclusions are
provided.

2. Convergence Analysis of the H-H-H Method

In this part, we will prove that the algorithm defined by Equations (2) or (3) is of first
order convergence and its convergence does not rely on the initial value. Suppose a C2 curve
c(t) = (f1(t), f2(t), . . . , fn(t)) in an n-dimensional Euclidean space Rn(n ≥ 2) and a test point
p = (p1, p2, . . . , pn). The first order geometric method to compute the footpoint q of test point p
can be implemented as below. Projecting test point p onto the tangent line of the parametric curve c(t)
in an n-dimensional Euclidean space at t = tm gets a point q determined by c(tm) and its derivative
c′(tm). The footpoint can be approximated as

q = c(tm) + ∆tc′(tm). (1)

Then,

∆t =
〈c′(tm), p− c(tm)〉
〈c′(tm), c′(tm)〉

, (2)

where 〈x, y〉 is the scalar product of vectors x, y ∈ Rn. Equation (2) can also be expressed as

K1(tm) = tm +
〈c′(tm), p− c(tm)〉
〈c′(tm), c′(tm)〉

. (3)

Let tm ← K1(tm), and repeatedly iterate the above process until |K1(tm)− tm| is less than an error
tolerance ε. This method is addressed as H-H-H method [38–40]. Furthermore, convergence of this
method will not depend on the choice of the initial value. According to many of our test experiments,
when the iterative parametric value approaches the target parametric value α, the iteration step size
becomes smaller and smaller, while the corresponding number of iterations becomes bigger and bigger.

Theorem 1. The convergence order of the method defined by Equations (2) or (3) is one, and its
convergence does not depend on the initial value.

Proof. We adopt the numerical analysis method which is equivalent to those in the literature [41,42].
Firstly, we deduce the expression of footpoint q. Suppose that parameter curve c(t) is a C2 curve in an
n-dimensional Euclidean space Rn(n ≥ 2), where the corresponding projecting point with parameter α

is orthogonal projecting of the test point p = (p1, p2, . . . , pn) onto the parametric curve c(t). It is easy
to indicate a relational expression

〈p− h, n〉 = 0, (4)

where h = c(α) and tangent vector n = c′(α). In order to solve the intersection (footpoint q) between
the tangent line, which goes through the parametric curve c(t) at t = tm, and the perpendicular line,
which is determined by the test point p, we try to express the equation of the tangent line as:

x = c(tm) + c′(tm) · s, (5)

where x = (x1, x2, . . . , xn) and s is a parameter. In addition, the vector of line segment both going
through the test point p and the point c(tm) will be

y = p− x, (6)

where y = (y1, y2, . . . , yn). Because the vector (6) and the tangent vector c′(tm) of Equation (5) are
orthogonal to each other, the current parameter value s of Equation (5) is

Mathematics 2018, 6, 306 5 of 23

s0 =
〈p− c(tm), c′(tm)〉
〈c′(tm), c′(tm)〉

. (7)

Substituting (7) into (5), we have

q = c(tm) + c′(tm) · s0. (8)

Thus, the footpoint q = (q1, q2, . . . , qn) is determined by Equation (8).
Secondly, we deduce that the convergence order of the method defined by (2) or (3) is first order

convergent. Our proof method absorbs the idea of [41,42]. Substituting (8) into (2), and simplifying,
we get the relationship,

∆t =
〈p− c(tm), c′(tm)〉
〈c′(tm), c′(tm)〉

. (9)

Using Taylor’s expansion, we get

c(tm) = B0 + B1em + B2e2
m + o(e3

m), (10)

c′(tm) = B1 + 2B2em + o(e2
m), (11)

where em = tm − α, and Bi = (1/i!)c(i)(α), i = 0, 1, 2, . . . From (10) and (11) and combining with (4),
the numerator of Equation (9) can be transformed into the following one:

〈p− c(tm), c′(tm)〉
= L1em + L2e2

m + o(e3
m),

(12)

where L1 = 2 〈p− B0, B2〉 − 〈B1, B1〉 , L2 = −3 〈B1, B2〉. By (11), the denominator of Equation (9) can
be changed as follows:

〈c′(tm), c′(tm)〉
= M1 + M2em + M3e2

m + o(e3
m),

(13)

where M1 = 〈B1,B1〉 , M2 = 4 〈B1,B2〉 , M3 = 4 〈B2,B2〉. Substituting Equations (12) and (13) into the
right-hand side of Equation (9), we get

∆t =
〈p− c(tm), c′(tm)〉
〈c′(tm), c′(tm)〉

=
L1em + L2e2

m + o(e3
m)

M1 + M2em + M3e2
m + o(e3

m)
.

(14)

Using Taylor’s expansion by Maple 18, and through simplification, we get

K1(tm) =α + (
L1

M1
+ 1)em +

L2M1 − L1M2

M2
1

e2
m + o(e3

m),

=α + (
L1

M1
+ 1)em + o(e2

m),

=α + C0em + o(e2
m),

(15)

where the symbol C0 is the coefficient of the first order error em of Equation (15). The result implies the
iterative Equations (2) or (3) is of first order convergence.

Now, we try to interpret that Equations (2) or (3) do not depend on the initial value.
Our proof method absorbs the idea of references [43,44]. Without loss of generality, we only prove

that convergence of Equations (2) or (3) does not depend on the initial value in two-dimensional case.
As to convergence of Equations (2) or (3) not being dependent on the initial value in general
n-dimensional Euclidean space case, it is completely equivalent to the two-dimensional case.

Mathematics 2018, 6, 306 6 of 23

Firstly, we interpret Figure 1. For a horizontal axis t, there are two points are on the planar
parametric curve c(t). For the first point c(tm) on the horizontal axis, the test point p orthogonal
projects it onto the planar parametric curve c(t) and yields the second point and its corresponding
parameter value α on the horizontal axis. Then, by the iterative methods (2) or (3), the line segment
connected by the point p and the point c(α) is perpendicular to the tangent line of the planar parametric
curve c(t) at t = α. The footpoint q is determined by the tangent line of the planar parametric curve
c(t) through the point c(tm). Evidently, the parametric value tm+1 of footpoint q can be used as the
next iterative value. M is the corresponding parametric value of the middle point of the point c(tm)

and the footpoint q.

c()

c(t)
m

t
m

c(t)

t
m+1

Figure 1. Geometric illustration for convergence analysis.

Secondly, we prove the argument whose convergence of Equations (2) or (3) does not depend on
the initial value. It is easy to know that t denotes the corresponding parameter for the first dimensional
of the planar parametric curve on the two-dimensional plane. When the iterative Equations (2)
or (3) start to run, we suppose that the iterative parameter value is satisfied with the inequality
relationship tm < α and the corresponding parameter of the footpoint q is tm+1, as shown in Figure 1.

The middle point of two points (tm+1, 0) and (tm, 0) is (M, 0), i.e., M =
tm + tm+1

2
, and, because of

0 < ∆t = tm+1 − tm, then there exists an inequality tm < M < α. Equivalently, tm − α < tm+1 − α <

α − tm = −(tm − α), which can be expressed as |em+1| < |em|, where em = tm − α. If tm > α, we
can get the same result through the same method. Thus, an iterative error expression |em+1| < |em|
in a two-dimensional plane is demonstrated. Thus, it is known that convergence of the iterative
Equations (2) or (3) does not depend on the initial value in two-dimensional planes (see Figure 1).
Furthermore, we could get the argument that convergence of the iterative Equations (2) or (3) does not
depend on the initial value in an n-dimensional Euclidean space. The proof is completed.

3. The Improved Algorithm

3.1. Counterexamples

In Section 2, convergence of the H-H-H method does not depend on the initial value. For special
cases with non-convergence by the H-H-H method, we then enumerate nine counterexamples.

Mathematics 2018, 6, 306 7 of 23

Counterexample 1. There are a parametric curve c(t) = (t, 1 + t2) and a test point p = (0, 0).
The projection point and parametric value of the test point p are (0, 1) and α = 0, respectively.
As to many initial values, the H-H-H method fails to converge to α. When the initial values are t
= −3,−2,−1.5, 1.5, 2, 3, respectively, there repeatedly appear alternating oscillatory iteration values of
0.412415429665, −0.412415429665. Furthermore, for a parametric curve c(t) = (t, 1 + a1t2 + a2t4 + a3t6 +

a4t8 + a5t10), a1 6= 0, a2 6= 0, a3 6= 0, a4 6= 0, a5 6= 0, about p = (0, 0) and many initial values, the H-H-H
method fails to converge to α (see Figure 2).

Figure 2. Geometric illustration for counterexample 1.

Counterexample 2. There are a parametric curve c(t) = (t, t2, t4, t6, 1 + t2 + t4 + t6 + t8) and
a test point p = (0, 0, 0, 0, 0). The projection point and parametric value of the test point p are
(0, 0, 0, 0, 1) and α = 0, respectively. For any initial value, the H-H-H method fails to converge to
α. When the initial values are t = −5,−4,−3,−2,−1, 1, 2, 3, 4, 5, respectively, there repeatedly
appear alternating oscillatory iteration values of 0.304949569175, −0.304949569175. Furthermore,
for a parametric curve c(t) = (a0t, a1t2,a2t4,a3t6,1 + a4t2 + a5t4 + a6t6 + a7t8 + a8t10 + a9t28),
a0 6= 0, a1 6= 0, a2 6= 0, a3 6= 0, a4 6= 0, a5 6= 0, a6 6= 0, a7 6= 0, a8 6= 0, a9 6= 0, about point p = (0, 0, 0, 0, 0)
and any initial value, the H-H-H method fails to converge to α.

Counterexample 3. There are a parametric curve c(t) = (t, sin(t)), t ∈ [0, 3] and a test point
p = (4, 9). The projection point and parametric value of the test point p are (1.842576, 0.9632946) and
α = 1.842576, respectively. For point p and any initial value, the H-H-H method fails to converge to α.
When the initial values are t = −5,−4,−3,−2,−1, 1, 2, 3, 4, 5, respectively, there repeatedly appear alternating
oscillatory iteration values of 2.165320, 0.0778704, 6.505971, 9.609789. In addition, for a parametric curve
c(t) = (t, sin(at)), a 6= 0, for any test point p and any initial value, the H-H-H method fails to converge to α

(see Figure 3).

Mathematics 2018, 6, 306 8 of 23

Figure 3. Geometric illustration of counterexample 3.

Counterexample 4. There are a parametric curve c(t) = (t, cos(t)), t ∈ [0, 3] and a test point p = (2, 6).
The projection point and parametric value of the test point p are (0.3354892, 0.9442493) and α = 0.3354892,
respectively. For test point p and any initial value, the H-H-H method fails to converge to α. When the initial
value is t = −5, alternating oscillatory iteration values of 5.18741299662, 3.59425803253, −0.507188248308,
1.6901041247, 3.82746208506 repeatedly appear. When the initial value is t = 2, very irregular oscillatory
iteration values of 0.652526561595, −0.720371663877, −2.39555359952, 0.365881194752, 2.06880954777,
3.18725085474, 1.71447110647, etc. appear In addition, for a parametric curve c(t) = (t, cos(at)), a 6= 0,
for any test point p and any initial value, the H-H-H method fails to converge to α (see Figure 4).

Figure 4. Geometric illustration of counterexample 4.

Mathematics 2018, 6, 306 9 of 23

Counterexample 5. There are a parametric curve c(t) = (t, t, t, t, sin(t)), t ∈ [6, 9] and a test point
p = (3, 5, 7, 9, 11). The projection point and parametric value of the test point p are (7.310786, 7.310786,
7.310786, 7.310786, 0.8560612) and α = 7.310786, respectively. For point p and any initial value, the H-H-H
method fails to converge to α. When the initial values are t = −9,−7,−5, 6, 8, respectively, there repeatedly
appear alternating oscillatory iteration values of 7.24999006346, 6.37363460615. In addition, for a parametric
curve c(t) = (t, t, t, t, sin(at)), t ∈ [6, 9], a 6= 0 with a test point p = (3, 5, 7, 9, 11), for any initial value,
the H-H-H method fails to converge to α.

Counterexample 6. There are a parametric curve c(t) = (t, t, t, t, cos(t)), t ∈ [4, 8] and a test
point p = (2, 4, 6, 8, 10). The projection point and parametric value of the test point p are (5.883406,
5.883406, 5.883406, 5.883406, 0.9211469) and α = 5.883406, respectively. For point p and any initial value,
the H-H-H method fails to converge to α. When the initial values are t =,−4,−3,−2, 4, 5, 6, 7, respectively,
there repeatedly appear alternating oscillatory iteration values of 4.17182145828, 7.80116702003. In addition,
about a parametric curve c(t) = (t, t, t, t, cos(at)), t ∈ [4, 8], a 6= 0 with a point p = (2, 4, 6, 8, 10), for any
initial value, the H-H-H method fails to converge. The non-convergence explanation of the three counterexamples
below are similar to the preceding six ones and omitted to save space.

Counterexample 7. There are a parametric curve c(t) = (t4 + 2t2 + 1, t2 + 1, t4 + 2, t2, 3t6 + t4 + 2t2)

in five-dimensional Euclidean space and a test point p = (0, 0, 0, 0, 0). The projection point and parametric
value of the test point p are (1, 1, 2, 0, 0) and α = 0, respectively. For any initial value t0, the H-H-H method
fails to converge. We also test many other examples, such as when parametric curve is completely symmetrical
and the point is on the symmetrical axis of parametric curve. For any initial value t0, the same results remain.

Counterexample 8. There are a parametric curve c(t) = (t,sin(t), t,sin(t),sin(t)), t ∈ [−5, 5] in
five-dimensional Euclidean space and a test point p = (3, 4, 5, 6, 7). The corresponding orthogonal projection
parametric value α are −3.493548, −2.280571, 1.875969, 4.791677, respectively. For any initial value t0,
the H-H-H method fails to converge.

Counterexample 9. There is a parametric curve c(t) =(sin(t),cos(t), t, sin(t),cos(t)), t ∈ [−5, 5]
in five-dimensional Euclidean space and a test point p = (3, 4, 5, 6, 7). The corresponding orthogonal projection
parametric value α are −4.833375, −3.058735, 0.9730030, 3.738442, respectively. For any initial value t0,
the H-H-H method fails to converge.

3.2. The Improved Algorithm

Due to the H-H-H method’s non-convergence for some special cases, the improved algorithm
is presented to ensure the converge for any parametric curve, test point and initial value. The most
classic Newton’s method can be expressed as

tm+1 = tm −
f (tm)

f ′(tm)
, (16)

where f (t) =< T1, V1 >= 0, T1 = c′(t), V1 = p− c(t). It converges faster than the H-H-H method.
However, the convergence of this depends on the chosen initial value. Only when the local convergence
condition for the Newton’s method is satisfied, the method can acquire high effectiveness. In order
to improve the robustness and rate of convergence, based on the the H-H-H method, our method is
proposed. Combining the respective advantage of their two methods, if the iterative parametric value
of the H-H-H method is satisfied with the convergence condition of the Newton’s method, we then go
to the method to increase the convergence process. Otherwise, we continue the H-H-H method until it
can generate iterative parametric value while satisfying the convergence condition by the Newton’s
method, and we then go to the iterative process mentioned above. Thus, we run to the end of the
whole process. The procedure not only ensures the robustness of convergence, but also improves the

Mathematics 2018, 6, 306 10 of 23

convergence rate. Using a hybrid strategy, our method is faster than current methods and independent
from the initial value. Some numerical examples verify our conclusion. Our method can be realized as
follows (see Figure 5).

c t() t
m + 1

tmtm

p

q

(a)
0-1 1

K (t)1 m

()
T

(b)

tm
tm+1tm+2

v=f(t)

t

v

α

(c)

Figure 5. Geometric illustration for our method. (a) Running the H-H-H method; (b) Judging the
H-H-H method whether being satisfied the convergence condition of fixed point theorem for the
Newton’s iterative method; (c) Running the Newton’s iterative method.

Hybrid second order method
Input: Initial iterative value t0, test point p and parametric curve c(t) in an n-dimensional
Euclidean space.
Output: The corresponding parameter α determined by orthogonal projection point.
Step 1. Initial iterative parametric value t0 is input.
Step 2. Using the iterative Equation (3), calculate the parametric value K1(t0), and update K1(t0) to t1,

namely, t1 = K1(t0).
Step 3. Determine whether absolute value of difference between the current t0 and the new t1 is near 0.

If so, this algorithm is ended.
Step 4. Substitute the new t1 into

∣∣∣ f (t) f ′′(t)
f ′(t)2

∣∣∣, determine if
∣∣∣ f (t1) f ′′(t1)

f ′(t1)2

∣∣∣ < 1.

If (
∣∣∣ f (t1) f ′′(t1)

f ′(t1)2

∣∣∣ < 1) {

Using Newton’s iterative Equation (16), compute t0 = t1 − f (t1)
f ′(t1)

until absolute value of
difference between the current t1 and the new t0 is near 0; then, this algorithm ends.
}
Else {

turn to Step 2.
}

Remark 1. Firstly, a geometric illustration of our method in Figure 5 would be presented. Figure 5a illustrates
the second step of our method where the next iterative parameter value tm+1 = K1(tm) = tm + 〈c′(tm),p−c(tm)〉

〈c′(tm),c′(tm)〉
is determined by the iterative Equation (3). During the iterative process, the step ∆t will become smaller and
smaller. Thus, the next iterative parameter value tm+1 comes close to parameter value tm but far from the
footpoint q. If the third step of our method is not over, then our method goes into the fourth step. Figure 5b
is judging condition of a fixed point theorem of the fourth step of our method. If T =

∣∣∣ f (t) f ′′(t)
f ′(t)2

∣∣∣ < 1, then it
turns to the Newton’s method in Figure 5c until it runs to the end of the whole process of Newton’s second order
iteration; otherwise, it goes to the second step in Figure 5a.

Secondly, we give an interpretation for the singularity case of the iterative Equation (16). As to some
special cases where the H-H-H method is not convergent in Section 3.1, our method still converges. We test
many examples for arbitrary initial value, arbitrary test point and arbitrary parametric curve and find that our
method remains more robust to converge than the H-H-H method. If the first order derivative f ′(tm) of the
iterative Equation (16) develops into 0, i.e., f ′(tm) = 0 about some non-negative integer m, we use a perturbed
method to solve the special problem, which adopts the idea in [23,45]. Namely, the function f ′(tm) = 0 could be

Mathematics 2018, 6, 306 11 of 23

increased by a very small positive number ε, i.e., f ′(tm) = f ′(tm) + ε, and then the iteration by Equation (16)
is continued in order to calculate the parameter value. On the other hand, if the curve can be parametrized by
a (piece-wise) polynomial, then the fast root-finding schemes such as Bézier clipping [28,29] are efficient ones.
The only issue is the C1 discontinuities that can be checked in a post-process. One then does not need any initial
guess on the parameter value.

Thirdly, if the curve is only C0 continuous, and the closest point can be exactly such a point, then the
derivative is not well defined and our method may fail to find such a point. Namely, there are singular points
on the parametric curve. We adopt the following technique to solve the problem of singularity. We use the
methods [46–48] to find all singular points on the parametric curve and the corresponding parametric value of
each singular point as many as possible. Then, the hybrid second order method comes into work. If the current
iterative parametric value tm is the corresponding parametric value of a singular point, we make a very small
perturbation ε to the current iterative parametric value tm, i.e., tm = tm + ε. The purpose of this behavior is to
enable the hybrid second order method to run normally. Then, from all candidate points (singular points and
orthogonal projection points), a corresponding point is selected so that the distance between the corresponding
point and the test point is the minimum one. When the entire program terminates, the minimum distance and its
corresponding parameter value are found.

3.3. Convergence Analysis of the Improved Algorithm

In this subsection, we prove the convergence analysis of our method.

Theorem 2. In Reference [49] (Fixed Point Theorem)
If φ(x) ∈ C[c, d], φ(x) ∈ [c, d] for all x ∈ [c, d]; furthermore, if φ′(x) exists on (c, d) and a positive

constant L < 1 exists with |φ′(x)| ≤ L for all x ∈ (c, d), then there exists exactly one fixed point in [c, d].

In addition, if φ(t) = t− f (t)
f ′(t)

, the corresponding fixed point theorem of Newton’s method is

as follows:

Theorem 3. Let f : [c, d]→ [c, d] be a differentiable function, if for all t ∈ [c, d], there is∣∣∣∣ f (t) f ′′(t)
f ′2(t)

∣∣∣∣ < 1. (17)

Then, there is a fixed point l0 ∈ [c, d] in Newton’s iteration expression (16) such that

l0 = l0 −
f (l0)
f ′(l0)

. Meanwhile, the iteration sequence {tm} been from expression (16) can converge to

the fixed point when ∀t0 ∈ [c, d].

Theorem 4. Our method is second order convergent.

Proof: Let α be a simple zero for a nonlinear function f (t) =< T1, V1 >= 0, where T1 = c′(t), V1 =

p− c(t). Using Taylor’s expansion, we have

f (tm) = f ′(α)[em + b2e2
m + b3e3

m + o(e4
m)], (18)

f ′(tm) = f ′(α)[2b2em + 3b3e2
m + o(e3

m)], (19)

where bk =
f (k)(α)
k! f ′(α)

, k = 2, 3, . . . , and em = tm − α. Combining with (15), we then have

ym = φ(tm) = tm −
f (tm)

f ′(tm)
= α + b2C2

0e2
m + o(e3

m). (20)

Mathematics 2018, 6, 306 12 of 23

This means that the convergence order of our method is 2. The proof is completed. �

Theorem 5. Convergence of our method does not depend on the initial value.

Proof. According to the description of our method, if the iterative parametric value of the H-H-H
method is satisfied with the convergence condition of the Newton’s method, we then go to the
Newton’s method. Otherwise, we steadily adopt the H-H-H method until its iterative parametric
value is satisfied with the convergence condition of the Newton’s method, and we go to Newton’s
method. Then, we run to the end of the whole process. Theorem 1 ensures that it does not depend on
the initial value. If our method goes to the fourth step and if it is appropriate to the condition of the
fixed point theorem (Theorem 3), Newton’s method is realized by our method. Then, the fourth step
of our method being also independent of the initial value can be confirmed by Theorem 3. In brief,
convergence of our method does not depend on the initial value via the whole algorithm execution
process. The proof is completed.

4. Numerical Experiments

In order to illustrate the superiority of our method to other algorithms, we provide five numerical
examples to confirm its robustness and high efficiency. From Tables 1–14, the iterative termination
criteria is satisfied such that |tm − α| < 10−17and |tm+1 − tn| < 10−17. All numerical results were
computed through g++ in a Fedora Linux 8 environment. The approximate zero α reached up to
the 17th decimal place is reflected. These results of our five examples are obtained from computer
hardware configuration with T2080 1.73 GHz CPU and 2.5 GB memory.

Example 1. There is a parametric curve c(t) = (f1(t), f2(t), f3(t)) = (6t7 + t5, 5t8 + 3t6, 10t12 + 8t8 +

6t6 + 4t4 + 2t2 + 3), t ∈ [−2, 2] in three-dimensional Euclidean space and a test point p = (p1, p2, p3) =

(2.0, 4.0, 2.0). Using our method, the corresponding orthogonal projection parametric value is α = 0.0, the initial
values t0 are 0,2,4,5,6,8,9,10, respectively. For each initial value, the iteration process runs 10 times and then
10 different iteration times in nanoseconds, respectively. In Table 1, the average run time of our method for eight
different initial values are 536,142, 77,622, 101,481, 119,165, 126,502, 142,393, 150,801, 156,413 nanoseconds,
respectively. Finally, the overall average running time is 176,315 nanoseconds (see Figure 6). If test point
p is (2.0, 2.0, 2.0), the corresponding orthogonal projection parametric value is α = 0.0, we replicate the
procedure using our method and report the results in Table 2. In Table 2, the average running time of our
method for 8 different initial values are 627,996, 89,992, 119,241, 139,036, 148,269, 167,364, 167,364, 178,554
nanoseconds, respectively. Finally, the overall average running time is 205,228 nanoseconds (see Figure 7).
However, for the above two cases, the H-H-H method does not converge for any initial iterative value.

Because of a singular point on the parametric curve, we have also added some pre-processing steps
before our method. (1) Find the singular point (0,0,3) and the corresponding parametric value 0 by using
the methods [21,46–48]. (2) Using our method, the orthogonal projection points of test points (2,4,2) and
(2,2,2) and their corresponding parameter values 0 and 0 are calculated, respectively. (3) From all candidate
points(singular point and orthogonal projection point), corresponding point is selected so that the distance
between the corresponding point and the test point is the minimum one. In Figure 6, the blue point denotes
singular point (0,0,3), which is also the orthogonal projecting point of the test point (2,4,2). This is the same for
the blue point in Figure 7.

Mathematics 2018, 6, 306 13 of 23

Table 1. Running time for different initial values of Example 1 by our method with test point p = (2.0,
4.0, 2.0).

t0 0 2 4 5 6 8 9 10

α 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 498,454 75,487 105,563 116,470 123,031 134,941 154,253 156,872
2 555,709 81,629 108,064 117,762 125,946 140,940 153,468 155,830
3 509,173 82,824 100,744 111,206 134,367 141,705 150,013 158,715
4 564,222 77,465 96,721 114,757 129,128 173,027 150,320 158,580
5 502,986 81,028 97,142 118,535 120,668 132,856 155,335 149,437
6 553,198 79,520 104,307 120,795 129,351 150,085 151,073 143,065
7 576,814 74,268 100,231 115,002 132,322 139,919 154,754 159,014
8 524,848 81,982 99,604 115,263 122,401 139,345 143,568 175,169
9 528,848 71,228 103,186 140,023 122,040 135,006 145,434 154,016
10 547,161 70,789 99,247 121,834 125,766 136,103 149,790 153,435
Average 536,142 77,622 101,481 119,165 126,502 142,393 150,801 156,413

Total Average 176,315

Table 2. Running time for different initial values of Example 1 by our method with test point p = (2.0,
2.0, 2.0).

t0 0 2 4 5 6 8 9 10

α 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 595,515 92,371 119,904 135,660 148,751 162,758 171,535 177,355
2 648,825 91,746 119,348 135,284 148,531 162,541 171,333 176,431
3 595,772 91,633 119,248 135,322 148,222 162,240 171,095 176,501
4 648,472 91,565 119,139 135,355 148,165 191,884 171,366 176,395
5 595,856 91,556 119,168 135,406 148,144 162,224 171,417 176,507
6 648,305 91,532 119,018 135,316 148,169 183,342 171,413 176,473
7 647,406 91,587 119,069 135,283 148,197 162,291 171,282 176,397
8 595,423 91,617 119,247 135,140 14,8101 162,116 171,342 196,529
9 646,551 83,167 119,135 172,412 148,149 162,148 171,313 176,390
10 657,838 83,147 119,131 135,179 148,259 162,094 171,609 176,557
Average 627,996 89,992 119,241 139,036 148,269 167,364 171,371 178,554

Total Average 205,228

Figure 6. Geometric illustration for the test point p = (2.0, 4.0, 2.0) of Example 1.

Mathematics 2018, 6, 306 14 of 23

Figure 7. Geometric illustration for the test point p = (2.0, 2.0, 2.0) of Example 1.

Example 2. There is a spatial quartic quasi-rational Bézier curve c(t) = (f1(t), f2(t), f3(t)) =

(
u(t)
a(t)

,
v(t)
a(t)

,
w(t)
a(t)

), where u(t) = 2t4 + 3t3 + 3t2 + 12t + 1, v(t) = 4t4 + 3t3 + 7t2 + 7t + 21, w(t) =

5t4 + t3 + 9t2 + 11t + 13, a(t) = 4t4 + 8t3 + 17t2 + 15t + 6, t ∈ [−2, 2] and a test point p = (p1, p2, p3) =

(1.0, 3.0, 5.0). The corresponding orthogonal projection parametric value α are −1.4118250062741212,
−0.61917136491841674, −0.059335038305820650, 1.8493434997820080, respectively. Using our method,
the initial values t0 are −2.4,−2.1,−2.0,−1.8,−1.6,−1.2,−1.0,−0.8, respectively. For each initial value, the
iteration process runs 10 times and then 10 different iteration times in nanoseconds, respectively. From Table 3,
the average running time of our method for eight different initial values are 85,344, 93,936, 79,424, 62,643,
54,482, 22,982, 25,654, 26,868 nanoseconds, respectively. Finally, the overall average running time is 56,417
nanoseconds (see Figure 8). If test point p is (2.0, 4.0, 8.0), the corresponding orthogonal projection parametric
value α are −1.2589948653798823, −0.62724968160147096,−0.14597283439336865, 1.8584532894110559,
respectively. We firstly replicate the procedure using our method and report the results in Table 4. From Table 4,
the average running time of our method for eight different initial iterative values are 101,436, 109,001, 95,061,
77,563, 62,366, 27,054, 29,587, 32,501 nanoseconds, respectively. Finally, the overall average running time
is 66,821 nanoseconds (see Figure 9). We then replicate the procedure using the algorithm [26] and report the
results in Table 5. From Table 5, the average running time of the algorithm [26] for eight different initial values
are 619,772, 654,281, 584,653, 467,856, 384,393, 163,225, 183,257, 195,013 nanoseconds, respectively. Finally,
the overall average running time is 406,556 nanoseconds. However, for the above two cases, the H-H-H method
does not converge for any initial value.

Mathematics 2018, 6, 306 15 of 23

Table 3. Running time for different initial values of Example 2 by our method with test point p = (1.0,
3.0, 5.0).

t0 −2.4 −2.1 −2 −1.8 −1.6 −1.2 −1 −0.8

α −1.4118 0.61917 −1.4118 0.61917 −0.059 −0.059 1.84934 1.84934
1 88,695 90,501 75,137 68,499 52,014 24,731 26,295 28,444
2 89,958 91,254 79,411 64,563 54,321 22,014 26,278 28,024
3 83,956 95,063 79,553 63,237 54,683 22,733 24,813 28,760
4 83,623 96,033 82,022 68,075 51,098 23,270 24,573 26,707
5 83,368 95,700 76,197 63,518 51,752 22,321 24,644 26,586
6 83,631 97,303 80,984 62,608 53,473 21,658 24,009 28,209
7 87,286 94,655 78,483 66,844 52,277 23,502 25,554 28,725
8 87,150 96,316 79,215 64,333 51,554 23,217 26,234 28,295
9 86,300 89,399 94,487 66,665 50,279 23,190 25,791 26,160
10 89,761 96,377 82,362 64,371 50,367 22,332 23,929 27,273
Average 85,344 93,936 79,424 62,643 54,482 22,982 25,654 26,868

Total Average 56,417

Table 4. Running time for different initial values of Example 2 by our method with test point p = (2.0,
4.0, 8.0).

t0 −2.4 −−2.1 −−2 −1.8 −1.6 −1.2 −1 −0.8

α −0.6272 −0.1459 −0.6272 −1.2589 −0.1459 1.858 −1.2589 1.858
1 101,366 109,667 92,799 77,983 62,865 29,460 29,755 32,649
2 102,027 108,844 92,709 77,477 62,269 27,177 29,555 32,458
3 101,526 109,010 92,709 77,587 62,284 26,885 29,619 32,538
4 101,266 108,909 92,724 77,441 62,374 26,785 29,557 32,478
5 101,346 108,944 92,714 77,386 62,214 26,691 29,559 32,505
6 101,315 108,990 92,764 77,557 62,334 26,731 29,564 32,497
7 101,415 108,834 92,614 77,582 62,415 26,720 29,573 32,512
8 101,306 108,945 92,528 77,461 62,309 26,715 29,548 32,493
9 101,562 108,954 116,107 77,542 62,284 26,684 29,549 32,429
10 101,235 108,910 92,939 77,616 62,314 26,690 29,595 32,451
Average 101,436 109,001 95,061 77,563 62,366 27,054 29,587 32,501

Total Average 66,821

Table 5. Running time for different initial values of Example 2 by the algorithm [26].

t0 −2.4 −2.1 −2.0 −1.8 −1.6 −1.2 −1.0 −0.8

α −0.6272 −0.1459 −0.6272 −1.2589 −0.1459 1.858 −1.2589 1.858
1 633,173 660,734 566,675 470,236 391,687 171,352 175,965 198,543
2 597,065 628,741 565,012 485,368 367,539 161,649 185,457 197,798
3 652,494 675,268 600,951 463,899 396,359 163,879 188,682 187,128
4 649,281 653,066 573,597 460,967 385,325 156,876 182,979 195,214
5 622,109 687,282 568,766 472,217 402,669 170,876 189,508 202,540
6 633,737 627,667 562,864 490,735 374,340 165,445 175,457 191,037
7 584,705 637,608 563,523 468,230 395,411 163,631 175,676 187,539
8 607,439 693,001 585,948 449,706 400,728 161,467 189,216 187,433
9 637,036 639,359 671,613 444,834 359,918 157,235 188,119 195,867
10 580,678 640,082 587,577 472,368 369,954 159,834 181,510 207,033
Average 619,772 654,281 584,653 467,856 384,393 163,225 183,257 195,013

Total Average 406,556

Mathematics 2018, 6, 306 16 of 23

Figure 8. Geometric illustration for the first case of Example 2.

Figure 9. Geometric illustration for the second case of Example 2.

Example 3. There is a parametric curve c(t) = (f1(t), f2(t), f3(t), f4(t), f5(t)) =

(cos(t), sin(t), t, cos(t), sin(t)), t ∈ [−2, 2] in five-dimensional Euclidean space and a test point
p = (p1, p2, p3, p4, p5) = (3.0, 4.0, 5.0, 6.0, 7.0). Using our method, the corresponding orthogonal
projection parametric value is α = 1.1587403612284800, the initial values t0 are −10,−8,−6,−4, 4, 8, 12, 16,
respectively. For each initial value, the iteration process runs 10 times and then 10 different iteration times
in nanoseconds, respectively. In Table 6, the average running time of our method for eight different initial
values are 391,013, 424,444, 391,092, 249,376, 115,617, 170,212, 179,465, 196,912 nanoseconds, respectively.
Finally, the overall average running time is 264,766 nanoseconds. If test point p is (30.0, 40.0, 50.0, 60.0, 70.0),
the corresponding orthogonal projection parametric value α is 1.2352898417860202. We then replicate the
procedure using our method and report the results in Table 7. In Table 7, the average running time of our method
for eight different initial values are 577, 707, 485, 417, 460, 913, 289, 232, 133, 661, 199, 470, 211, 915, 229, 398
nanoseconds, respectively. Finally, the overall average running time is 323,464 nanoseconds. However, for the
above parametric curve and many test points, the H-H-H method does not converge for any initial value.

Mathematics 2018, 6, 306 17 of 23

Table 6. Running time for different initial values of Example 3 by our method with test point p = (3, 4,
5, 6, 7).

t0 −10 −8 −6 −4 4 8 12 16

α 1.15874 1.15874 1.15874 1.15874 1.15874 1.15874 1.15874 1.15874
1 407,427 425,388 387,337 306,115 110,887 161,079 187,144 184,119
2 417,729 446,171 398,801 341,895 121,148 169,115 169,954 194,671
3 420,894 390,507 383,308 260,183 115,033 165,103 171,989 198,884
4 383,836 421,365 427,391 242,641 109,521 161,121 179,152 195,714
5 373,696 421,551 373,171 266,584 120,844 187,930 179,184 186,309
6 374,791 445,114 373,974 242,889 119,449 183,082 180,269 201,487
7 381,353 408,011 402,073 216,762 109,054 162,402 172,013 188,206
8 398,662 442,008 373,328 194,821 119,236 192,990 180,472 197,299
9 364,491 417,139 396,843 230,070 110,243 164,273 204,410 196,163
10 387,246 427,188 394,694 191,799 120,759 155,029 170,059 226,270
Average 391,013 424,444 391,092 249,376 115,617 170,212 179,465 196,912

Total Average 264,766

Table 7. Running time for different initial values of Example 3 by our method with test point p = (30,
40, 50, 60, 70).

t0 −10 −8 −6 −4 4 8 12 16

α 1.235289 1.235289 1.235289 1.235289 1.235289 1.235289 1.235289 1.235289
1 1,190,730 475,499 453,879 369,551 133,651 191,093 208,202 223,695
2 1,031,760 500,975 486,534 380,881 133,638 190,959 208,490 236,637
3 482,018 475,395 450,480 297,272 133,674 199,528 208,292 223,312
4 428,081 475,588 475,100 277,356 133,635 186,919 208,438 223,802
5 455,282 475,033 448,776 296,510 133,535 220,570 208,139 223,471
6 428,321 499,776 448,617 277,353 133,590 220,625 208,046 223,213
7 428,246 474,978 474,667 247,245 133,620 192,326 208,101 230,791
8 453,374 502,500 448,503 235,415 133,594 220,635 208,087 223,183
9 426,949 474,816 474,167 275,526 133,546 198,204 245,226 223,213
10 452,306 499,605 448,409 235,207 134,128 173,843 208,127 262,661
Average 577,707 485,417 460,913 289,232 133,661 199,470 211,915 229,398

Total Average 323,464

Example 4. (Reference to [6]) There is a parametric curve c(t) = (f1(t), f2(t)) = (t2, sin(t)), t ∈
[−3, 3] in two-dimensional Euclidean space and a test point p = (p1, p2) = (1.0, 2.0). The corresponding
orthogonal projection parametric value is α = 1.1063055095030472. Using our method, the initial values t0 are
−100,−4, 5, 7, 8, 10, 11, 100, respectively. For each initial value, the iteration process runs 10 times and then
10 different iteration times in nanoseconds, respectively. In Table 8, the average running time of our method
for eight different initial iterative values are 62,816, 35,042, 27,648, 43,122, 21,625, 38,654, 21,518, 72,917
nanoseconds, respectively. Finally, the overall average running time is 40,418 nanoseconds (see Figure 10).
Implementing the same procedure, the overall average running time given by the H-H-H method is 231,613
nanoseconds in Table 9, while the overall average running time given by the second order method [6] is 847,853
nanoseconds in Table 10. Thus, our method is faster than the H-H-H method [38–40] and the second order
method [6].

Figure 10. Geometric illustration for Example 4.

Mathematics 2018, 6, 306 18 of 23

Table 8. Running time for different initial values of Example 4 by our method.

t0 −100 −4 5 7 8 10 11 100

α 1.106305 1.106305 1.106305 1.106305 1.106305 1.106305 1.106305 1.106305
1 63,345 35,580 27,069 41,551 22,304 36,858 21,478 72,257
2 63,192 36,203 28,160 41,733 20,042 38,680 20,338 71,620
3 61,306 33,833 27,400 44,198 23,078 37,704 23,757 73,108
4 66,627 34,502 26,014 44,160 21,147 39,374 22,530 70,154
5 62,583 35,053 29,275 42,800 20,817 39,339 23,046 73,189
6 63,957 34,398 25,650 42,282 22,184 37,376 20,070 75,872
7 60,865 35,929 28,944 42,134 19,964 40,078 21,943 71,608
8 63,522 35,427 27,578 41,688 23,650 39,456 21,076 76,283
9 60,551 35,508 28,563 44,542 20,280 38,463 20,596 71,781
10 62,216 33,987 27,830 46,130 22,781 39,209 20,349 73,296
Average 62,816 35,042 27,648 43,122 21,625 38,654 21,518 72,917

Total Average 40,418

Table 9. Running time for different initial values of Example 4 by the H-H-H method.

t0 −100 −4 5 7 8 10 11 100

α 1.106305 1.106305 1.106305 1.106305 1.106305 1.106305 1.106305 1.106305
1 424,579 357,276 443,858 179,583 176,984 175,859 175,249 178,445
2 425,680 358,510 179,137 177,849 182,701 176,665 176,463 207,164
3 359,794 356,912 180,000 180,472 177,867 179,743 178,929 179,372
4 371,119 357,214 179,567 179,804 184,542 177,675 177,854 179,651
5 358,128 358,119 232,337 179,285 179,113 175,632 177,690 181,976
6 358,470 357,893 179,985 179,941 178,600 178,289 178,565 181,868
7 358,083 359,391 178,815 177,857 177,613 178,014 177,385 179,361
8 477,393 357,011 178,029 179,525 175,684 176,000 175,413 180,966
9 356,254 359,356 176,148 178,581 176,351 177,024 185,103 180,013
10 356,801 359,773 213,327 177,252 176,993 178,060 177,655 181,427
Average 384,630 358,146 214,120 179,015 178,645 177,296 178,031 183,024

Total Average 231,613

Table 10. Running time for different initial values of Example 4 by the Algorithm [6].

t0 −100 −4 5 7 8 10 11 100

α 1.106305 1.106305 1.106305 1.106305 1.106305 1.106305 1.106305 1.106305
1 681,353 107,102 119,083 120,328 122,504 115,181 113,566 542,116
2 725,571 124,514 136,810 121,111 116,824 111,116 117,466 5,250,481
3 669,249 111,052 122,151 125,261 124,865 116,105 120,309 5,523,805
4 713,982 112,146 131,494 118,104 121,099 111,410 118,658 5,407,166
5 699,433 111,347 118,830 121,003 118,694 115,182 124,917 5,259,412
6 693,396 113,323 116,046 109,176 108,194 111,420 117,342 5,508,049
7 691,375 114,667 115,748 123,330 127,812 118,635 119,208 5,348,517
8 663,125 107,484 127,493 120,134 116,818 111,717 117,079 5,446,703
9 731,148 128,918 122,897 120,947 120,985 113,777 125,463 5,251,580
10 676,286 128,567 130,775 118,031 116,725 111,095 108,275 5,356,125
Average 694,492 115,912 124,133 119,743 119,452 113,564 118,228 5,377,300

Total Average 847,853

Example 5. (Reference to [6]) There is a parametric curve c(t) = (f1(t), f2(t)) = (t, sin(t)), t ∈ [−3, 3]
in two-dimensional Euclidean space and a test point p = (p1, p2) = (1.0, 2.0), the corresponding orthogonal
projection parametric value is α = 1.2890239979093887. Using our method, the initial values t0 are
−100,−4, 5, 7, 8, 10, 11, 100, respectively. For each initial value, the iteration process runs 10 times and
then 10 different iteration time in nanoseconds, respectively. In Table 11, the average running time of our
method for eight different initial values are 50, 579, 28, 238, 22, 687, 34, 974,17, 781, 31, 186, 17, 210, 59, 116
nanoseconds, respectively. Finally, the overall average running time is 32,721 nanoseconds (see Figure 11).
We then replicate the procedure using the second order method [6] and report the results in Table 12. In Table 12,
the average running time of the second order method [6] for 8 different initial values are 320, 035,182, 451,
147, 031, 235, 779, 112, 090, 200, 431, 113, 284, 369, 294 nanoseconds, respectively. Finally, the overall average

Mathematics 2018, 6, 306 19 of 23

running time is 210,049 nanoseconds. In addition, we compare the iterations by different methods where the NC
denotes non-convergence in Table 13.

Table 11. Running time for different initial values of Example 5 by our method.

t0 −100 −4 5 7 8 10 11 100

α 1.28902 1.28902 1.28902 1.28902 1.28902 1.28902 1.28902 1.28902
1 52,010 27,426 21,791 33,323 18,399 29,551 16,486 58,995
2 50,335 29,269 23,949 32,810 15,820 30,342 16,066 58,080
3 49,047 26,841 23,061 37,063 19,611 31,569 19,756 57,458
4 52,651 29,124 21,403 33,838 17,472 33,295 18,583 54,566
5 49,871 29,814 25,062 35,870 16,655 32,949 18,304 61,860
6 53,651 28,678 19,550 35,731 18,373 31,429 16,342 59,570
7 47,275 28,115 24,177 35,456 16,933 30,510 18,010 59,042
8 49,982 27,896 22,639 34,292 19,927 30,959 16,449 63,652
9 49,704 29,359 22,502 34,164 17,274 30,391 16,044 61,373
10 51,268 25,859 22,736 37,190 17,342 30,864 16,060 56,564
Average 50,579 28,238 22,687 34,974 17,781 31,186 17,210 59,116

Total Average 32,721

Table 12. Running time for different initial values of Example 5 by the Algorithm [6].

t0 −100 −4 5 7 8 10 11 100

α 1.28902 1.28902 1.28902 1.28902 1.28902 1.28902 1.28902 1.28902
1 308,942 191,002 152,199 235,287 114,568 199,404 110,512 379,771
2 348,554 175,800 146,728 232,260 102,698 190,860 101,754 352,834
3 311,680 190,863 148,384 242,131 118,602 207,376 125,517 408,978
4 332,421 166,849 145,131 234,536 102,795 198,956 113,523 370,826
5 319,660 185,059 160,358 235,072 108,557 211,429 119,911 350,188
6 329,882 177,252 132,242 233,702 120,945 199,978 107,366 363,299
7 304,977 200,038 151,398 229,166 102,315 220,162 122,013 354,466
8 326,645 171,624 137,588 228,181 113,627 195,782 108,512 369,899
9 291,369 191,878 156,871 247,614 108,418 189,534 112,319 363,905
10 326,221 174,148 139,415 239,836 128,377 190,831 111,411 378,781
Average 320,035 182,451 147,031 235,779 112,090 200,431 113,284 369,294

Total Average 210,049

Table 13. Comparison of iterations by different methods in Example 5.

t0 −100.0 −4.0 5.0 7.0 8.0 10.0 11.0 100.0

α 1.28902 1.28902 1.28902 1.28902 1.28902 1.28902 1.28902 1.28902
H-H-H method [38–40] NC NC NC NC NC NC NC NC
Second order method [6] 75 30 32 32 33 29 31 101
Newton’s method NC NC NC NC NC NC NC NC
Our method 15 19 17 17 15 17 15 23

Figure 11. Geometric illustration for Example 5.

Remark 2. From the results of five examples, the overall average running time of our method is 145.5 µs.
From the results of Table 9, the overall average running time of the H-H-H method is 231.6 µs. From results
of six examples in [26], the overall average running time of the algorithm [1] is 680.8 µs. From results of

Mathematics 2018, 6, 306 20 of 23

six examples in [26], the overall average running time of the algorithm [14] is 1270.8 µs. From results of
Table 5, the overall average running time of the algorithm [26] is 406.6 µs. From results of Tables 10 and 12,
the overall average running time of the algorithm [6] is 528.9 µs. Table 14 displays time comparison for these
algorithms. In short, the robustness and efficiency of our method are more superior to those of the existing
algorithms [1,6,14,26,38–40].

Table 14. Time comparison of various algorithms.

Algorithms Ours H-H-H Algorithm [1] Algorithm [14] Algorithm [6] Algorithm [26]

Time (µs) 145.5 231.6 680.8 1270.8 528.9 406.6

Remark 3. For general parametric curve containing the elementary functions, such as sin(t),cos(t), et,
ln t, arcsin t, arccos t, etc., it is very difficult to transform general parametric curve into Bézier-type curve.
In contrast, our method can deal with the general parametric curve containing the elementary functions.
Furthermore, the convergence of our method does not depend on the initial value. From Table 13, only the
H-H-H method or the Newton’s method can not ensure convergence, while our method can ensure convergence.
For multiple solutions of orthogonal projection, our approach works as follows:
(1) The parameter interval [a, b] of parametric curve c(t) is divided into M identical subintervals.
(2) An initial value is selected randomly in each interval.
(3) Using our method and using each initial parametric value, do iterations, respectively. Suppose that the
iterative parametric values are α1, α2, . . . , αM, respectively.
(4) Calculate the local minimum distances d1, d2, . . . , dM, where di = ‖p− c(αi)‖.
(5) Seek the global minimum distance d = ‖p− c(α)‖ from {‖p− c(a)‖ , d1, d2, . . . , dM, ‖p− c(b)‖}.

If we are to solve all solutions as far as possible, we urge the positive integer M to be as large as possible.

We use Example 2 to illustrate how the procedure works, where, for t ∈ [−2, 2], three parameter
values are −1.4118250062741212, −0.61917136491841674, 1.8493434997820080, respectively. It is easy
to find that the projection point with the parameter value −0.61917136491841674 will be the one with
minimum distance, whereas other projection points without these parameter values can not be the one
with minimum distance. Thus, only the orthogonal projection point with minimum distance remains
after the procedure to select multiple orthogonal projection points.

Remark 4. We have done many test examples including five test examples. In the light of these test results,
our method has good convergent properties for different initial values, namely, if initial value is t0, then the
corresponding orthogonal projection parametric value α for the orthogonal projection point of the test point p is
suitable for one inequality relationship ∣∣〈p− c(α), c′(α)

〉∣∣ < 10−17. (21)

This indicates that the inequality relationship satisfies requirements of Equation (4). This shows that
convergence of our method does not depend on the initial value. Furthermore, our method is robust and efficient,
which is satisfied with the previous two of ten challenges proposed by [50].

5. Conclusions

This paper discusses the problem related to a point orthogonal projection onto a parametric curve
in an n-dimensional Euclidean space on the basis of the H-H-H method, combining with a fixed point
theorem of Newton’s method. Firstly, we run the H-H-H method. If the current iterative parametric
value from the H-H-H method is satisfied with the convergence condition of the Newton’s method,
we then go to the method to increase the convergence rate. Otherwise, we continue the H-H-H method
to generate the iterative parametric value with satisfaction of the local convergence condition by
the Newton’s method, and we then go to the previous step. Then, we run to the end of the whole

Mathematics 2018, 6, 306 21 of 23

process. The presented procedures ensure the convergence of our method and it does not depend on
the initial value. Analysis of convergence demonstrates that our method is second order convergent.
Some numerical examples confirm that our method is more efficient and performs better than other
methods, such as the algorithms [1,6,14,26,38–40].

In this paper, our discussion focuses the algorithms in the parametric curve C2. For the parametric
curve being C0,C1, piecewise curve or having singular points, we only present a preliminary idea.
However, we have not completely implemented an algorithm for this kind of spline with low continuity.
In the future, we will try to construct several brand new algorithms to handle the kind of spline with
low continuity such that they can ensure very good robustness and efficiency. In addition, we also try
to extend this idea to handle point orthogonal projecting onto implicit curves and implicit surfaces
that include singularity points. Of course, the realization of these ideas is of great challenge. However,
it is of great value and significance in practical engineering applications.

Author Contributions: The contribution of all the authors is the same. All of the authors team up to develop the
current draft. J.L. is responsible for investigating, providing methodology, writing, reviewing and editing this
work. X.L. is responsible for formal analysis, visualization, writing, reviewing and editing of this work. F.P. is
responsible for software, algorithm and program implementation to this work. T.C. is responsible for validation
of this work. L.W. is responsible for supervision of this work. L.H. is responsible for providing resources, writing,
and the original draft of this work.

Funding: This research was funded by the National Natural Science Foundation of China Grant No. 61263034,
the Feature Key Laboratory for Regular Institutions of Higher Education of Guizhou Province Grant No.
2016003, the Training Center for Network Security and Big Data Application of Guizhou Minzu University
Grant No. 20161113006, the Key Laboratory of Advanced Manufacturing Technology, Ministry of Education,
Guizhou University Grant No. 2018479, the National Bureau of Statistics Foundation Grant No. 2014LY011,
the Key Laboratory of Pattern Recognition and Intelligent System of Construction Project of Guizhou Province
Grant No. 20094002, the Information Processing and Pattern Recognition for Graduate Education Innovation Base
of Guizhou Province, the Shandong Provincial Natural Science Foundation of China Grant No.ZR2016GM24,
the Scientific and Technology Key Foundation of Taiyuan Institute of Technology Grant No. 2016LZ02, the Fund
of National Social Science Grant No. 14XMZ001 and the Fund of the Chinese Ministry of Education Grant
No. 15JZD034.

Acknowledgments: We take the opportunity to thank the anonymous reviewers for their thoughtful and
meaningful comments.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Ma, Y.L.; Hewitt, W.T. Point inversion and projection for NURBS curve and surface: Control polygon
approach. Comput. Aided Geom. Des. 2003, 20, 79–99. [CrossRef]

2. Piegl, L.; Tiller, W. Parametrization for surface fitting in reverse engineering. Comput.-Aided Des. 2001, 33,
593–603. [CrossRef]

3. Yang, H.P.; Wang, W.P.; Sun, J.G. Control point adjustment for B-spline curve approximation.
Comput.-Aided Des. 2004, 36, 639–652. [CrossRef]

4. Johnson, D.E.; Cohen, E. A Framework for efficient minimum distance computations. In Proceedings of the
IEEE Intemational Conference on Robotics & Automation, Leuven, Belgium, 20 May 1998.

5. Pegna, J.; Wolter, F.E. Surface curve design by orthogonal projection of space curves onto free-form surfaces.
J. Mech. Des. ASME Trans. 1996, 118, 45–52. [CrossRef]

6. Hu, S.M.; Wallner, J. A second order algorithm for orthogonal projection onto curves and surfaces.
Comput. Aided Geom. Des. 2005, 22, 251–260. [CrossRef]

7. Besl, P.J.; McKay, N.D. A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 1992,
14, 239–256. [CrossRef]

8. Mortenson, M.E. Geometric Modeling; Wiley: New York, NY, USA, 1985.
9. Limaien, A.; Trochu, F. Geometric algorithms for the intersection of curves and surfaces. Comput. Graph.

1995, 19, 391–403. [CrossRef]
10. Press, W.H.; Teukolsky, S.A.; Vetterling, W.T.; Flannery, B.P. Numerical recipes. In C: The Art of Scientific

Computing, 2nd ed.; Cambridge University Press: New York, NY, USA, 1992.

http://dx.doi.org/10.1016/S0167-8396(03)00021-9
http://dx.doi.org/10.1016/S0010-4485(00)00103-2
http://dx.doi.org/10.1016/S0010-4485(03)00140-4
http://dx.doi.org/10.1115/1.2826855
http://dx.doi.org/10.1016/j.cagd.2004.12.001
http://dx.doi.org/10.1109/34.121791
http://dx.doi.org/10.1016/0097-8493(95)00009-2

Mathematics 2018, 6, 306 22 of 23

11. Elber, G.; Kim, M.S. Geometric Constraint solver using multivariate rational spline functions. In Proceedings
of the 6th ACM Symposiumon Solid Modeling and Applications, Ann Arbor, MI, USA, 4–8 June 2001;
pp. 1–10.

12. Patrikalakis, N.; Maekawa, T. Shape Interrogation for Computer Aided Design and Manufacturing; Springer:
Berlin, Germany, 2001.

13. Polak, E.; Royset, J.O. Algorithms with adaptive smoothing for finite minimax problems. J. Optim.
Theory Appl. 2003, 119, 459–484. [CrossRef]

14. Selimovic, I. Improved algorithms for the projection of points on NURBS curves and surfaces. Comput. Aided
Geom. Des. 2006, 439–445. [CrossRef]

15. Zhou, J.M.; Sherbrooke, E.C.; Patrikalakis, N. Computation of stationary points of distance functions.
Eng. Comput. 1993, 9, 231–246. [CrossRef]

16. Cohen, E.; Lyche, T.; Riesebfeld, R. Discrete B-splines and subdivision techniques in computer-aided
geometric design and computer graphics. Comput. Graph. Image Process. 1980, 14, 87–111. [CrossRef]

17. Piegl, L.; Tiller, W. The NURBS Book; Springer: New York, NY, USA, 1995.
18. Park, C.-H.; Elber, G.; Kim, K.-J.; Kim, G.-Y.; Seong, J.-K. A hybrid parallel solver for systems of multivariate

polynomials using CPUs and GPUs. Comput.-Aided Des. 2011, 43, 1360–1369. [CrossRef]
19. Barton̆, M. Solving polynomial systems using no-root elimination blending schemes. Comput.-Aided Des.

2011, 43, 1870–1878.
20. van Sosin, B.; Elber, G. Solving piecewise polynomial constraint systems with decomposition and a

subdivision-based solver. Comput.-Aided Des. 2017, 90, 37–47. [CrossRef]
21. Bartoň, M.; Elber, G.; Hanniel, I. Topologically guaranteed univariate solutions of underconstrained

polynomial systems via no-loop and single-component tests. Comput.-Aided Des. 2011, 43, 1035–1044.
22. Johnson, D.E.; Cohen, E. Distance extrema for spline models using tangent cones. In Proceedings of the 2005

Conference on Graphics Interface, Victoria, Canada, 9–11 May 2005.
23. Li, X.W.; Xin, Q.; Wu, Z.N.; Zhang, M.S.; Zhang, Q. A geometric strategy for computing intersections of two

spatial parametric curves. Vis. Comput. 2013, 29, 1151–1158. [CrossRef]
24. Liu, X.-M.; Yang, L.; Yong, J.-H.; Gu, H.-J.; Sun, J.-G. A torus patch approximation approach for point

projection on surfaces. Comput. Aided Geom. Des. 2009, 26, 593–598. [CrossRef]
25. Chen, X.-D.; Xu, G.; Yong, J.-H.; Wang, G.Z.; Paul, J.-C. Computing the minimum distance between a point

and a clamped B-spline surface. Graph. Models 2009, 71, 107–112. [CrossRef]
26. Chen, X.-D.; Yong, J.-H.; Wang, G.Z.; Paul, J.-C.; Xu, G. Computing the minimum distance between a point

and a NURBS curve. Comput.-Aided Des. 2008, 40, 1051–1054. [CrossRef]
27. Oh, Y.-T.; Kim, Y.-J.; Lee, J.; Kim, Y.-S. Gershon Elber, Efficient point-projection to freeform curves and

surfaces. Comput. Aided Geom. Des. 2012, 29, 242–254. [CrossRef]
28. Sederberg, T.W.; Nishita, T. Curve intersection using Bézier clipping. Comput.-Aided Des. 1990, 22, 538–549.

[CrossRef]
29. Bartoň, M.; Jüttler, B. Computing roots of polynomials by quadratic clipping. Comput. Aided Geom. Des. 2007,

24, 125–141.
30. Li, X.W.; Wu, Z.N.; Hou, L.K.; Wang, L.; Yue, C.G.; Xin, Q. A geometric orthogonal pojection strategy for

computing the minimum distance between a point and a spatial parametric curve. Algorithms 2016, 9, 15.
[CrossRef]

31. Mørken, K.; Reimers, M. An unconditionally convergent method for computing zeros of splines and
polynomials. Math. Comput. 2007, 76, 845–865. [CrossRef]

32. Li, X.W.; Wang, L.; Wu, Z.N.; Hou, L.K.; Liang, J.; Li, Q.Y. Hybrid second-order iterative algorithm for
orthogonal projection onto a parametric surface. Symmetry 2017, 9, 146. [CrossRef]

33. Li, X.W.; Wang, L.; Wu, Z.N.; Hou, L.K.; Liang, J.; Li, Q.Y. Convergence analysis on a second order algorithm
for orthogonal projection onto curves. Symmetry 2017, 9, 210.

34. Chen, X.-D.; Ma, W.Y.; Xu, G.; Paul, J.-C. Computing the Hausdorff distance between two B-spline curves.
Comput.-Aided Des. 2010, 42, 1197–1206. [CrossRef]

35. Chen, X.-D.; Chen, L.Q.; Wang, Y.G.; Xu, G.; Yong, J.-H.; Paul, J.-C. Computing the minimum distance
between two Bézier curves. J. Comput. Appl. Math. 2009, 229, 294–301. [CrossRef]

36. Kim, Y.J.; Oh, Y.T.; Yoon, S.H.; Kim, M.S.; Elber, G. Efficient Hausdorff distance computation for freeform
geometric models in close proximity. Comput.-Aided Des. 2013, 45, 270–276. [CrossRef]

http://dx.doi.org/10.1023/B:JOTA.0000006685.60019.3e
http://dx.doi.org/10.1016/j.cagd.2006.01.007
http://dx.doi.org/10.1007/BF01201903
http://dx.doi.org/10.1016/0146-664X(80)90040-4
http://dx.doi.org/10.1016/j.cad.2011.08.030
http://dx.doi.org/10.1016/j.cad.2017.05.023
http://dx.doi.org/10.1007/s00371-012-0758-0
http://dx.doi.org/10.1016/j.cagd.2009.01.004
http://dx.doi.org/10.1016/j.gmod.2009.01.001
http://dx.doi.org/10.1016/j.cad.2008.06.008
http://dx.doi.org/10.1016/j.cagd.2011.04.002
http://dx.doi.org/10.1016/0010-4485(90)90039-F
http://dx.doi.org/10.3390/a9010015
http://dx.doi.org/10.1090/S0025-5718-07-01923-0
http://dx.doi.org/10.3390/sym9080146
http://dx.doi.org/10.1016/j.cad.2010.06.009
http://dx.doi.org/10.1016/j.cam.2008.10.050
http://dx.doi.org/10.1016/j.cad.2012.10.010

Mathematics 2018, 6, 306 23 of 23

37. Sundar, B.R.; Chunduru, A.; Tiwari, R.; Gupta, A.; Muthuganapathy, R. Footpoint distance as a measure of
distance computation between curves and surfaces. Comput. Graph. 2014, 38, 300–309. [CrossRef]

38. Hoschek, J.; Lasser, D. Fundamentals of Computer Aided Geometric Design; A. K. Peters: Natick, MA, USA, 1993.
39. Hu, S.M.; Sun, J.G.; Jin, T.G.; Wang, G.Z. Computing the parameter of points on NURBS curves and surfaces

via moving affine frame method. J. Softw. 2000, 11, 49–53.
40. Hartmann, E. On the curvature of curves and surfaces defined by normal forms. Comput. Aided Geom. Des.

1999, 16, 355–376. [CrossRef]
41. Li, X.W.; Mu, C.L.; Ma, J.W.; Wang, C. Sixteenth-order method for nonlinear Equations. Appl. Math. Comput.

2010, 215, 3754–3758. [CrossRef]
42. Liang, J.; Li, X.W.; Wu, Z.N.; Zhang, M.S.; Wang, L.; Pan, F. Fifth-order iterative method for solving multiple

roots of the highest multiplicity of nonlinear equation. Algorithms 2015, 8, 656–668. [CrossRef]
43. Melmant, A. Geometry and Convergence of Euler’s and Halley’s Methods. SIAM Rev. 1997, 39, 728–735.

[CrossRef]
44. Traub, J.F. A Class of Globally Convergent Iteration Functions for the Solution of Polynomial Equations.

Math. Comput. 1966, 20, 113–138. [CrossRef]
45. Śmietański, M.J. A perturbed version of an inexact generalized Newton method for solving nonsmooth

equations. Numer. Algorithms 2013, 63, 89–106. [CrossRef]
46. Chen, F.; Wang, W.-P.; Liu, Y. Computing singular points of plane rational curves. J. Symb. Comput. 2008, 43,

92–117. [CrossRef]
47. Jia, X.-H.; Goldman, R. Using Smith normal forms and µ-bases to compute all the singularities of rational

planar curves. Comput. Aided Geom. Des. 2012, 29, 296–314. [CrossRef]
48. Shi, X.-R.; Jia, X.-H.; Goldman, R. Using a bihomogeneous resultant to find the singularities of rational space

curves. J. Symb. Comput. 2013, 53, 1–25. [CrossRef]
49. Burden, R.L.; Faires, J.D. Numerical Analysis, 9th ed.; Brooks/Cole Cengage Learning: Boston, MA, USA, 2011.
50. Piegl, L.A. Ten challenges in computer-aided design. Comput.-Aided Des. 2005, 37, 461–470. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.cag.2013.10.032
http://dx.doi.org/10.1016/S0167-8396(99)00003-5
http://dx.doi.org/10.1016/j.amc.2009.11.016
http://dx.doi.org/10.3390/a8030656
http://dx.doi.org/10.1137/S0036144595301140
http://dx.doi.org/10.1090/S0025-5718-1966-0192655-2
http://dx.doi.org/10.1007/s11075-012-9613-7
http://dx.doi.org/10.1016/j.jsc.2007.10.003
http://dx.doi.org/10.1016/j.cagd.2012.02.001
http://dx.doi.org/10.1016/j.jsc.2012.09.005
http://dx.doi.org/10.1016/j.cad.2004.08.012
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Convergence Analysis of the H-H-H Method
	The Improved Algorithm
	Counterexamples
	The Improved Algorithm
	Convergence Analysis of the Improved Algorithm

	Numerical Experiments
	Conclusions
	References

