Article

Some Identities Involving the Fubini Polynomials and Euler Polynomials

Guohui Chen ${ }^{1}$ and Li Chen ${ }^{2, *}$
1 College of Mathematics \& Statistics, Hainan Normal University, Haikou 571158, China; cghui@hainnu.edu.cn
2 School of Mathematics, Northwest University, Xi'an 710127, China
* Correspondence: cl1228@stumail.nwu.edu.cn

Received: 16 November 2018; Accepted: 30 November 2018; Published: 4 December 2018

Abstract

In this paper, we first introduce a new second-order non-linear recursive polynomials $U_{h, i}(x)$, and then use these recursive polynomials, the properties of the power series and the combinatorial methods to prove some identities involving the Fubini polynomials, Euler polynomials and Euler numbers.

Keywords: Fubini polynomials; Euler polynomials; recursive polynomials; combinatorial method; power series identity

MSC: 11B39, 11B50

1. Introduction

For any real number x and y, the two variable Fubini polynomials $F_{n}(x, y)$ are defined by means of the following (see [1,2])

$$
\begin{equation*}
\frac{e^{x t}}{1-y\left(e^{t}-1\right)}=\sum_{n=0}^{\infty} \frac{F_{n}(x, y)}{n!} \cdot t^{n} . \tag{1}
\end{equation*}
$$

The first several terms of $F_{n}(x, y)$ are $F_{0}(x, y)=1, F_{1}(x, y)=x+y, F_{2}(x, y)=x^{2}+2 x y+2 y^{2}+y$, \cdots. Taking $x=0$, then $F_{n}(0, y)=F_{n}(y)$ (see [1]) are called the Fubini polynomials. If $y=-\frac{1}{2}$, then $F_{n}\left(x,-\frac{1}{2}\right)=E_{n}(x)$, the Euler polynomials, $E_{0}(x)=1, E_{1}(x)=x-\frac{1}{2}, E_{2}(x)=x^{2}-x$, and

$$
E_{n}(x)=\sum_{i=0}^{n}(-1)^{i} \cdot\binom{n}{i} \cdot x^{i} \cdot E_{n-i}(x), n=0,1,2, \cdots
$$

If $x=0$, then $E_{n}(0)=E_{n}$ are the famous Euler numbers. $E_{0}=1, E_{1}=-\frac{1}{2}, E_{2}=0, E_{3}=\frac{1}{4}$, $E_{4}=0, E_{5}=-\frac{1}{2}, E_{6}=0$, and $E_{2 n}=0$ for all positive integer n.

These polynomials appear in combinatorial mathematics and play a very important role in the theory and application of mathematics, thus many number theory and combination experts have studied their properties, and obtained a series of interesting results. For example, Kim and others proved a series of identities related to $F_{n}(x, y)$ (see [2-4]), one of which is

$$
F_{n}(x, y)=\sum_{l=0}^{n}\binom{n}{l} x^{l} \cdot F_{n-l}(y), n \geq 0
$$

T. Kim et al. [5] also studied the properties of the Fubini polynomials $F_{n}(y)$, and proved the identity

$$
F_{n}(y)=\sum_{k=0}^{n} S_{2}(n, k) k!y^{k},(n \geq 0)
$$

where $S_{2}(n, k)$ are the Stirling numbers of the second kind.
Zhao and Chen [6] proved that, for any positive integers n and k, one has the identity

$$
\begin{align*}
& \sum_{a_{1}+a_{2}+\cdots+a_{k}=n} \frac{F_{a_{1}}(y)}{\left(a_{1}\right)!} \cdot \frac{F_{a_{2}}(y)}{\left(a_{2}\right)!} \cdots \frac{F_{a_{k}}(y)}{\left(a_{k}\right)!} \\
= & \frac{1}{(k-1)!(y+1)^{k-1}} \cdot \frac{1}{n!} \sum_{i=0}^{k-1} C(k-1, i) F_{n+k-1-i}(y), \tag{2}
\end{align*}
$$

where the summation is taken over all k-dimensional nonnegative integer coordinates ($a_{1}, a_{2}, \cdots, a_{h}$) such that $a_{1}+a_{2}+\cdots+a_{h}=n$. The sequence $\{C(k, i)\}$ is defined as follows: For any positive integer k and integers $0 \leq i \leq k, C(k, 0)=1, C(k, k)=k!$ and $C(k+1, i+1)=C(k, i+1)+(k+1) C(k, i)$, for all $0 \leq i<k$.

Some other papers related to Fubini polynomials and Euler numbers can be found elsewhere [7-19], and we do not repeat them here.

In this paper, as a note of [6], we study a similar calculating problem of Equation (2) for two variable Fubini polynomials $F_{n}(x, y)$. We also introduce a new second order non-linear recursive polynomials, and then use this polynomials to give a new expression for the summation

$$
W(h, n, x)=\sum_{a_{1}+a_{2}+\cdots+a_{h+1}=n} \frac{F_{a_{1}}(x, y)}{a_{1}!} \cdot \frac{F_{a_{2}}(x, y)}{a_{2}!} \cdots \frac{F_{a_{h+1}}(x, y)}{a_{h+1}!}
$$

That is, we prove the following:
Theorem 1. Let h be a positive integer. Then, for any integer $n \geq 0$, we have the identity

$$
W(h, n, x)=\frac{1}{(y+1)^{h} \cdot h!\cdot n!} \cdot \sum_{k=0}^{h} \sum_{i=0}^{n} U_{h, k}(x) \cdot x^{i} \cdot h^{i} \cdot\binom{n}{i} \cdot F_{n-i+k}(x, y)
$$

where $U_{h, k}(x)$ is a second order non-linear recurrence polynomial defined by $U_{h, h}(x)=1$, and $U_{h+1,0}(x)=$ $(h+1-x) U_{h, 0}(x)$, and $U_{h+1, k+1}(x)=(h+1-x) U_{h, k+1}(x)+U_{h, k}(x)$ for all integers $h \geq 1$ and k with $0 \leq k \leq h-1$.

It is clear that our theorem is a generalization of Equation (2). If taking $y=-\frac{1}{2}, n=0, x=0$ and $x=1$ in this theorem, respectively, and noting that $U_{h, 0}(1)=0, E_{0}(1)=1$ and $E_{n}(1)=-E_{n}$ for all $n \geq 1$, we can deduce the following five corollaries:

Corollary 1. For any positive integer $h \geq 1$, we have the identity

$$
\sum_{k=0}^{h} U_{h, k}(x) \cdot E_{k}(x)=\frac{h!}{2^{h}}
$$

Corollary 2. For any positive integer $h \geq 1$ and real x, we have the identity

$$
\sum_{a_{1}+a_{2}+\cdots+a_{h+1}=n} \frac{E_{a_{1}}(x)}{a_{1}!} \cdot \frac{E_{a_{2}}(x)}{a_{2}!} \cdots \cdot \frac{E_{a_{h+1}}(x)}{a_{h+1}!}=\frac{2^{h}}{h!\cdot n!} \cdot \sum_{k=0}^{h} \sum_{i=0}^{n} U_{h, k}(x) \cdot x^{i} \cdot h^{i} \cdot\binom{n}{i} \cdot E_{n-i+k}(x)
$$

Corollary 3. For any positive integer $h \geq 1$, we have the identity

$$
\sum_{a_{1}+a_{2}+\cdots+a_{h+1}=n} \frac{E_{a_{1}}}{a_{1}!} \cdot \frac{E_{a_{2}}}{a_{2}!} \cdots \frac{E_{a_{h+1}}}{a_{h+1}!}=\frac{2^{h}}{h!\cdot n!} \cdot \sum_{k=0}^{h} U_{h, k}(0) \cdot\binom{n}{i} \cdot E_{n+k} .
$$

Corollary 4. For any positive integer $h \geq 1$, we have the identity

$$
\frac{h!}{2^{h}}+\sum_{k=1}^{h} U_{h, k}(1) \cdot E_{k}=0
$$

From Equation (2) with $y=-\frac{1}{2}$ and Corollary 3 we can deduce the identities $U_{h, i}(0)=C(h, h-i)$ for all nonnegative integers $0 \leq i \leq h$.

On the other hand, from the definition of $U_{h, k}(1)$, we can easily prove that the sequence $U_{h, k}(1)$ are the coefficients of the polynomial $F(x)=\prod_{i=1}^{h-1}(x+i)$. That is,

$$
F(x)=(x+1)(x+2) \cdots(x+h-1)=\sum_{i=0}^{h-1} U_{h, i+1}(1) \cdot x^{i}
$$

Thus, if $h=p$ is an odd prime, then using the elementary number theory methods we deduce the following:

Corollary 5. Let p be an odd prime. Then, for any positive integer $2 \leq k \leq p-1$, we have the congruence

$$
U_{p, k}(1) \equiv 0 \bmod p
$$

Taking $h=p$, noting that $U_{p, p}(1)=1, E_{1}=-\frac{1}{2}$ and $U_{p, 1}(1)=(p-1)!\equiv-1 \bmod p$, and then combining Corollaries 4 and 5 , we have the following:

Corollary 6. Let p be an odd prime. Then, we have the congruence

$$
2 E_{p}+1 \equiv 0 \bmod p
$$

This congruence is also recently obtained by Hou and Shen [12] using the different methods.

2. Several Simple Lemmas

In this section, we give several necessary lemmas in the proof process of our theorem. First, we have the following:

Lemma 1. Let function $f(t)=\frac{e^{x t}}{1-y\left(e^{t}-1\right)}$. Then, for any positive integer h, real numbers x and t, we have the identity

$$
(y+1)^{h} \cdot h!\cdot f^{h+1}(t)=e^{h x t} \cdot \sum_{i=0}^{h} U_{h, i}(x) \cdot f^{(i)}(t)
$$

where $U_{h, i}(x)$ is defined as in the theorem, and $f^{(h)}(t)$ denotes the h-order derivative of $f(t)$ with respect to variable t.

Proof. We can prove this Lemma 1 by mathematical induction. First, from the properties of the derivative, we have

$$
f^{\prime}(t)=\frac{x e^{x t}}{1-y\left(e^{t}-1\right)}+\frac{y \cdot e^{t} \cdot e^{x t}}{\left(1-y\left(e^{t}-1\right)\right)^{2}}=x f(t)-f(t)+\frac{(y+1) \cdot e^{x t}}{\left(1-y\left(e^{t}-1\right)\right)^{2}}
$$

or

$$
(y+1) f^{2}(t)=e^{x t}\left[f^{\prime}(t)+(1-x) f(t)\right]=e^{x t} \cdot \sum_{i=0}^{1} U_{1, i}(x) \cdot f^{(i)}(t)
$$

That is, Lemma 1 is correct for $h=1$.
Assuming that Lemma 1 is correct for $1 \leq h=k$, i.e.,

$$
\begin{equation*}
(y+1)^{k} \cdot k!\cdot f^{k+1}(t)=e^{k x t} \cdot \sum_{i=0}^{k} U_{k, i}(x) \cdot f^{(i)}(t) \tag{3}
\end{equation*}
$$

Then, from Equation (3) and the definitions of $U_{k, i}(x)$ and derivative, we have

$$
\begin{aligned}
& e^{x t} \cdot(y+1)^{k} \cdot(k+1)!\cdot f^{k}(t) \cdot f^{\prime}(t) \\
= & (y+1)^{k}(k+1)!\cdot f^{k}(t)\left((y+1) f^{2}(t)+(x-1) \cdot e^{x t} \cdot f(t)\right) \\
= & (y+1)^{k+1}(k+1)!\cdot f^{k+2}(x)+(k+1)!\cdot(x-1) \cdot e^{x t} \cdot(y+1)^{k} \cdot f^{k+1}(t) \\
= & e^{(k+1) x t} \cdot\left(x k \cdot \sum_{i=0}^{k} U_{k, i}(x) \cdot f^{(i)}(t)+\sum_{i=0}^{k} U_{k, i}(x) \cdot f^{(i+1)}(t)\right)
\end{aligned}
$$

or

$$
\begin{aligned}
& (y+1)^{k+1} \cdot(k+1)!\cdot f^{k+2}(t)=e^{(k+1) x t} \cdot \sum_{i=0}^{k} x k \cdot U_{k, i}(x) \cdot f^{(i)}(t) \\
& +e^{(k+1) x t} \cdot\left(\sum_{i=0}^{k} U_{k, i}(x) \cdot f^{(i+1)}(t)+\sum_{i=0}^{k}(k+1)(1-x) U_{k, i}(x) \cdot f^{(i)}(t)\right) \\
= & e^{(k+1) x t} \cdot\left(\sum_{i=0}^{k} U_{k, i}(x) \cdot f^{(i+1)}(t)+\sum_{i=0}^{k}(k+1-x) U_{k, i}(x) \cdot f^{(i)}(t)\right) \\
= & e^{(k+1) x t} \cdot\left(\sum_{i=0}^{k-1} U_{k, i}(x) \cdot f^{(i+1)}(t)+\sum_{i=1}^{k}(k+1-x) U_{k, i}(x) \cdot f^{(i)}(t)\right) \\
& +e^{(k+1) x t} \cdot\left(U_{k, k}(x) \cdot f^{(k+1)}(t)+(k+1-x) \cdot U_{k, 0}(x) \cdot f(t)\right) \\
= & e^{(k+1) x t} \cdot\left(\sum_{i=0}^{k-1} U_{k, i}(x) \cdot f^{(i+1)}(t)+\sum_{i=0}^{k-1}(k+1-x) U_{k, i+1}(x) \cdot f^{(i+1)}(t)\right) \\
= & e^{(k+1) x t} \cdot\left(U_{k+1, k+1}(x) \cdot f^{(k+1)}(t)+(k+1-x) \cdot U_{k, 0}(x) \cdot f(t)\right) \\
= & \sum_{i=0}^{k-1} U_{k+1, i+1}(x) \cdot f^{(i+1)}(t) \\
= & e^{(k+1) x t} \cdot\left(U_{k+1, k+1}(x) \cdot f^{(k+1)}(t)+U_{k+1,0}(x) \cdot f(t)\right) \\
= & +e^{(k+1) x t} \cdot\left(U_{k+1, k+1}^{k}(x) \cdot f_{k+1, i}(x) \cdot f^{(i)}(t)\right. \\
= & e^{(k+1) x t} \cdot \sum_{i=0}^{k+1} U_{k+1, i}(x) \cdot f^{(i)}(t) .
\end{aligned}
$$

which means Lemma 1 is also correct for $h=k+1$.
This proves Lemma 1 by mathematical induction.

Lemma 2. For any positive integers h and k, we have the power series expansion

$$
e^{x h t} \cdot f^{(k)}(t)=\sum_{n=0}^{\infty}\left(\sum_{i=0}^{n} x^{i} \cdot h^{i} \cdot\binom{n}{i} \cdot \frac{F_{n-i+k}(x, y)}{n!}\right) \cdot t^{n} .
$$

Proof. For any positive integer k, from Equation (1) and the properties of the power series, we have

$$
\begin{equation*}
f^{(k)}(t)=\sum_{n=0}^{\infty}(n+k)(n+k-1) \cdots(n+1) \cdot \frac{F_{n+k}(x, y)}{(n+k)!} \cdot t^{n}=\sum_{n=0}^{\infty} \frac{F_{n+k}(x, y)}{n!} \cdot t^{n} \tag{4}
\end{equation*}
$$

On the other hand, we have

$$
\begin{equation*}
e^{x h t}=\sum_{n=0}^{\infty} \frac{x^{n} \cdot h^{n}}{n!} \cdot t^{n} \tag{5}
\end{equation*}
$$

Thus, from Equations (4) and (5) and the multiplicative properties of the power series, we have

$$
\begin{aligned}
& e^{x h t} \cdot f^{(k)}(t)=\left(\sum_{n=0}^{\infty} \frac{x^{n} \cdot h^{n}}{n!} \cdot t^{n}\right)\left(\sum_{n=0}^{\infty} \frac{F_{n+k}(x, y)}{n!} \cdot t^{n}\right) \\
= & \sum_{n=0}^{\infty}\left(\sum_{i=0}^{n} x^{i} \cdot h^{i} \cdot \frac{\binom{n}{i}}{n!} \cdot F_{n-i+k}(x, y)\right) \cdot t^{n} .
\end{aligned}
$$

This proves Lemma 2.

3. Proof of the Theorem

In this section, we complete the proof of our theorem. In fact from Equation (1) and Lemmas 1 and 2 , we have

$$
\begin{align*}
& (y+1)^{h} \cdot h!\cdot f^{h+1}(t)=(y+1)^{h} \cdot h!\cdot\left(\sum_{n=0}^{\infty} \frac{F_{n}(x, y)}{n!} \cdot t^{n}\right)^{h+1} \\
= & (y+1)^{h} \cdot h!\cdot \sum_{n=0}^{\infty}\left(\sum_{a_{1}+a_{2}+\cdots+a_{h+1}=n} \frac{F_{a_{1}}(x, y)}{a_{1}!} \frac{F_{a_{2}}(x, y)}{a_{2}!} \cdots \frac{F_{a_{h+1}}(x, y)}{a_{h+1}!}\right) \cdot t^{n} \\
= & \sum_{k=0}^{h} U_{h, k}(x) \cdot e^{h x t} \cdot f^{(k)}(t) \\
= & \sum_{k=0}^{h} U_{h, k}(x)\left(\sum_{n=0}^{\infty}\left(\sum_{i=0}^{n} x^{i} \cdot h^{i} \cdot\binom{n}{i} \cdot \frac{F_{n-i+k}(x, y)}{n!}\right) \cdot t^{n}\right) \\
= & \sum_{n=0}^{\infty}\left(\sum_{k=0}^{h} U_{h, k}(x) \sum_{i=0}^{n} x^{i} \cdot h^{i} \cdot\binom{n}{i} \cdot \frac{F_{n-i+k}(x, y)}{n!}\right) \cdot t^{n} . \tag{6}
\end{align*}
$$

Comparing the coefficients of the power series in Equation (6), we may immediately deduce the identity

$$
\begin{aligned}
& (y+1)^{h} \cdot \sum_{a_{1}+a_{2}+\cdots+a_{h+1}=n} \frac{F_{a_{1}}(x, y)}{a_{1}!} \cdot \frac{F_{a_{2}}(x, y)}{a_{2}!} \cdots \frac{F_{a_{h+1}}(x, y)}{a_{h+1}!} \\
= & \frac{1}{h!\cdot n!} \cdot \sum_{k=0}^{h} \sum_{i=0}^{n} U_{h, k}(x) \cdot x^{i} \cdot h^{i} \cdot\binom{n}{i} \cdot F_{n-i+k}(x, y)
\end{aligned}
$$

This completes the proof of our theorem.

Author Contributions: All authors have equally contributed to this work. All authors read and approved the final manuscript.
Funding: This work was supported by Hainan Provincial N. S. F. (118MS041) and the N. S. F. (11771351) of P. R. China.

Acknowledgments: The authors would like to thank the referees for their very helpful and detailed comments, which have significantly improved the presentation of this paper.

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the publication of this paper.

References

1. Kilar, N.; Simesk, Y. A new family of Fubini type numbrs and polynomials associated with Apostol-Bernoulli nujmbers and polynomials. J. Korean Math. Soc. 2017, 54, 1605-1621.
2. Kim, T.; Kim, D.S.; Jang, G.-W. A note on degenerate Fubini polynomials. Proc. Jangjeon Math. Soc. 2017, 20, 521-531.
3. Kim, T. Symmetry of power sum polynomials and multivariate fermionic p-adic invariant integral on Z_{p}. Russ. J. Math. Phys. 2009, 16, 93-96. [CrossRef]
4. Kim, T.; Kim, D.S.; Jang, G.-W.; Kwon, J. Symmetric identities for Fubini polynomials. Symmetry 2018, 10, 219. [CrossRef]
5. Kim, D.S.; Park, K.H. Identities of symmetry for Bernoulli polynomials arising from quotients of Volkenborn integrals invariant under S_{3}. Appl. Math. Comput. 2013, 219, 5096-5104. [CrossRef]
6. Zhao, J.H.; Chen, Z.Y. Some symmetric identities involving Fubini polynomials and Euler numbers. Symmetry 2018, 10, 359.
7. Zhang, W.P. Some identities involving the Euler and the central factorial numbers. Fibonacci Q. 1998, 36, 154-157.
8. Liu, G.D. The solution of problem for Euler numbers. Acta Math. Sin. 2004, 47, 825-828.
9. Liu, G.D. Identities and congruences involving higher-order Euler-Bernoulli numbers and polynonials. Fibonacci Q. 2001, 39, 279-284.
10. Zhang, W.P.; Xu, Z.F. On a conjecture of the Euler numbers. J. Number Theory 2007, 127, 283-291. [CrossRef]
11. Kim, T. Euler numbers and polynomials associated with zeta functions. Abstr. Appl. Anal. 2008, 2008, 581582. [CrossRef]
12. Hou, Y.W.; Shen, S.M. The Euler numbers and recursive properties of Dirichlet L-functions. Adv. Differ. Equ. 2018, 2018, 397. [CrossRef]
13. Powell, B.J. Advanced problem 6325. Am. Math. Month. 1980, 87, 836.
14. Masjed-Jamei, M.; Beyki, M.R.; Koepf, W. A new type of Euler polynomials and numbers. Mediterr. J. Math. 2018, 15, 138. [CrossRef]
15. Cho, B.; Park, H. Evaluating binomial convolution sums of divisor functions in terms of Euler and Bernoulli polynomials. Int. J. Number Theory 2018, 14, 509-525. [CrossRef]
16. Araci, S.; Acikgoz, M. Construction of Fourier expansion of Apostol Frobenius-Euler polynomials and its applications. Adv. Differ. Equ. 2018, 2018, 67. [CrossRef]
17. Kim, T.; Kim, D.S.; Dogly, D.V.; Jang, G.-W.; Kwon, J. Fourier series of functions related to two variable higher-order Fubini polynomials. Adv. Stud. Contemp. Math. (Kyungshang) 2018, 28, C589-C605.
18. Jang, G.-W.; Dolgy, D.V.; Jang, L.-C.; Kim, D.S.; Kim, T. Sums of products of two variable higher-order Fubini functions arising from Fourier series. Adv. Stud. Contemp. Math. (Kyungshang) 2018, 28, 533-550.
19. Kim, D.S.; Kim, T.; Kwon, H.-I.; Park, J.-W. Two variable higher-order Fubini polynomials. J. Korean Math. Soc. 2018, 55, C975-C986.
