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Abstract: In this manuscript, a new type of study regarding the iterative methods for solving nonlinear
models is presented. The goal of this work is to design a new fourth-order optimal family of two-step
iterative schemes, with the flexibility through weight function/s or free parameter/s at both substeps,
as well as small residual errors and asymptotic error constants. In addition, we generalize these
schemes to nonlinear systems preserving the order of convergence. Regarding the applicability of the
proposed techniques, we choose some real-world problems, namely chemical fractional conversion
and the trajectory of an electron in the air gap between two parallel plates, in order to study the
multi-factor effect, fractional conversion of species in a chemical reactor, Hammerstein integral
equation, and a boundary value problem. Moreover, we find that our proposed schemes run better
than or equal to the existing ones in the literature.

Keywords: nonlinear equations; local convergence analysis; order of convergence; Newton’s method;
multi-point iterative methods; computational order of convergence

1. Introduction

The role of iterative methods in solving nonlinear problems of many branches of science and
engineering has increased dramatically in recent years. One of the most important reasons is the
applicability of the iterative methods to real-life problems. For example, Shacham, Balaji, and
Seader [1,2] described the fraction of the nitrogen-hydrogen feed that gets converted to ammonia
(this fact is called fractional conversion) in the form of a nonlinear scalar equation. On the other hand,
Shacham [3] expressed the fractional conversion of Species A in a chemical reactor also in the form
of a scalar equation. In addition, Shacham and Kehat [4] gave several examples of real-life problems,
which can be modeled by means of real scalar equations whose roots play an important role in the
cited problems. Some of them are: The chemical equilibrium calculation problem, the isothermal flash
problem, the energy or material balance problem in the chemical reactor problem, the azeotropic point
calculation problem, the adiabatic flame temperature problem, the calculation of gas volume by the
Beattie-Bridgeman method problem, the liquid flow rate in a pipe problem, the pressure drop in the
converging-diverging nozzle problem, etc.

On the other hand, Moré [5] proposed a collection of nonlinear model problems, most of them
described in terms of nonlinear systems of equations. Further, Grosan and Abraham [6] also discussed
the applicability of the iterative methods for solving nonlinear systems in different sciences such as
neurophysiology, the kinematics synthesis problem, the chemical equilibrium problem, the combustion
problem, and the economics modeling problem. Furthermore, the reactor and steering problems were
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solved in [7,8] by describing these problems in the form of F(x) = 0. Moreover, Lin et al. [9] also
discussed the applicability of the procedures for solving nonlinear systems in transport theory.

The construction of iterative methods for solving nonlinear equations, f (x) = 0, or
nonlinear systems, F(x) = 0, with m equations and m unknowns, is an interesting task in the
field of numerical analysis. In both cases, there are different ways to develop iterative schemes.
Different tools such as quadrature formulae, Adomian polynomials, the divided differences approach,
the composition of known methods, the weight function procedure, etc., have been used for designing
iterative schemes to solve nonlinear problems. For a good overview on the procedures and techniques,
as well as the different schemes developed in the last half century, we refer to some standard text
books [10–13]. Some scalar schemes can be translated, in a natural way, to multivariate methods,
whereas for other ones, this translation is not possible or requires special algebraic manipulations.

It is straightforward to say from the fourth-order methods for scalar equations and systems
available in the literature [14–24] that they present free parameters only at the second step, in order
to obtain new iterative methods. In this paper, we explore the idea of including free parameters or
weight functions also in the first step. In this case, is it possible to obtain new optimal fourth-order
methods for scalar equations with simple iterative expression, smaller asymptotic error constants, and
smaller residual errors? Then, we extend this idea to a system of nonlinear equations.

Motivated and inspired by these questions, our main objective in this paper is to highlight the
advantages of the new approach over the traditional approach in building new optimal iterative
methods of fourth-order. In addition, our proposed methods not only offer faster convergence, but also
have less residual error and asymptotic error constants.

Our proposed schemes only use three functional evaluations per iteration, so they are optimal in
the sense of the Kung-Traub conjecture for scalar equations. Then, we extend this family for nonlinear
systems, preserving the order of convergence. The efficiency of the proposed schemes is tested on
several real-life problems, which allow us to conclude that the new methods perform better than or
equal to many other known schemes with the same order.

We organize the rest of the manuscript as follows. Section 2 is devoted to developing the proposed
family of optimal iterative schemes, establishing its fourth-order of convergence and presenting some
special cases that will be used in the numerical section. The extension of the proposed family to
nonlinear systems is developed in Section 3 joined with the study of its computational efficiency index
and the comparison with known schemes of fourth-order. The performance of the new methods is
analyzed with respect to real-life problems and academic ones of one or several variables and described
in Section 4. We finish this work with some conclusions and the references used in it.

2. Development of Fourth-Order Optimal Schemes

This section is devoted to describing the new family of optimal fourth-order schemes to solve
f (x) = 0, where f : D ⊆ R → R is defined in an open interval D. The iterative expression of this
family is given by: 

yn =xn − ϕ(xn)
f (xn)

f ′(xn)
,

xn+1 =zn −
f (zn)

f ′(xn)

[
1 + 2

f (zn)

f (xn)
+ α

f (xn)

f ′(xn)

]
, n = 0, 1, . . .

(1)

where ϕ(x) is a real weight function, α is a free disposable parameter, and zn is the midpoint of xn and

yn, i.e., zn =
xn + yn

2
.

Under some conditions of function ϕ, the fourth-order convergence of the elements of (1) is
presented in the following result. We can observe the role of ϕ(xn) and α in the construction of the
fourth-order convergence schemes.
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2.1. Convergence Analysis

Theorem 1. Let f : C→ C be an analytic function in a neighborhood of the required simple zero x∗. Let us
consider that initial guess x0 is close enough to x∗. Then, the members of the family (1) have fourth-order
convergence if ϕ(x∗) = 2 and α = ϕ′(x∗).

Proof. Let us denote by en = xn − x∗ the error at the nth step. By using Taylor expansion around x∗,
we get:

f (xn) = f (x∗) + f ′(x∗)(xn − x∗) + 1
2 f ′′(x∗)(xn − x∗)2 + 1

3! f ′′′(x∗)(xn − x∗)3 + . . .
= f ′(x∗)

[
en + c2e2

n + c3e3
n + c4e4

n
]
+ O(e5

n)
(2)

and:

f ′(xn) = f ′(x∗) + f ′′(x∗)(xn − x∗) + 1
2 f ′′′(x∗)(xn − x∗)2 + 1

3! f (iv)(x∗)(xn − x∗)3 + . . .
= f ′(x∗)

[
1 + 2c2en + 3c3e2

n + 4c4e3
n
]
+ O(e4

n),
(3)

where cj =
f (j)(x∗)
j! f ′(x∗)

for j ≥ 2.

Similarly, we can expand ϕ(xn) around x∗ by using Taylor’s series, which is given as follows:

ϕ(xn) = ϕ(x∗) + en ϕ′(x∗) +
e2

n
2!

ϕ′′(x∗) +
e3

n
3!

ϕ′′′(x∗) + O(e4
n). (4)

By using (2)–(4) in the first substep of (1), we have:

yn − x∗ = (1− ϕ(x∗))en + (c2 ϕ(x∗)− ϕ′(x∗))e2
n +

(
2(c3 − c2

2)ϕ(x∗) + c2 ϕ′(x∗)− ϕ′′(x∗)
2

)
e3

n

+

(
(4c3

2 − 7c3c2 + 3c4)ϕ(x∗) + 2(c3 − c2
2)ϕ′(x∗) +

c2

2
ϕ′′(x∗)− ϕ′′′(x∗)

6

)
e4

n + O(e5
n).

(5)

Once again, we expand f (zn) around point x∗, which leads to:

f (zn) = f
(

xn + yn

2

)
= f ′(x∗)

[ (
1− ϕ(x∗)

2

)
en +

1
4
{

c2(ϕ(x∗)2 − 2ϕ(x∗) + 4)− 2ϕ′(x∗)
}

e2
n +

1
8
[
4c2(ϕ(x∗)− 1)ϕ′(x∗)

− 4c2
2 ϕ(x∗)2 − c3

{
ϕ(x∗)3 − 6ϕ(x∗)2 + 4ϕ(x∗)− 8

}
− 2ϕ′(x∗)

]
e3

n

]
+ O(e4

n).
(6)

Now, we use Equations (2)–(6) in the last substep of (1), obtaining:

en+1 = − (ϕ(x∗)− 2)2

2
en +

(ϕ(x∗)− 2)
4

[
2(α− 2ϕ′(x∗)) + c2

{
2ϕ(x∗)2 + ϕ(x∗)− 6

}]
e2

n

+ M1e3
n + M2e4

n + O(e5
n),

(7)

where M1 and M2 are functions of c2, c3, c4, ϕ(x∗), ϕ′(x∗), ϕ′′(x∗) and ϕ′′′(x∗).
It is clear from the above Equation (7) that if we choose the value ϕ(x∗) = 2, then we obtain at

least cubic convergence. Therefore, by using ϕ(x∗) = 2 in the Equation (7), we further have:

en+1 =
1
2
(α− ϕ′(x∗))(ϕ′(x∗)− 2c2)e3

n + M̄2e4
n + O(e5

n), (8)

where M̄2 depends on c2, c3, c4, ϕ′(x∗), ϕ′′(x∗) and ϕ′′′(x∗).
It is straightforward to say that the coefficient of e3

n should be zero in order to obtain fourth-order
convergence. Then, we have:

α = ϕ′(x∗). (9)
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Finally, we substitute the value α = ϕ′(x∗) in Equation (8), obtaining:

en+1 =
1
4
(

ϕ′(x∗)− 2c2
) (

c2 ϕ′(x∗)− 10c2
2 + 2c3 − ϕ′′(x∗)

)
e4

n + O(e5
n), (10)

where ϕ′(x∗), ϕ′′(x∗) ∈ R are free disposable parameters. This completes the proof.

Hence, the proposed family (1) reaches fourth-order convergence by using only three functional
evaluations (viz. f (xn), f ′(xn), and f (zn)) per iteration. Therefore, it satisfies the optimality of the
Kung-Traub conjecture [25] for multi-point iterative methods without memory. It is vital to note that
the values of ϕ(xn) and α contribute to the construction of the desired fourth-order convergence.

2.2. Some Particular Cases

In this section, some particular cases of the family (1) are presented, by assigning different types
of function h(x). In Table 1, we show different expressions of function h(x). Moreover, we can find
new and interesting iterative methods obtained from different functions h(x) satisfying the conditions
of Theorem 1.

Table 1. Some particular cases of (1).

ϕ(x) Second Step Corresponding to ϕ(x)

Case-1 2 xn+1 = zn −
f (zn)

f ′(xn)

[
1 + 2

f (zn)

f (xn)

]

Case-2
2 + φ(x)− x,

xn+1 = zn −
f (zn)

f ′(xn)

[
1 + 2

f (zn)

f (xn)
− f (xn)

f ′(xn)

]
where φ(x) is any
second-order iterative method.

Case-3

2 + a f (x)b,

xn+1 = zn −
f (zn)

f ′(xn)

[
1 + 2

f (zn)

f (xn)

]
where a ∈ R and
b > 2, otherwise h′′(x∗)
will be unbounded.

Case-4
2a

a + b f (x)
, xn+1 = zn −

f (zn)

f ′(xn)

[
1 + 2

f (zn)

f (xn)
− 2b

a
f (xn)

]
where a 6= 0, b ∈ R

Case-5 1 +
1 + a f (x)
1 + b f (x)

, xn+1 = zn −
f (zn)

f ′(xn)

[
1 + 2

f (zn)

f (xn)
+ (a− b) f (xn)

]
where a, b ∈ R

Remark 1. It is important to note in Case-2 that if we consider any second-order iteration, which only employs
the function of f (xn) and f ′(xn), then we will obtain optimal fourth-order convergence. Otherwise, if we
consider any other iteration function, then we will also obtain fourth-order convergence, but not optimal in the
sense of the Kung-Traub conjecture, e.g., if we choose φ(x) as Steffensen’s method or a Steffensen-type method,
which further produces a new fourth-order iterative method, but not optimal.

3. Multidimensional Extension

Let us consider now the nonlinear system F(x) = 0, defined by a multidimensional function
F : D ⊆ Rm −→ Rm, the zero x̄ for which we are searching. Our aim is to generalize the family
(1) to nonlinear systems, and the main drawback is the existence of the quotient f (zn)/ f (xn).
This usually makes the method non-extendable to several variables, but in the recent literature (see
for example, [26,27]), the authors solved it by means of the following strategy: the quotient can be
written as:

f (zn)

f (xn)
= 1 +

f (zn)− f (xn)

f (xn)
,
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but yn − xn = 2(zn − xn); and from first step of (1), we have f (xn) =
(xn − yn) f ′(xn)

ϕ(xn)
. Therefore,

f (zn)

f (xn)
= 1 + ϕ(xn)

f (zn)− f (xn)

(xn − yn) f ′(xn)
= 1− 1

2
ϕ(xn)

f [xn, zn]

f ′(xn)
,

where f [xn, zn] is the first-order divided difference. Now, the class (1) can be written in the following
way for nonlinear systems: y(n) =x(n) − H(x(n))[F′(x(n))]−1F(xn),

x(n+1) =z(n) −
[
3I − H(x(n))[F′(x(n))]−1[x(n), z(n); F]

]
[F′(x(n))]−1F(z(n)),

(11)

where H(x) is a matrix-valued function and z(n) is the midpoint of x(n) and y(n), i.e., z(n) =
x(n) + y(n)

2
.

The divided difference operator [x, y; F] is the map [·, ·; F] : D× D ⊂ Rm ×Rm → L(Rm) defined
by Ortega and Rheinboldt in [10], such that [x, y; F](x − y) = F(x) − F(y), ∀x, y ∈ D. In order to
obtain the Taylor expansion of the divided difference operator around the solution x̄, we use the
Genocchi-Hermite formula (see [28]):

[x, x + h; F] =
∫ 1

0
F′(x + th)dt

and by developing F′(x + th) around x, we obtain:

∫ 1

0
F′(x + th)dt = F′(x) +

1
2

F′′(x)h +
1
6

F′′′(x)h2 + O(h3). (12)

If F′(x̄) is nonsingular and denoting e = x− x̄, we have:

F(x) = F′(x̄)(e + C2e2 + C3e3 + C4e4 + C5e5) + O(e6),

F′(x) = F′(x̄)(I + 2C2e + 3C3e2 + 4C4e3 + 5C5e4+) + O(e5),

F′′(x) = F′(x̄)(2C2 + 6C3e + 12C4e2) + O(e3),

F′′′(x) = F′(x̄)(6C3 + 24C4e) + O(e2),

(13)

where Cq =
1
q!
[F′(x̄)]−1F(q)(x̄), q ≥ 2. Replacing these expressions in (12) and using y = x + h and

ey = y− x̄, we have:
[x, y; F] = F′(x̄)[I + C2(ey + e) + C3e2] + O(e3).

In particular, if y is Newton’s approximation, i.e., h = x− y = [F′(x)]−1F(x), we obtain:

[x, y; F] = F′(x̄)[I + C2e + (C2
2 + C3)e2] + O(e3).

The following result establishes the sufficient conditions for the convergence of family (11) with
order four. The notation used for multidimensional Taylor expansions can be found in [29].

Theorem 2. Let F : Ω ⊆ Rm −→ Rm be three times differentiable in an open neighborhood Ω of x̄ ∈ Rm,
which is a solution of F(x) = 0, and x(0) is an initial guess close enough to x̄. If F′(x) is continuous and
nonsingular in x̄, then sequence {x(n)}n≥0 obtained from (11) converges to x̄ with order 4 when H(x̄) = 2I,
H′(x̄) = 0 (is a null matrix), and H′′(x̄) is bounded, the error equation being in this case:

e(n+1) = C2

[
−C3 + 5C2

2 +
1
2

H′′(x̄)
]

e4 + O(e5),
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where Cq =
1
q!
[F′(x̄)]−1F(q)(x̄), q = 2, 3, . . ., and e(n) = x(n) − x̄.

Proof. By using Taylor expansion of F(x(n)) and F′(x(n)) around x̄,

F(x(n)) = F′(x̄)
[
e + C2e2 + C3e3 + C4e4 + C5e5

]
+ O(e6),

F′(x(n)) = F′(x̄)
[

I + 2C2e + 3C3e2 + 4C4e3 + 5C5e4
]
+ O(e5).

From the above expression and forcing [F′(x(n))]−1F′(x(n)) = F′(x(n))[F′(x(n))]−1 = I, we have:

[F′(x(n))]−1 =
[

I + X2e + X3e2 + X4e3
]
[F′(x)]−1 + O(e4),

where:
X2 = −2C2,

X3 = −3C3 + 4C2
2 ,

X4 = −4C4 + 6C2C3 + 6C3C2 − 8C3
2 ,

Then,[
F′(x(n))

]−1
F(x(n)) = e− C2e2 + 2(C2

2 − C3)e3 + (4C2C3 + 3C3C2 − 4C3
2 − 3C4)e4 + O(e6).

As H(x(n)) can be developed in the following way:

H(x(n)) = H(x̄) + H′(x̄)e +
1
2

H′′(x̄)e2 + O(e5),

the error at the first step is:

y(n) − x̄ = (I − H(x̄))e + (H(x̄)C2 − H′(x̄))e2 +

(
2H(x̄)(C3 − C2

2) + H′(x̄)C2 −
1
2

H′′(x̄)
)

e3

+

(
3H(x̄)C4 − 4H(x̄)C2C3 − 3H(x̄)C3C2 + 4H(x̄)C3

2 + 2H′(x̄)(C3 − C2
2) +

1
2

H′′(x̄)C2

)
e4

+O(e5)

and the error at midpoint z(n) is:

z(n) − x̄ = (I − 1
2

H(x̄))e +
1
2
(H(x̄)C2 − H′(x̄))e2 +

(
H(x̄)(C3 − C2

2) +
1
2

H′(x̄)C2 −
1
4

H′′(x̄)
)

e3

+

(
3
2

H(x̄)C4 − 2H(x̄)C2C3 −
3
2

H(x̄)C3C2 + 2H(x̄)C3
2 + H′(x̄)(C3 − C2

2) +
1
4

H′′(x̄)C2

)
e4

+O(e5).

In order to guaranty the quadratic convergence for z(n), we need to assure that H(x̄) = 2I. Therefore,

F(z(n)) = F′(x̄)
[
(z(k) − x̄) + C2(z(k) − x̄)2

]
+ O((z(k) − x̄)3)

= F′(x̄)
[
(C2 −

1
2

H′(x̄))e2 + (2(C3 − C2
2) +

1
2

H′(x̄)C2 −
1
4

H′′(x̄))e3

+

(
3C4 − 4C2C3 − 3C3C2 + 5C3

2 + H′(x̄)(C3 − C2
2) +

1
4

H′′(x̄)C2 −
1
2

C2
2 H′(x̄)

−1
2

H′(x̄)C2 +
1
2

C2H′(x̄)2
)

e4 + O(e5).
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In order to obtain the error equation, we calculate:[
x(n), z(n); F

]
= F′(x(n)) + F′′(x(n))(z(n) − x(n)) + Or((z(n) − x(n))2)

= F(x̄)
[

I + C2e + (C3 + C2
2 −

1
2

C2H′(x̄))e2
]
+ O(e3).

Therefore, the error at the final step is:

e(n+1) = z(n) − x̄−
[
3I − H(x(n))[F′(x(n))]−1[x(n), z(n); F]

]
[F′(x(n))]−1F(z(n))

= (H′(x̄)C2 −
1
2

H′(x̄)2)e3 +
(
− C3C2 + 5C3

2 + 2H′(x̄)C3 − 5H′(x̄)C2
2

+
1
2

H′′(x̄)C2 +
15
2

C2
2 H′(x̄)− 1

2
C2H′(x̄)C2 +

1
4

C2H′(x̄)2 +
1
2

C3H′(x̄)− 10C3
2 H′(x̄)

+
3
2

H′(x̄)C2H′(x̄) +
1
2

H′(x̄)2C2 −
1
4

H′(x̄)H′′(x̄)− 1
4

H′′(x̄)H′(x̄)
)

e4 + O(e5).

By assuming H′(x̄) = 0, the error equation of the method is obtained.

e(n+1) = C2

[
−C3 + 5C2

2 +
1
2

H′′(x̄)
]

e4 + O(e5).

Some Special Cases and Their Computational Indices

Now, we present some particular cases of the family (11) by using different functions H(x). In the
following, we show several selected functions. Let us remark that if H(x̄) = 2I, the method is not new,
as it appears in [30]. In the following, we focus our attention on the new schemes, describing in each
case the computational effort that they involve, in terms of functional evaluations d and the amount
of products and quotients op. By using this information, we are going to use the multidimensional
extension of the efficiency index defined by Ostrowski in [31] as I = p1/d and the computational
efficiency index CI defined in [29] as CI = p1/(d+op), where p is the order of convergence, d is the
number of functional evaluations per iteration, and op is the number of products-quotients per iteration.

• If H(x) = 2I + a
(

diag(F(x(n)))
)b

is replaced in (11), the resulting scheme is denoted as Scase-1,
a 6= 0, b ∈ R.

• We denote by Scase-2 the iterative scheme resulting from using H(x) = 2I +

a
(
[diag(F′(x(n)))]−1diag(F(x(n)))

)b
in (11).

• By substituting H(x) = 2I + a
(

F′(x(n))diag(F(x(n)))
)b

in (11), procedure Scase-3 is obtained.

• If we replace H(x) = 2I + a
(
[F′(x(n))]−1diag(F(x(n)))

)b
in (11), the resulting method is

called Scase-4.

In order to compare our proposed schemes with other similar ones (of the same order of
convergence) existing in the literature, we introduce in what follows some of them, including their
respective iterative expressions. This will allow us to calculate their corresponding efficiency indices.

In 2008, Nedzhibov [14] extended the original Jarratt’s method (see [15]) for the multi-dimensional
case with the help of the Chebyshev-Halley family, whose iterative expression is:

y(n) = x(n) − 2
3
[F′(x(n))]−1F(x(n)),

x(n+1) = x(n) − 1
2
[3F′(y(n))− F′(x(n))]−1[3F′(y(n)) + F′(x(n))][F′(x(n))]−1F(x(n)),

(14)
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denoted in the following as JM.
On the other hand, Hueso et al. in [17] (Equations (1)–(5)) designed the fourth-order scheme:

y(n) = x(n) − 2
3
[F′(x(n))]−1F(x(n)),

x(n+1) = x(n) −
[
S1 I + S2H(y(n), x(n)) + S3H(x(n), y(n)) + S4H(y(n), x(n))2

]
[F′(x(n))]−1F(x(n)),

(15)

where H(x, y) = [F′(x)]−1F′(y), S1 =
5− 8S2

8
, S3 =

S2

3
, S4 =

9− 8S2

24
and S2 ∈ R is a free

disposable parameter. This scheme is denoted throughout the manuscript as HM for S2 =
9
8

.
Moreover, Junjua et al. in [18] designed a Jarratt-type scheme of the fourth-order of convergence,

denoted as JAM, whose iterative expression is:

y(n) = x(n) − 2
3
[F′(x(n))]−1F(x(n)),

x(n+1) = x(n) −
[

I +
1
4
(η(x(n))− I) +

3
8
(η(x(n))− I)2

]
[F′(y(n))]−1F(x(n)),

(16)

where η(x(n)) = [F′(x(n))]−1F′(y(n)).
In Table 2, the efficiency indices I of the new methods Scase-1, Scase-2, Scase-3, and Scase-4 are

presented, together with the known methods JM, HM, and JAM. The number of functional evaluations
in all these schemes is different, but the order of convergence is the same. To calculate the efficiency
index I, it must be taken into account that the number of functional evaluations of one F, F′, and
first-order-divided difference [·, ·; F] at certain iterates are m, m2, and m(m− 1), respectively, m being
the size of the system. Despite the differences in the structure of the new and existing methods, index
I is the same for all of them.

Table 2. Efficiency index for different schemes.

Method No. F No. F′ No. [·, ·; F] Functional Evaluations I

Scase-1 2 1 1 2m2 + m 4
1

2m2+m

Scase-2 2 1 1 2m2 + m 4
1

2m2+m

Scase-3 2 1 1 2m2 + m 4
1

2m2+m

Scase-4 2 1 1 2m2 + m 4
1

2m2+m

JM 1 2 0 2m2 + m 4
1

2m2+m

HM 1 2 0 2m2 + m 4
1

2m2+m

JAM 1 2 0 2m2 + m 4
1

2m2+m

On the other hand, to compute an inverse linear operator, we solve an m×m linear system, where
as we know, the number of products-quotients that we need to perform to obtain the solution of the

system by means of the LU decomposition is
1
3

m3 + m2 − 1
3

m In addition, we need m2 products for

matrix-vector multiplication and m2 quotients for a divided difference.
Therefore, we calculate the CI of method Scase-1. For each iteration, we need to evaluate

function F twice, once Jacobian F′, and once the divided difference, so 2m2 + m functional
evaluations are needed. In addition, we must solve three linear systems with F′(x(n)) as coefficients

matrix (that is,
1
3

m3 + 3m2 − 1
3

m products-quotients), m2 quotients for calculating the divided

difference, one matrix-vector product (m2 products-quotients), and three vector-vector products
(3m products-quotients). Therefore, the value of index CI for method Scase-1 on a nonlinear system of
size m×m is:
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CIScase-1 = 4
1

1
3 m3+7m2+ 11

3 m .

In Table 3, we show index CI of schemes Scase-1, Scase-2, Scase-3, Scase-4, JM, HM, and JAM. In it,
NFE denotes the number of functional evaluations, NLS1 is the number of linear systems with the
matrix of coefficients F′(x(n)) to be solved, NLS2 is the number of linear systems with other matrices of
coefficients that are solved, and M×V, V ×V denote the number of matrix-vector and vector-vector
products, respectively.

Table 3. Functional evaluations and products-quotients of the methods. NFE, number of functional
evaluations; NLS1, number of linear systems.

Method NFE NLS1 NLS2 [·, ·; F] M× V V × V CI

Scase-1 2m2 + m 3 0 1 1 3 4
1

1
3 m3+7m2+ 11

3 m

Scase-2 2m2 + m 3 0 1 1 2 4
1

1
3 m3+7m2+ 14

3 m

Scase-3 2m2 + m 3 0 1 5 4 4
1

1
3 m3+11m2+ 14

3 m

Scase-4 2m2 + m 7 0 1 1 4 4
1

1
3 m3+11m2+ 14

3 m

JM 2m2 + m 1 1 0 1 0 4
1

2
3 m3+5m2+ 1

3 m

HM 2m2 + m 2 3 0 2 0 4
1

2
3 m3+9m2+ 1

3 m

JAM 2m2 + m 3 1 0 1 0 4
1

2
3 m3+7m2+ 1

3 m

We observe that, although index I is the same in all these cases, this is not the case of index CI,
since the number of inverse linear operators is different for each scheme. In Figure 1, index CI for those
methods and systems of size from 2–20 is shown. We can observe that, for a size of the system greater
than eight, the best index corresponds to the proposed methods Scase-1 and Scase-2, due to the number
of linear systems to be solved and the factor of the dominating term, that is 1

3 m3, in comparison to 2
3 m3

in other schemes.

2 3 4 5 6 7 8 9 10

Size of the system m

1

1.01

1.02

1.03

1.04

1.05

C
I

Computational index

Scase-1

Scase-2

Scase-3-4

JM

HM

JAM

(a) Size from 2–10

12 13 14 15 16 17 18 19 20

Size of the system m

1

1.0001

1.0002

1.0003

1.0004

1.0005

1.0006

1.0007

1.0008

1.0009

1.001

C
I

Computational Efficiency

Scase-1

Scase-2

Scase-3-4

JM

HM

JAM

(b) Size from 12–20

Figure 1. Index CI for different sizes of the system.

4. Numerical Examples

In this section, we show the effectiveness and efficiency of some of our proposed methods, and
we compare them with other existing optimal (scalar case) iterative schemes of the same order. In the
one-dimensional case, for comparison purposes, we consider some cases from Table 1, Case-1, Case-3(

for a = 1
10 , b = 3

)
, Case-4 (for a = 10 and b = 2), and Case-5 (for a = 1 and b = 1), called OM1,

OM2, OM3, and OM4, respectively. In addition, we consider three real-life problems, e.g., a chemical
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engineering problem, the movement of an electron in the air space between two parallel plates, and the
fractional conversion in a chemical reactor problem, which are displayed in Examples 1–3. In addition,
the solution to the corresponding problem is also listed in the corresponding example, which is
correct up to 30 significant digits. However, the desired roots are available up to several significant
digits (a minimum of one thousand), but due the page limit restriction, only 30 significant digits
are displayed.

Now, we compare them with the optimal fourth-order multi-point iteration function proposed by
Khattri and Abbasbandy [32] and Soleymani et al. [33]; from them, we considered methods (6) and
(19) denoted as (KA) and (SKV), respectively. In addition, we also compare them with the optimal
schemes of order four, which were presented by Chun [34] and King [35]; we have picked expressions
(10) and (2) (for β = 1) from them, called (CM) and (KM), respectively. Finally, we also compare them
with another optimal family of fourth-order methods derived by Cordero et al. [36], from which we
have chosen expression (9), called (CHMT).

We compare our proposed methods with the existing ones in terms of the absolute residual
error of the corresponding function | f (xn)|, errors between the two consecutive iterations |xn+1 − xn|,∣∣∣∣ xn+1 − xn

(xn − xn−1)4

∣∣∣∣, and the asymptotic error constant η = lim
n→∞

∣∣∣∣ xn+1 − xn

(xn − xn−1)4

∣∣∣∣ in Tables 4–6.

We calculate the asymptotic error constant and other constants up to several significant digits
(a minimum of 1000 significant digits) to minimize the round-off error. We show the values of xn, the
absolute residual error in the function | f (xn)|, the difference between the two consecutive iterations
|xn+1 − xn|, and the values of

∣∣∣ xn+1−xn
(xn−xn−1)4

∣∣∣ and η.
In the context of nonlinear systems, we also consider two applied science problems to check

further the validity of the theoretical results for the nonlinear system. We shall compare them with
the methods, namely (14)–(16), called JM, HM, and JAM, respectively. We have included the number
of iteration indexes (n), the residual error of the corresponding function (‖F(x(n+1))‖), the error
in the iterations ‖x(n+1) − x(n)‖, and the approximated computational order of convergence ρ =

log
[
‖x(n+1)−x(n)‖/‖x(n)−x(n−1)‖

]
log
[
‖x(n)−x(n−1)‖/‖x(n−1)−x(n−2)‖

] (for details, see Cordero and Torregrosa [37]) in Tables 7 and 8.

All computations have been performed using the software Mathematica 9 (Wolfram Research,
Champaign, IL, USA) with multiple precision arithmetic, and in Tables 4–8, A(±B) denotes the number
A× 10(±B).

Example 1. We consider a quartic equation from Shacham, Balaji, and Seader [1,2], which describes the
fractional conversion, that is the fraction of the nitrogen-hydrogen feed getting converted to ammonia. If we
consider 250 atm and 500 ◦C, then the equation has the form:

f2(z) = z4 − 7.79075z3 + 14.7445z2 + 2.511z− 1.674. (17)

Function (17) has four zeros, two real zeros, and two conjugated complexes. We want to obtain the zero
x∗ ≈ 3.9485424455620457727 + 0.3161235708970163733i with initial approximation x0 = 3.7 + 0.25i.
Other initial approaches further away from the solution give similar numerical results, with a slower approach to
the solution.

Example 2. In the analysis of the movement of an electron in the air gap between two parallel plates,
the multi-factor effect is given by:

p(t) =p0 +

(
v0 + e

E0

mω
sin(ωt0 + α)

)
(t− t0) + e

E0

mω2

(
cos(ωt + α) + sin(ω + α)

)
, (18)
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e and m, respectively, being the charge and the mass of the electron, p0 and v0 being, respectively, the position
and velocity of the electron at instant t0, and also E0 sin(ωt + α) being the RF electric field between the plates.
By selecting some values of the parameters in Equation (17), to simplify the expression, we obtain:

f3(x) = x− 1
2

cos(x) +
π

4
. (19)

This function has a simple zero at x∗ ≈ −0.309093271541794952741986808924, and we use the initial
estimation of one.

Example 3. In expression (see [3]),

f4(x) =
x

1− x
− 5 log

[
0.4(1− x)
0.4− 0.5x

]
+ 4.45977, (20)

where x denotes the fractional conversion of Species A in a chemical reactor. We must take into account that there
is no physical meaning to this expression if x < 0 or x > 1. Then, x is considered in the interval 0 ≤ x ≤ 1.
The searched zero is x∗ ≈ 0.757396246253753879459641297929. Indeed, let us remark that expression (20) is
undefined in 0.8 ≤ x ≤ 1, very near to the zero. The derivative of expression (20) is close to zero in 0 ≤ x ≤ 0.5.
Therefore, we consider the initial approximation to be x0 = 0.76 for this problem.

Table 4. Convergence behavior of the different fourth-order optimal methods for f2(x).

Cases n xn | f (xn)| |xn+1− xn|
∣∣∣ xn+1−xn
(xn−xn−1)4

∣∣∣ η

KA
1 4.06831779454242 + 0.32664091245691i 1.3(−) 1.2(−1)
2 3.94566403244595 + 0.31195820042558i 5.1(−2) 5.1(−3) 2.8685 3.7507
3 3.94854247724924 + 0.31612357071166i 3.2(−7) 3.7(−8) 3.7507

SKV
1 3.99435611429986 + 0.36507812608361i 7.5(−1) 6.7(−2)
2 3.94874528304345 + 0.31606965860747i 2.1(−3) 2.1(−4) 3.7147 3.9136
3 3.94854244556205 + 0.31612357089705i 3.4(−13) 3.3(−14) 3.9136

CM
1 3.98466616205972 + 0.38743296774392i 9.2(−1) 8.0(−2)
2 3.94878185252247 + 0.31634115609934i 3.3(−3) 3.2(−4) 3.9938 3.9005
3 3.94854244556214 + 0.31612357089689i 1.5(−12) 1.5(−13) 3.9005

KM
1 3.97985638724627 + 0.36440676727915i 6.4(−1) 5.7(−2)
2 3.94863621913203 + 0.31615261583746i 9.9(−4) 9.8(−5) 3.8383 3.9314
3 3.94854244556204 + 0.31612357089702i 1.3(−14) 1.3(−15) 3.9314

CHMT
1 4.00173953283203 + 0.36617288922003i 8.2(−1) 7.3(−2)
2 3.94882489377247 + 0.31598753843337i 3.2(−3) 3.1(−4) 3.6593 3.9027
3 3.94854244556219 + 0.31612357089712i 1.8(−12) 1.8(−13) 3.9027

OM1
1 4.01399307003023 + 0.35890761473628i 8.8(−1) 7.8(−2)
2 3.94881862583921 + 0.31570149393965i 5.1(−3) 5.0(−4) 3.4856 3.8875
3 3.94854244556209 + 0.31612357089548i 1.6(−11) 1.5(−12) 3.8875

OM2
1 4.12288139593880 + 0.38749751766959i 2.4(−) 2.2(−1)
2 3.90767119668767 + 0.32432746535133i 4.2(−1) 4.2(−2) 2.4576 3.8283
3 3.94858535174257 + 0.31617458259283i 6.7(−4) 6.7(−5) 3.8283

OM3
1 3.96901080029588 + 0.32053604782876i 2.2(−1) 2.1(−2)
2 3.94854330300287 + 0.31612265035071i 1.3(−5) 1.3(−6) 3.7580 4.0300
3 3.94854244556205 + 0.31612357089702i 1.2(−22) 1.2(−23) 4.0300

OM4
1 4.01399307003023 + 0.35890761473628i 8.8(−1) 7.8(−2)
2 3.94881862583921 + 0.31570149393965i 5.1(−3) 5.0(−4) 3.4856 3.8875
3 3.94854244556209 + 0.31612357089548i 1.6(−11) 1.5(−12) 3.8875
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Table 5. Convergence behavior of different fourth-order optimal methods for f3(x).

Cases n xn | f (xn)| |xn+1− xn|
∣∣∣ xn+1−xn
(xn−xn−1)4

∣∣∣ η

KA
1 −0.25417804552034148536 4.7(−2) 5.5(−2)
2 −0.30909163590606450952 1.4(−6) 1.6(−6) 3.3312 3.9907
3 −0.30909327154179495274 1.2(−24) 1.4(−24) 3.9907

SKV
1 −1.9228013411768680913 9.7(−1) 1.9(+1)
2 16.956846304184010120 1.8(+1) 5.7(+7) 7.9958 4.7137
3 −5.6776688150342258615(+7) 5.7(+7) 2.0(+38) 4.7137

CM
1 −0.27247767593361877437 3.1(−2) 3.1(−2)
2 −0.30909316991236159145 8.6(−8) 1.0(−7) 3.6059 3.9979
3 −0.30909327154179495274 5.3(−30) 6.2(−30) 3.9979

KM
1 −0.27395213337785257000 3.0(−2) 3.5(−2)
2 −0.30909318584556631521 7.3(−8) 8.6(−8) 3.5995 3.9975
3 −0.30909327154179495274 2.7(−30) 3.1(−30) 3.9975

CHMT
1 −0.26958019693473408634 3.4(−2) 4.0(−2)
2 −0.30909308449385539179 1.6(−7) 1.9(−7) 3.5336 3.9964
3 −0.30909327154179495274 8.3(−29) 9.8(−29) 3.9964

OM1
1 −0.26631675279431609571 3.7(−1) 4.3(−2)
2 −0.30909294799418381577 2.7(−7) 3.2(−7) 3.4807 3.9951
3 −0.30909327154179495274 9.5(−28) 1.1(−27) 3.9951

OM2
1 −0.28888414806339401078 1.7(−2) 2.0(−2)
2 −0.30909325486518945619 1.4(−8) 1.7(−8) 3.3709 3.9983
3 −0.30909327154179495274 6.7(−33) 7.9(−33) 3.9983

OM3
1 −0.15994222854937208373 1.3(−1) 1.5(−1)
2 −0.30899020010081667265 8.7(−5) 1.0(−4) 3.5463 3.9729
3 −0.30909327154179492402 2.4(−17) 2.9(−17) 3.9729

OM4
1 −0.26631675279431609571 3.7(−2) 4.3(−2)
2 −0.30909294799418381577 2.7(−7) 3.2(−7) 3.4807 3.9951
3 −0.30909327154179495274 9.5(−28) 1.1(−27) 3.9951

Example 4. Considering the mixed Hammerstein integral equation, from Ortega and Rheinbolt [10], given by:

x(s) = 1 +
1
5

∫ 1

0
G(s, t)x(t)3dt (21)

where x ∈ C[0, 1], s, and t belong to [0, 1], and kernel G is defined as (1− s)t if t ≤ s and as s(1− t) when
s ≤ t.

We use the Gauss-Legendre quadrature formula with ten nodes tj and weights wj (see Table 9), j =

1, 2, . . . , 10, to transform the integral equation into a nonlinear system. By denoting the approximations of x(ti)

by xi, i = 1, 2, ..., 10, one gets the nonlinear system:

5xi − 5−
10

∑
j=1

aijx3
j = 0,

where i = 1, 2, ..., 10, and:

aij =

{
wjtj(1− ti), j ≤ i,

wjti(1− tj), i < j,
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Table 6. Convergence behavior of different fourth-order optimal methods for f4(x).

Cases n xn | f (xn)| |xn+1− xn|
∣∣∣ xn+1−xn
(xn−xn−1)4

∣∣∣ η

KA
1 0.75739764681484808246 1.1(−4) 1.4(−6)
2 0.75739624625375387959 1.0(−17) 1.3(−19) 3.9858 4.0000
3 0.75739624625375387946 7.9(−70) 9.9(−72) 4.0000

SKV
1 0.75739672982865568692 3.9(−5) 4.8(−7)
2 0.75739624625375387946 4.8(−20) 6.0(−22) 3.9955 4.0000
3 0.75739624625375387946 1.4(−79) 1.4(−81) 4.0000

CM
1 0.75739660630557206625 2.9(−5) 3.6(−7)
2 0.75739624625375387946 1.0(−20) 1.3(−22) 4.0011 4.0000
3 0.75739624625375387946 1.8(−82) 2.2(−84) 4.0000

KM
1 0.75739659212374876149 2.8(−5) 3.5(−7)
2 0.75739624625375387946 8.9(−21) 1.1(−22) 3.9966 4.0000
3 0.75739624625375387946 9.4(−83) 1.2(−84) 4.0000

CHMT
1 0.75739676303951339051 4.1(−5) 5.2(−7)
2 0.75739624625375387946 6.7(−20) 8.4(−22) 3.9950 4.0000
3 0.75739624625375387946 4.6(−79) 5.8(−81) 4.0000

OM1
1 0.75739692085844618425 5.4(−5) 6.7(−7)
2 0.75739624625375387946 2.6(−19) 3.3(−21) 3.9917 4.0000
3 0.75739624625375387946 1.4(−76) 1.8(−78) 4.0000

OM2
1 0.75739683227987612611 4.7(−5) 5.9(−7)
2 0.75739624625375387946 1.5(−19) 1.9(−21) 3.9751 4.0000
3 0.75739624625375387946 1.5(−77) 1.9(−79) 4.0000

OM3
1 0.75739622120709837787 2.0(−6) 2.5(−8)
2 0.75739624625375387946 2.2(−27) 2.7(−29) 4.1779 4.0000
3 0.75739624625375387946 3.2(−111) 4.0(−113) 4.0000

OM4
1 0.75739692085844618425 5.4(−5) 6.7(−7)
2 0.75739624625375387946 2.6(−19) 3.3(−21) 3.9917 4.0000
3 0.75739624625375387946 1.4(−76) 1.8(−78) 4.0000

In Table 7, we show the numerical results obtained by using x0 = (1, 1, . . . , 1)T to search the root:

x̄ ≈ (1.0013 . . . , 1.0067 . . . , 1.0145 . . . , 1.0219 . . . , 1.0265 . . . , 1.0265 . . . , 1.0219 . . . , 1.0145 . . . , 1.0067 . . . , 1.0013 . . . )T .
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Table 7. Convergence behavior of different fourth-order methods for Example 4.

Cases n ‖F(x(n+1))‖ ‖x(n+1)− x(n)‖ ρ

Scase-1 (a = 1/200, b = 3)
1 7.1(−9) 1.5(−9)
2 5.5(−39) 1.2(−39)
3 2.5(−159) 5.3(−160) 3.996

Scase-2 (a = 1/200, b = 3)
1 9.1(−9) 2.0(−9)
2 1.9(−38) 4.0(−39)
3 3.6(−157) 7.7(−158) 3.999

Scase-3 (a = 1/200, b = 3)
1 4.5(−7) 9.6(−8)
2 1.6(−3) 3.4(−32)
3 1.9(−129) 4.1(−130) 4.005

Scase-4 (a = 1/200, b = 3)
1 9.7(−9) 2.1(−9)
2 2.4(−38) 5.2(−39)
3 1.0(−156) 2.2(−157) 3.999

JM
1 5.9(−9) 1.3(−9)
2 2.0(−39) 4.3(−40)
3 2.9(−161) 6.2(−162) 3.999

HM
1 7.1(−9) 1.5(−9)
2 5.4(−39) 1.2(−39)
3 1.8(−159) 3.8(−160) 3.999

JAM
1 7.1(−9) 1.5(−9)
2 5.4(−39) 1.2(−39)
3 1.8(−159) 3.8(−160) 3.999

Example 5. Let us consider the following boundary value problem described in [10]:

y′′ =
1
2

y3 + 3y′ − 3
2− x

+
1
2

, y(0) = 0, y(1) = 1. (22)

We partition the interval [0, 1] as follows:

x0 = 0 < x1 < x2 < x3 < · · · < xn, where xi+1 = xi + h, h =
1
n

,

and we also consider y0 = y(x0) = 0, y1 = y(x1), . . . , yn−1 = y(xn−1), yn = y(xn) = 1. Now,
we discretize problem (22) by using the following approximations of the derivatives:

y′j ≈
yj+1 − yj−1

2h
, y′′j ≈

yj−1 − 2yj + yj+1

h2 , j = 1, 2, . . . , n− 1.

Therefore, a nonlinear system of size (n− 1)× (n− 1) is obtained:

yj+1 − 2yj + yj−1 −
h2

2
y3

j −
3

2− xj
h2 − 3

yj+1 − yj−1

2
h− 1

h2 = 0, k = 1, 2, . . . , n− 1.

If we use the initial guess y(0) =
(

1
10 , 1

10 , 1
10 , 1

10 , 1
10 , 1

10

)T
, to solve the nonlinear system obtained for

n = 7, we obtain the solution:

x̄ ≈
(
0.07654393 . . . , 0.1658739 . . . , 0.2715210 . . . , 0.3984540 . . . , 0.5538864 . . . , 0.7486878 . . .

)T ,

and the numerical results are shown in Table 8.
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Table 8. Convergence behavior of different fourth-order methods for Example 5.

Cases n ‖F(x(n+1))‖ ‖x(n+1)− x(n)‖ ρ

Scase-1 (a = 1/200, b = 3)
1 1.8(−5) 3.3(−5)
2 1.2(−22) 2.4(−22)
3 2.9(−91) 6.2(−91) 4.000

Scase-2 (a = 1/200, b = 3)
1 3.4(−5) 4.0(−5)
2 2.5(−22) 3.9(−22)
3 2.0(−90) 3.8(−90) 3.998

Scase-3 (a = 1/200, b = 3)
1 1.2(−5) 2.1(−5)
2 1.5(−23) 3.0(−23)
3 7.0(−95) 1.5(−94) 3.998

Scase-4 (a = 1/200, b = 3)
1 3.2(−5) 4.0(−5)
2 2.5(−22) 4.0(−22)
3 2.2(−90) 4.3(−90) 3.998

JM
1 2.8(−5) 4.0(−5)
2 3.5(−22) 6.2(−22)
3 1.8(−89) 3.7(−89) 3.998

HM
1 2.7(−5) 3.9(−5)
2 2.8(−22) 5.1(−22)
3 7.3(−90) 1.5(−89) 3.998

JAM
1 2.7(−5) 3.9(−5)
2 2.8(−22) 5.1(−22)
3 7.3(−90) 1.5(−89) 3.998

Table 9. Values of abscissas tj and weights wj.

j tj wj

1 0.01304673574141413996101799 0.03333567215434406879678440
2 0.06746831665550774463395165 0.07472567457529029657288816
3 0.16029521585048779688283632 0.10954318125799102199776746
4 0.28330230293537640460036703 0.13463335965499817754561346
5 0.42556283050918439455758700 0.14776211235737643508694649
6 0.57443716949081560544241300 0.14776211235737643508694649
7 0.71669769706462359539963297 0.13463335965499817754561346
8 0.83970478414951220311716368 0.10954318125799102199776746
9 0.93253168334449225536604834 0.07472567457529029657288816
10 0.98695326425858586003898201 0.03333567215434406879678440

Results and Discussion

We can say from Tables 4–6 that our methods had smaller residual error, in each test function,
than the known methods used for comparison, namely KA, SKV, CM, KM, and CHMT. In addition,
our methods also had a smaller distance between two consecutive iterations. Therefore, our method
converged faster towards the exact root as compared to the existing ones. On the other hand,
the proposed methods also had a simple asymptotic error constant corresponding to each test function,
which can be seen in Tables 4–6. A similar type of behavior of our methods was found in the case
of the multidimensional extension, which is mentioned in Tables 7 and 8. However, our methods
could have different behaviors depending on the nonlinear equation. Actually, the behavior of the
iterative methods mainly depended on the complexity of the iterative expression, the test function
used, the initial guess, the programming of the scheme, etc.
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5. Conclusions

In the past, several researchers proposed optimal multi-point fourth-order iterative methods for
simple roots of nonlinear equations, by using weight functions or free parameters only in the second
scheme. In this paper, we design a family of two-step optimal iterative methods with fourth-order
convergence, including weight functions and parameters in the two steps of the methods. The main
strength of our proposed schemes is that they not only give flexibility to researchers at both steps for
constructing new optimal fourth-order methods, but also give a faster convergence, a small residual
error corresponding to the involved function, and asymptotic error constants in relation to other
known schemes. In addition of this, the local convergence analysis of the suggested schemes was
proven through Lipschitz constants and the Banach lemma in order to calculate the local convergence
radius. Moreover, we extended the proposed scheme to systems of nonlinear equations, preserving
the same order of convergence and the same beauty that the scalar one has. Numerical results were
performed and compared with earlier existing methods. The results were very consistent with the
existing methods.
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