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Abstract: In this paper, we first introduce a new second-order non-linear recursive polynomials
Uh,i(x), and then use these recursive polynomials, the properties of the power series and the
combinatorial methods to prove some identities involving the Fubini polynomials, Euler polynomials
and Euler numbers.
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1. Introduction

For any real number x and y, the two variable Fubini polynomials Fn(x, y) are defined by means
of the following (see [1,2])

ext

1− y (et − 1)
=

∞

∑
n=0

Fn(x, y)
n!

· tn. (1)

The first several terms of Fn(x, y) are F0(x, y) = 1, F1(x, y) = x + y, F2(x, y) = x2 + 2xy + 2y2 + y,
· · · . Taking x = 0, then Fn(0, y) = Fn(y) (see [1]) are called the Fubini polynomials. If y = − 1

2 ,

then Fn

(
x,− 1

2

)
= En(x), the Euler polynomials, E0(x) = 1, E1(x) = x− 1

2 , E2(x) = x2 − x, and

En(x) =
n

∑
i=0

(−1)i ·
(

n
i

)
· xi · En−i(x), n = 0, 1, 2, · · · .

If x = 0, then En(0) = En are the famous Euler numbers. E0 = 1, E1 = − 1
2 , E2 = 0, E3 = 1

4 ,
E4 = 0, E5 = − 1

2 , E6 = 0, and E2n = 0 for all positive integer n.
These polynomials appear in combinatorial mathematics and play a very important role in the

theory and application of mathematics, thus many number theory and combination experts have
studied their properties, and obtained a series of interesting results. For example, Kim and others
proved a series of identities related to Fn(x, y) (see [2–4]), one of which is

Fn(x, y) =
n

∑
l=0

(
n
l

)
xl · Fn−l(y), n ≥ 0.
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T. Kim et al. [5] also studied the properties of the Fubini polynomials Fn(y), and proved the identity

Fn(y) =
n

∑
k=0

S2(n, k) k! yk, (n ≥ 0),

where S2(n, k) are the Stirling numbers of the second kind.
Zhao and Chen [6] proved that, for any positive integers n and k, one has the identity

∑
a1+a2+···+ak=n

Fa1(y)
(a1)!

· Fa2(y)
(a2)!

· · ·
Fak (y)
(ak)!

=
1

(k− 1)!(y + 1)k−1 ·
1
n!

k−1

∑
i=0

C(k− 1, i)Fn+k−1−i(y), (2)

where the summation is taken over all k-dimensional nonnegative integer coordinates (a1, a2, · · · , ah)

such that a1 + a2 + · · ·+ ah = n. The sequence {C(k, i)} is defined as follows: For any positive integer
k and integers 0 ≤ i ≤ k, C(k, 0) = 1, C(k, k) = k! and C(k + 1, i + 1) = C(k, i + 1) + (k + 1)C(k, i),
for all 0 ≤ i < k.

Some other papers related to Fubini polynomials and Euler numbers can be found
elsewhere [7–19], and we do not repeat them here.

In this paper, as a note of [6], we study a similar calculating problem of Equation (2) for two
variable Fubini polynomials Fn(x, y). We also introduce a new second order non-linear recursive
polynomials, and then use this polynomials to give a new expression for the summation

W(h, n, x) = ∑
a1+a2+···+ah+1=n

Fa1(x, y)
a1!

· Fa2(x, y)
a2!

· · ·
Fah+1(x, y)

ah+1!
.

That is, we prove the following:

Theorem 1. Let h be a positive integer. Then, for any integer n ≥ 0, we have the identity

W(h, n, x) =
1

(y + 1)h · h! · n!
·

h

∑
k=0

n

∑
i=0

Uh,k(x) · xi · hi ·
(

n
i

)
· Fn−i+k(x, y),

where Uh,k(x) is a second order non-linear recurrence polynomial defined by Uh,h(x) = 1, and Uh+1,0(x) =
(h + 1− x)Uh,0(x), and Uh+1,k+1(x) = (h + 1− x)Uh,k+1(x) + Uh,k(x) for all integers h ≥ 1 and k with
0 ≤ k ≤ h− 1.

It is clear that our theorem is a generalization of Equation (2). If taking y = − 1
2 , n = 0, x = 0 and

x = 1 in this theorem, respectively, and noting that Uh,0(1) = 0, E0(1) = 1 and En(1) = −En for all
n ≥ 1, we can deduce the following five corollaries:

Corollary 1. For any positive integer h ≥ 1, we have the identity

h

∑
k=0

Uh,k(x) · Ek(x) =
h!
2h .

Corollary 2. For any positive integer h ≥ 1 and real x, we have the identity

∑
a1+a2+···+ah+1=n

Ea1(x)
a1!

· Ea2(x)
a2!

· · ·
Eah+1(x)

ah+1!
=

2h

h! · n!
·

h

∑
k=0

n

∑
i=0

Uh,k(x) · xi · hi ·
(

n
i

)
· En−i+k(x).
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Corollary 3. For any positive integer h ≥ 1, we have the identity

∑
a1+a2+···+ah+1=n

Ea1

a1!
· Ea2

a2!
· · ·

Eah+1

ah+1!
=

2h

h! · n!
·

h

∑
k=0

Uh,k(0) ·
(

n
i

)
· En+k.

Corollary 4. For any positive integer h ≥ 1, we have the identity

h!
2h +

h

∑
k=1

Uh,k(1) · Ek = 0.

From Equation (2) with y = − 1
2 and Corollary 3 we can deduce the identities Uh,i(0) = C(h, h− i)

for all nonnegative integers 0 ≤ i ≤ h.
On the other hand, from the definition of Uh,k(1), we can easily prove that the sequence Uh,k(1)

are the coefficients of the polynomial F(x) =
h−1

∏
i=1

(x + i). That is,

F(x) = (x + 1)(x + 2) · · · (x + h− 1) =
h−1

∑
i=0

Uh,i+1(1) · xi.

Thus, if h = p is an odd prime, then using the elementary number theory methods we deduce
the following:

Corollary 5. Let p be an odd prime. Then, for any positive integer 2 ≤ k ≤ p− 1, we have the congruence

Up,k(1) ≡ 0 mod p.

Taking h = p, noting that Up,p(1) = 1, E1 = − 1
2 and Up,1(1) = (p− 1)! ≡ −1 mod p, and then

combining Corollaries 4 and 5, we have the following:

Corollary 6. Let p be an odd prime. Then, we have the congruence

2Ep + 1 ≡ 0 mod p.

This congruence is also recently obtained by Hou and Shen [12] using the different methods.

2. Several Simple Lemmas

In this section, we give several necessary lemmas in the proof process of our theorem. First,
we have the following:

Lemma 1. Let function f (t) = ext

1−y(et−1) . Then, for any positive integer h, real numbers x and t, we have
the identity

(y + 1)h · h! · f h+1(t) = ehxt ·
h

∑
i=0

Uh,i(x) · f (i)(t),

where Uh,i(x) is defined as in the theorem, and f (h)(t) denotes the h-order derivative of f (t) with respect to
variable t.

Proof. We can prove this Lemma 1 by mathematical induction. First, from the properties of the
derivative, we have

f ′(t) =
xext

1− y (et − 1)
+

y · et · ext

(1− y (et − 1))2 = x f (t)− f (t) +
(y + 1) · ext

(1− y (et − 1))2
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or

(y + 1) f 2(t) = ext [ f ′(t) + (1− x) f (t)
]
= ext ·

1

∑
i=0

U1,i(x) · f (i)(t).

That is, Lemma 1 is correct for h = 1.

Assuming that Lemma 1 is correct for 1 ≤ h = k, i.e.,

(y + 1)k · k! · f k+1(t) = ekxt ·
k

∑
i=0

Uk,i(x) · f (i)(t). (3)

Then, from Equation (3) and the definitions of Uk,i(x) and derivative, we have

ext · (y + 1)k · (k + 1)! · f k(t) · f ′(t)

= (y + 1)k(k + 1)! · f k(t)
(
(y + 1) f 2(t) + (x− 1) · ext · f (t)

)
= (y + 1)k+1(k + 1)! · f k+2(x) + (k + 1)! · (x− 1) · ext · (y + 1)k · f k+1(t)

= e(k+1)xt ·
(

xk ·
k

∑
i=0

Uk,i(x) · f (i)(t) +
k

∑
i=0

Uk,i(x) · f (i+1)(t)

)

or

(y + 1)k+1 · (k + 1)! · f k+2(t) = e(k+1)xt ·
k

∑
i=0

xk ·Uk,i(x) · f (i)(t)

+e(k+1)xt ·
(

k

∑
i=0

Uk,i(x) · f (i+1)(t) +
k

∑
i=0

(k + 1)(1− x)Uk,i(x) · f (i)(t)

)

= e(k+1)xt ·
(

k

∑
i=0

Uk,i(x) · f (i+1)(t) +
k

∑
i=0

(k + 1− x)Uk,i(x) · f (i)(t)

)

= e(k+1)xt ·
(

k−1

∑
i=0

Uk,i(x) · f (i+1)(t) +
k

∑
i=1

(k + 1− x)Uk,i(x) · f (i)(t)

)
+e(k+1)xt ·

(
Uk,k(x) · f (k+1)(t) + (k + 1− x) ·Uk,0(x) · f (t)

)
= e(k+1)xt ·

(
k−1

∑
i=0

Uk,i(x) · f (i+1)(t) +
k−1

∑
i=0

(k + 1− x)Uk,i+1(x) · f (i+1)(t)

)
+e(k+1)xt ·

(
Uk+1,k+1(x) · f (k+1)(t) + (k + 1− x) ·Uk,0(x) · f (t)

)
= e(k+1)xt ·

k−1

∑
i=0

Uk+1,i+1(x) · f (i+1)(t)

+e(k+1)xt ·
(

Uk+1,k+1(x) · f (k+1)(t) + Uk+1,0(x) · f (t)
)

= e(k+1)xt ·
k

∑
i=1

Uk+1,i(x) · f (i)(t)

+e(k+1)xt ·
(

Uk+1,k+1(x) · f (k+1)(t) + Uk+1,0(x) · f (t)
)

= e(k+1)xt ·
k+1

∑
i=0

Uk+1,i(x) · f (i)(t).

which means Lemma 1 is also correct for h = k + 1.
This proves Lemma 1 by mathematical induction.
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Lemma 2. For any positive integers h and k, we have the power series expansion

exht · f (k)(t) =
∞

∑
n=0

(
n

∑
i=0

xi · hi ·
(

n
i

)
· Fn−i+k(x, y)

n!

)
· tn.

Proof. For any positive integer k, from Equation (1) and the properties of the power series, we have

f (k)(t) =
∞

∑
n=0

(n + k)(n + k− 1) · · · (n + 1) · Fn+k(x, y)
(n + k)!

· tn =
∞

∑
n=0

Fn+k(x, y)
n!

· tn. (4)

On the other hand, we have

exht =
∞

∑
n=0

xn · hn

n!
· tn. (5)

Thus, from Equations (4) and (5) and the multiplicative properties of the power series, we have

exht · f (k)(t) =

(
∞

∑
n=0

xn · hn

n!
· tn

)(
∞

∑
n=0

Fn+k(x, y)
n!

· tn

)

=
∞

∑
n=0

(
n

∑
i=0

xi · hi ·
(n

i )

n!
· Fn−i+k(x, y)

)
· tn.

This proves Lemma 2.

3. Proof of the Theorem

In this section, we complete the proof of our theorem. In fact from Equation (1) and Lemmas 1
and 2, we have

(y + 1)h · h! · f h+1(t) = (y + 1)h · h! ·
(

∞

∑
n=0

Fn(x, y)
n!

· tn

)h+1

= (y + 1)h · h! ·
∞

∑
n=0

(
∑

a1+a2+···+ah+1=n

Fa1(x, y)
a1!

Fa2(x, y)
a2!

· · ·
Fah+1(x, y)

ah+1!

)
· tn

=
h

∑
k=0

Uh,k(x) · ehxt · f (k)(t)

=
h

∑
k=0

Uh,k(x)

(
∞

∑
n=0

(
n

∑
i=0

xi · hi ·
(

n
i

)
· Fn−i+k(x, y)

n!

)
· tn

)

=
∞

∑
n=0

(
h

∑
k=0

Uh,k(x)
n

∑
i=0

xi · hi ·
(

n
i

)
· Fn−i+k(x, y)

n!

)
· tn. (6)

Comparing the coefficients of the power series in Equation (6), we may immediately deduce
the identity

(y + 1)h · ∑
a1+a2+···+ah+1=n

Fa1(x, y)
a1!

· Fa2(x, y)
a2!

· · ·
Fah+1(x, y)

ah+1!

=
1

h! · n!
·

h

∑
k=0

n

∑
i=0

Uh,k(x) · xi · hi ·
(

n
i

)
· Fn−i+k(x, y).

This completes the proof of our theorem.
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