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Abstract

:

In this paper, the extensions of classes S˜, C˜ and B˜V are made by defining the classes S˜r, C˜r and B˜Vr, r=0,1,2,… It is also shown that class S˜r is a subclass of C˜r∩B˜Vr. Moreover, the results on L1-convergence of r times differentiated trigonometric sine series have been obtained by considering the rth (r=0,1,2,…) derivative of modified sine sum under the new extended class C˜r∩B˜Vr.
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1. Introduction


Consider the trigonometric sine series


∑k=1∞aksinkx



(1)




where a0,a1,a2,… are the real coefficients. The nth partial sum, Sn, of Series (1) is represented as


Sn(x)=∑k=1naksinkx=−∑k=1nbk(cos kx)′



(2)




where the prime denotes derivatives and bk=akk. Also, f(x)=limn→∞Sn(x).



Various conditions are given in the literature (see [1,2,3,4,5,6,7,8,9]), which guarantee that Series (1) is a Fourier series.



In 1984, Teljakovskii [9] introduced a class S˜, as follows:



Class S˜ [9]. A null sequence {ak} is said to belong to class S˜ if there exists a non-increasing sequence {Bk} of numbers s.t.


|Δbk| ≤ Bk ∀k=1,2,3,…∑k=1∞k Bk<∞.








where bk=akk,Δbk=bk−bk+1 and proved the following result:



Theorem 1 [9].

If {ak}∈S˜, then Series (1) is the Fourier series of some functionf∈L1(0,π).





In 1989, Móricz [5] introduced new classes B˜V and C˜ of the coefficient sequences for the sine series.



Class B˜V[5].

A null sequence {ak} belongs to B˜V if


∑k=1∞k |Δbk|<∞



(3)









Class C˜[5].

A null sequence {ak} belongs to class C˜ if for every ε>0 there exists δ>0, independent of n, and such that for all n,


∫0δ|∑k=n∞ΔbkDk′(x)|dx≤ε.



(4)









Here, Dk′(x) is the first derivative of Dirichlet kernel (Dk(x)=sin(k+12)x2sinx2).



Equation (4) implies that, for 1≤n≤N,


∫0δ|∑k=nNΔbkDk′(x)|dx≤2ε.











The following result was proved by Móricz [7].



Theorem 2 [5].

If{ak}∈B˜V,then


‖un−f‖→0 (n→∞) if and only if {ak}∈C˜.








whereun(x)=Sn(x)+bn+1Dn′(x).





The classes S˜, B˜V and C˜ seem to be more appropriate for the sine series than the classes S ([7,8]) BV [10], and C [3] in the ordinary sense. Also, Móricz [5] has proved that S˜⊂B˜V∩C˜.



Motivated by the aforesaid authors, new extended classes S˜r, B˜Vr, and C˜r (r=0, 1, 2, …) are defined in this paper as follows:



ClassS˜r.

A sequence {ak} is said to belong to class S˜r (r=0, 1, 2, …) if ak→0 as k→∞, and there exists a non-increasing sequence {Bk} of numbers s.t.


|Δbk|≤Bk ∀k=1,2,3,…∑k=1∞kr+1 Bk<∞, r=0,1,2,3,…








where bk=akk, r=0,1,2,3,…





Bk↓0 and ∑k=1∞kr+1Bk<∞, implies that kr+2Bk=o(1) as k→∞ (r=0,1,2,…).



Remark 1.

Forr=0,S˜r=S˜.





Remark 2.

Obviously, S˜r+1⊂S˜r, but the converse need not be true.





Example 1.

Consider a sequence Δbn=1nr+3,r=0,1,2,… and n∈N.


an=nbn=n∑k=n∞Δbk≤∑k=n∞kkr+3=∑k=n∞1kr+2→0 as n→∞.













Choose Bn=1nr+3, r=0, 1, 2, … ∀n. Clearly, Bn↓0 as n→∞ and |Δbn|≤Bn ∀n.



Consider the series


∑n=1∞nr+1Bn=∑n=1∞nr+11nr+3≈∑n=1∞1n2 which is convergent.











This implies {an}∈S˜r.



But the series ∑n=1∞nr+2Bn≈∑n=1∞1n is divergent.



This implies that {an} does not belong to class S˜r+1.



ClassB˜Vr.

A null sequence {ak} belongs to B˜Vr , (r=0,1, 2,…) if


∑k=1∞kr+1 |Δbk|<∞













Remark 3.

Forr=0,B˜Vr=B˜V.





Remark 4.

Clearly,B˜Vr+1⊂B˜Vr, (r=0,1,2,…), but the converse may not be true.





ClassC˜r.

A null sequence {ak} belongs to class C˜r (r=0, 1, 2, …), if for every ε>0, there exists δ>0, independent of n, and such that for all n,


∫0δ|∑k=n∞ΔbkDkr+1(x)|dx≤ε













Here, Dkr+1(x) is the (r+1)th derivative of Dirichlet kernel.



Equation (4) implies, for 1≤n≤N,


∫0δ|∑k=nNΔbkDkr+1(x)|dx≤2ε











Remark 5.

Forr=0,C˜r=C˜.





Remark 6.

It is obvious thatC˜r+1⊂C˜rbut the converse need not be true.





Example 2.

DefineΔbn=1nr+3, r=0, 1, 2, …andn=1, 2, 3, …


an=nbn=n∑k=n∞Δbk≤∑k=n∞kkr+3=∑k=n∞1kr+2→0 as n→∞.













Consider, the integral


∫0π|∑k=n∞ΔbkDkr+2(x)|dx=∑k=n∞1nr+3∫0π|Dkr+2(x)| dx=O(∑k=n∞1nr+3(nr+2logn))=O(∑k=n∞lognn)








which is divergent.



However,


∫0π|∑k=n∞ΔbkDkr+1(x)|dx=∑k=n∞1nr+3∫0π|Dkr+1(x)| dx=O(∑k=n∞1nr+3(nr+1logn))=O(∑k=n∞lognn2) which is convergent.











Therefore {an}∈C˜r.



Lemmas related to the main results are given in Section 2. The Section 3 comprises the main results of this paper. Firstly, in this section, we have shown that the new extended class S˜r is a subclass of C˜r∩B˜Vr (r=0,1,2,…). Moreover, the theorems are presented concerning the L1 convergence of trigonometric sine series using modified sine sum [11], defined as


βn(x)=∑k=1n(ak+1k+1+∑j=knΔ2(ajj))k sinkx



(5)




under the extended classes of numerical sequences.




2. Lemmas


Lemma 1.

[6] Letn≥1andrbe a nonnegative integerx∈[ε,π]. Then,|Dnr(x)|≤Cnrx,whereCdenotes a positive absolute constant.





Lemma 2.

[6]‖Dnr(x)‖L1=O(nrlogn), r=0, 1, 2, …whereDnr(x)represents therthderivative of the Dirichlet kernel.






3. Main Results


Theorem 3.

The following relation holdsS˜r⊂C˜r∩B˜Vrfor eachr∈{0,1,2,…}.





Proof. 

It is plain that S˜r⊂B˜Vr.



In order to prove that S˜r⊂C˜r we take a sequence {ak} in S˜r and consider


∫0π|∑k=n∞ΔbkDkr+1(x)|dx; where bk=akk











If we apply summation by parts, we obtain


∫0π|∑k=n∞ΔbkDkr+1(x)|dx         ≤limN→∞[∑k=nN−1ΔBk∫0π|∑j=0kΔbjBjDjr+1(x)|dx+BN∫0π|∑K=0NΔbkBkDkr+1(x)|dx+Bn∫0π|∑K=0n−1ΔbkBkDkr+1(x)|dx]











Clearly |ΔbkBk|≤1. Now, if we first apply Bernstein’s inequality [12] and then Sidon Fomin’s inequality ([1,7]), we get


∫0π|∑k=0nΔbkBkDk(r+1)(x)|dx≤M(n+1)r+2, r=0,1,2,…










∫0π|∑k=n∞ΔbkDkr+1(x)|dx≤limN→∞{∑k=nN−1ΔBk(k+1)r+2+ BN(N+1)r+2}+ nr+2Bn=∑k=n∞[(k+1)r+2−kr+2]Bk+nr+2Bn=O(∑k=n∞kr+1Bk)+nr+2Bn











So, by given hypothesis, we have


∫0π|∑k=n∞ΔbkDkr+1(x)|dx≤ε2 if n is large enough say n≥n0.



(6)







For any 1≤n≤N, we can estimate as follows:


∫0δ|∑k=nNΔbkDkr+1(x)|dx≤∫0δ|∑k=nn0ΔbkDkr+1(x)|dx+∫0δ|∑k=n0NΔbkDkr+1(x)|dx≤12δ∑k=1n0k(k+1)r+1|Δbk|+ε2<ε








provided δ is small enough. This proves that {ak}∈C˜r. □





Theorem 4.

Let {ak} be a sequence of numbers belonging to the class C˜∩B˜V and if limn→∞anlogn=0, then


‖βn−f‖=o(1), n→∞.













Proof. 

The modified trigonometric sine sum is given by


βn(x)=∑k=1n(ak+1k+1+∑j=knΔ2(ajj))k sinkx=∑k=1naksinkx+(an+2n+2−an+1n+1)∑k=1nksinkx=−∑k=1nbk(coskx)′−(bn+2−bn+1)Dn′(x)











By using the summation by parts, we get


βn=−∑k=1nΔbkDk′(x)−bnDn′(x)−(bn+2−bn+1)Dn′(x)











Under the given hypothesis and Lemma 1, series ∑k=1nΔbkDk′(x) converges absolutely and bnDn′(x)→0 as n→∞.



Hence limn→∞βn(x)=f(x) exists in (0,π).



Next, consider


‖f(x)−βn(x)‖=‖∑k=n+1∞aksinkx−(an+2n+2−an+1n+1)∑k=1nksinkx‖=∫0π|−∑k=n+1∞bk(coskx)′−(bn+1−bn+2)Dn′(x)|dx



(7)







By using Abel’s transformation, we have


=∫0π|−∑k=n+1∞ΔbkDk′(x)+bn+2Dn′(x)|dx=∫0π|∑k=n+1∞ΔbkDk′(x)|dx+nn+2an+2logn



(8)







The second term of the above equation is of o(1) as anlogn=0 as n→∞. For the remaining part, let ε>0, then there exists δ>0, such that


∫0δ|∑k=n+1∞ΔbkDk′(x)|dx<ε2 for all n≥0.



(9)







Then


∫0π|∑k=n+1∞ΔbkDk′(x)|dx=∫0δ|∑k=n+1∞ΔbkDk′(x)|dx+∫δπ|∑k=n+1∞ΔbkDk′(x)|dx≤ϵ2+∑k=n+1∞|Δbk|∫δπ|Dk′(x)|dx≤ϵ2+C∑k=n+1∞k |Δbk|∫δπdx/x2≤ ϵ2+Cδ−1∑k=n+1∞k |Δbk|≤ε



(10)







This proves that ‖f(x)−βn(x)‖=o(1) as n→∞. □





Theorem 5.

Let {ak} be a sequence of numbers belonging to the class C˜∩B˜V, and if limn→∞anlog n=0, then


‖Sn−f‖=o(1), n→∞.













Proof. 

‖Sn−f‖≤‖Sn−βn‖+‖βn−f‖


≤|bn+1|∫0π|Dn′(x)|dx+|bn+2|∫0π|Dn′(x)|dx+o(1)≤|an+1|logn+|an+2|logn(by Lemma 2)=o(1), n→∞








□





Theorem 6.

Let {ak} be a sequence of numbers belonging to the class C˜r∩B˜Vr and if nr​ anlog n=0, as n ∞, for each r=0,1,2,… Then


‖βnr(x)−fr(x)‖=o(1), n→∞








Here, fr(x) is the rth derivative of f(x), wherer=0,1,2,…





Proof. 

Consider the modified trigonometric sine sum as


βn(x)=∑k=1n(ak+1k+1+∑j=knΔ2(ajj))k sinkx=∑k=1naksinkx+(an+2n+2−an+1n+1)∑k=1nksinkx



(11)







Taking r-times differentiation of βn(x), we get


βnr(x)=Snr(x)+(an+2n+2−an+1n+1)∑k=1nkr+1sin(kx+rπ2)=∑k=1nkraksin(kx+rπ2)+(an+1n+1−an+2n+2)∑k=1nkr+1cos(kx+(r+1)π2)=−∑k=1nkr+1bkcos(kx+(r+1)π2)+(bn+1−bn+2)Dnr+1(x)



(12)







If we apply Abel’s transformation on the first term of above equation, we get


βnr(x)=−∑k=1n−1ΔbkDkr+1(x)−bnDnr+1(x)+(bn+1−bn+2)Dnr+1(x)=−∑k=1nΔbkDkr+1(x)−bn+2Dnr+1(x)



(13)







The series ∑k=1∞ΔbkDkr+1(x) converges absolutely and bnDnr+1(x)→0 as n→∞ using Lemma 1 and given hypothesis.



Therefore limn→∞βnr(x)=fr(x) exists in (0,π).



Next, consider


‖f(x)−βn(x)‖=‖∑k=n+1∞aksinkx−(an+2n+2−an+1n+1)∑k=1nksinkx‖‖fr(x)−βnr(x)‖=‖∑k=n+1∞kraksin(kx+rπ2)−(an+2n+2−an+1n+1)∑k=1nkr+1sin(kx+rπ2)‖=‖∑k=n+1∞kraksin(kx+rπ2)+(an+2n+2−an+1n+1)∑k=1nkr+1cos(kx+(r+1)π2)‖=∫0π|−∑k=n+1∞kr+1bkcos(kx+(r+1)π2)+(bn+2−bn+1)Dnr+1(x)|dx











If we apply Abel’s transformation, we obtain


=∫0π|−∑k=n+1∞ΔbkDkr+1(x)+bn+1Dnr+1(x)−bn+1Dnr+1(x)+bn+2Dnr+1(x)|dx≤∫0π|∑k=n+1∞ΔbkDkr+1(x)|dx+|bn+2|∫0π|Dnr+1(x)|dx≤∫0π|∑k=n+1∞ΔbkDkr+1(x)|dx+an+2n+2nr+1logn











The second term of the above equation are of o(1) as nranlog n=0 as n→∞. For the remaining part, let ε>0, then there exists δ>0, such that ∫0δ|∑k=n+1∞ΔbkDkr+1(x)|dx<ε/2 for all n≥0. Then


∫0π|∑k=n+1∞ΔbkDkr+1(x)|dx=∫0δ|∑k=n+1∞ΔbkDkr+1(x)|dx+∫δπ|∑k=n+1∞ΔbkDkr+1(x)|dx     ≤ε2+∑k=n+1∞|Δbk|∫δπ|Dkr+1(x)|dx     ≤ε2+C∑k=n+1∞kr+1|Δbk|∫δπdx/xr+2     ≤ε2+Cδ−(r+1)∑k=n+1∞kr+1|Δbk|≤ε    (by given hypothesis)











Therefore, ‖fr(x)−βnr(x)‖L1=o(1) as n→∞. □





Remark 7.

For r=0, Theorem 6 reduces to Theorem 4.





Theorem 7.

Let {ak} be a sequence of numbers belonging to the class C˜r∩B˜Vr and if nranlog n=o(1) as n→∞. Then


‖Snr(x)−fr(x)‖=o(1), n→∞.








wherer=0,1,2… .





Proof. 

‖Snr−fr‖≤‖Snr−βnr‖+‖βnr−fr‖


≤|bn+2|∫0π|Dnr+1(x)|dx+|bn+1|∫0π|Dnr+1(x)|dx+o(1)≤|an+2|n+2nr+1logn+|an+1|n+1nr+1logn    (by Lemma 2)=o(1) as n→∞



(14)




□





Remark 8.

For r=0, Theorem 7 reduces to Theorem 5.





Remark 9.

Combining Theorem 6 and Theorem 7 with Theorem 3, the following result holds:





Corollary 1.

If {ak}∈S˜r (r=0,1,2,3,…) and if nranlog n=o(1) as n→∞. Then

	(i) 

	
‖βnr(x)−fr(x)‖=o(1), n→∞.




	(ii) 

	
‖Snr(x)−fr(x)‖=o(1), n→∞.
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