
mathematics

Article

Fourier–Zernike Series of Convolutions on Disks

Arash Ghaani Farashahi * and Gregory S. Chirikjian
Laboratory for Computational Sensing and Robotics (LCSR), Whiting School of Engineering,
Johns Hopkins University, Baltimore, MD 21218-2608, USA; gregc@jhu.edu
* Correspondence: arash.ghaanifarashahi@jhu.edu or ghaanifarashahi@outlook.com

Received: 30 October 2018; Accepted: 25 November 2018; Published: 28 November 2018
����������
�������

Abstract: This paper presents a systematic study of the analytic aspects of Fourier–Zernike series of
convolutions of functions supported on disks. We then investigate different aspects of the presented
theory in the cases of zero-padded functions.
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1. Introduction

The mathematical theory of convolution function algebras plays significant roles in classical
harmonic analysis, representation theory, functional analysis, and operator theory; see [1–8] and the
references therein. Over the last few decades, some new aspects of convolution function algebras
have achieved significant popularity in modern harmonic analysis areas such as coorbit theory
(including Gabor and wavelet analysis) [9–13] and recent applications in computational science and
engineering [14–18].

In many applications in engineering, convolutions and correlations of functions on Euclidean
spaces are required. This includes template matching in image processing for pattern recognition
and protein docking [19–21] and characterizing how error probabilities propagate [22]. In some
applications, the goal is not to recover the values of convolved functions, but rather their support,
which is the Minkowski sum of the supports of the two functions being convolved [23]. In most of
these applications, the functions of interest take non-negative values and as such can be normalized
and treated as probability density functions (pdfs).

Usually, two approaches are taken to computing convolutions of pdfs on Euclidean space. First,
if the functions are compactly supported, then their supports are enclosed in a solid cube with
dimensions at least twice the size of the support of the functions, and periodic versions of the functions
are constructed. In this way, convolution of these periodic functions on the d-torus can be used
to replace convolution on d-dimensional Euclidean space. The benefit of this is that the spectrum
is discretized, and fast Fourier transform (FFT) methods can be used to compute the convolutions.
This approach is computationally attractive, but in this periodization procedure, the natural invariance
of integration on Euclidean space under rotation transformations is lost when moving to the torus.
This can be a significant issue in rotation matching problems.

A second approach is to take the original compactly-supported functions and replace them with
functions on Euclidean space that have rapidly-decaying tails, but for which convolutions can be
computed in closed form. For example, replacing each of the given functions with a sum of Gaussian
distributions allows the convolution of the given functions to be computed as a sum of convolutions of
Gaussians, which have simple closed-form expressions as Gaussians. The problem with this approach
is that the resulting functions are not compactly supported. Moreover, if N Gaussians are used to
describe each input function, then N2 Gaussians result after the convolution.

An altogether different approach is explored here. Rather than periodizing the given functions or
extending their support to the whole of Euclidean space, we consider functions that are supported
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on disks in the plane (and by natural extension, to balls in higher dimensional Euclidean spaces).
The basic idea is that in polar coordinates, each function is expanded in an orthonormal basis consisting
of Zernike polynomials in the radial direction and Fourier basis in the angular direction. These basis
elements are orthonormal on the unit disk. Each input function to the convolution procedure is scaled
to have support on the disk of a radius of one half and zero-padded on the unit disk. The result
of the convolution (or correlation) then is a function that is supported on the unit disk. Since the
convolution integral for compactly-supported functions can be restricted from all of the Euclidean
space to the support of the functions, it is only this integral over the support that is performed when
using Fourier–Zernike expansions. Hence, the behavior of these functions outside of disks becomes
irrelevant to the final result. We work out how the Fourier–Zernike coefficients of the original functions
appear in the convolution.

This article contains four sections. Section 2 is devoted to fixing notation and gives a brief summary
of the convolution of functions on R2 and polar Fourier analysis. In Section 3, we present analytic
aspects of the general theory of Fourier–Zernike series for functions defined on disks. Section 4
is dedicated to study the presented theory of Fourier–Zernike series for convolution of functions
supported on disks. As the main result, we present a constructive closed form for Fourier–Zernike
coefficients of convolution functions supported on disks. We then employ this closed form to present a
constructive Fourier–Zernike approximation for convolution of zero-padded functions on R2.

2. Preliminaries and Notations

Throughout this section, we shall present preliminaries and the notation.

2.1. General Notations

For d ∈ N and a > 0, let Bd
a := {x ∈ Rd : ‖x‖2 ≤ a}, where:

‖x‖2 :=

(
d

∑
`=1
|x`|2

)1/2

,

for x := (x1, · · · , xd)
T ∈ Rd. We then put Bd := Bd

1, that is the unit ball in Rd.
It should be mentioned that each function f ∈ L1(Rd) satisfies the following

integral decomposition: ∫
Rd

f (x)dx =
∫
Sd−1

∫ ∞

0
f (ru)rd−1 drdu. (1)

Furthermore, if f ∈ L1(Rd) is supported on Bd
a , we then have:∫

Rd
f (x)dx =

∫
Sd−1

∫ a

0
f (ru)rd−1 drdu.

Let d ∈ N, a > 0, and b := a/2. Let f1, f2 ∈ L2(Rd) with supp( f1), supp( f2) ⊆ Bd
b . Then, we have:

supp( f1 ∗ f2) ⊆ supp( f1) + supp( f2) ⊆ Bd
b +Bd

b ⊆ Bd
a ,

where:
( f1 ∗ f2)(x) :=

∫
Rd

f1(y) f2(x− y)dy, (2)

for x ∈ Rd.
Let d ∈ N and C be a convex and compact set in Rd. Let f : C → C be a continuous function. Then,

there exists a canonical extension of f from C to Rd by zero-padding, still denoted by f : Rd → C, such
that f (x) = f(x) for all x ∈ C, and f (x) = 0 for all x 6∈ C.
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Let fk : C → C with k ∈ {1, 2} be continuous functions. We then define the canonical windowed
convolution of f1 with f2, denoted by f1 ~ f2, by:

(f1 ~ f2)(x) := ( f1 ∗ f2)(x) =
∫
Rd

f1(y) f2(x− y)dy, (3)

where fk is the canonical extension of fk from C to Rd. We may also denote f1 ~ f2 by f1 ~ f2, as well.
Since each fk is supported on C, we deduce that f1 ∗ f2 is supported on C + C. Hence, we get:

(f1 ~ f2)(x) =
∫

C
f1(y) f2(x− y)dy =

∫
C

f1(y) f2(x− y)dy, (4)

for all x ∈ C + C.
Let a > 0 and b := a/2. Furthermore, let C := Bd

b . Then, C is a convex and compact set in Rd.
Furthermore, we have C + C ⊆ Bd

a . Then, for continuous functions fk : Bd
b → C with k ∈ {1, 2}, the

convolution f1 ∗ f2 is supported on Bd
a . Hence, we can write:

(f1 ~ f2)(x) =
∫
Bd

b

f1(y) f2(x− y)dy, (5)

for all x ∈ Bd
a . Then, using the formula (1), we get:

(f1 ~ f2)(x) =
∫
Sd−1

∫ a/2

0
f1(ru) f2(x− ru)rd−1 drdu, (6)

for all x ∈ Bd.

The Case d = 2

In this case, each function f ∈ L1(R2) satisfies the following integral decomposition:

∫
R2

f (x)dx =
1

2π

∫ 2π

0

∫ ∞

0
f (r, θ)r drdθ. (7)

Furthermore, if f ∈ L1(R2) is supported on B2
a, we then have:

∫
R2

f (x)dx =
1

2π

∫ 2π

0

∫ a

0
f (r, θ)r drdθ.

2.2. Fourier–Zernike Analysis

Zernike polynomials are mostly used to express wavefront data in optical tests; see [24,25] and
the references therein. The radial Zernike function Znm, where m ∈ Z and n ≥ 0 is an integer with

n ≥ |m| and n− |m| even (or equivalently, n and |m| are congruence modulo two, denoted by |m| 2≡ n),
is a polynomial in r given by [26,27]:

Znm(r) :=

n−|m|
2

∑
j=0

(−1)j (n− j)!

j!( n+|m|
2 − j)!( n−|m|

2 − j)
rn−2j. (8)

It has (n− |m|)/2 zeros between zero and one.

Furthermore, for each m ∈ Z and |m| ≤ n with |m| 2≡ n, we have:

∫ 1

0
Znm(r)Jm(αr)rdr = (−1)

n−m
2 · Jn+1(α)

α
, (9)

for each 0 6= α ∈ R.
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For a fixed m ∈ Z, we have the following orthogonality relation:

∫ 1

0
Zn1m(r)Zn2m(r)rdr =

1
2n1 + 2

· δn1,n2 , (10)

for integer nj, j ∈ {1, 2} with nj ≥ |m| and nj − |m| even.
Therefore, for each a > 0 and m ∈ Z, we conclude:

∫ a

0
Zn1m(a−1r)Zn2m(a−1r)rdr =

a2

2n1 + 2
· δn1,n2 , (11)

for integer nj, j ∈ {1, 2} with nj ≥ |m| and nj − |m| even.
Then, for a given a > 0 and each m ∈ Z, the set:

E a
m :=

{
Z a

nm : n ≥ |m| ≥ 0 and |m| 2≡ n
}

, (12)

forms an orthonormal basis for the Hilbert function space L2([0, a], rdr), where:

Z a
nm(r) :=

√
2n + 2

a
· Znm(a−1r).

In detail, for integer nj, j ∈ {1, 2} with nj ≥ |m| and nj − |m| even, we have:

∫ a

0
Z a

n1m(r)Z a
n2m(r)rdr = δn1,n2 .

Furthermore, for each m ∈ Z and |m| ≤ n with |m| 2≡ n, we have:

∫ a

0
Znm(a−1r)Jm(αr)rdr = a(−1)

n−m
2 · Jn+1(aα)

α
, (13)

for each a > 0 and 0 6= α ∈ R, where Jq is the qth order Bessel function of the first kind, for each q ∈ Z.
Hence, any function v : [0, a]→ R satisfies the following expansion:

v(r) = ∑
{n:|m|≤n and m

2≡n}

(∫ a

0
v(s)Z a

nm(s)sds
)
Z a

nm(r), (14)

for r ∈ [0, a].
We then can define the Fourier–Zernike basis element Va

nm in the polar form as follows:

Va
nm(r, θ) :=

√
2n + 2

a
Znm(a−1r)Ym(θ) = a−1

√
n + 1

π
Znm(a−1r) exp(imθ), (15)

for m ∈ Z, and n ≥ 0 is an integer with n ≥ |m| and n− |m| even.
Then, any restricted 2D integrable function f (r, θ) defined on r ≤ a can be expanded with respect

to Va
nm as defined in (15) via:

f (r, θ) =
∞

∑
m=−∞

∑
{n:|m|≤n and |m| 2≡n}

Ca
n,m( f )Va

nm(r, θ), (16)

where:

Ca
n,m( f ) :=

∫ a

0

∫ 2π

0
f (r, θ)Va

nm(r, θ)rdrdθ. (17)
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The Case a = 1

In this case, any integrable function v : [0, 1]→ R satisfies the following expansion:

v(r) = ∑
{n:|m|≤n and m

2≡n}

(∫ 1

0
v(s)Z1

nm(s)sds
)
Z1

nm(r), (18)

for r ∈ [0, 1], where:
Z1

nm(r) =
√

2n + 2Znm(r).

Furthermore, Fourier–Zernike basis elements V1
nm in the polar form have the following form:

V1
nm(r, θ) :=

√
2n + 2Znm(r) · Ym(θ) =

√
n + 1

π
· Znm(r) · exp(imθ), (19)

for m ∈ Z, and n ≥ 0 is an integer with n ≥ |m| and n− |m| even.
Hence, any restricted 2D integrable function f (r, θ) defined on r ≤ 1 can be expanded with respect

to V1
nm as defined in (15) via:

f (r, θ) =
∞

∑
m=−∞

∑
{n:|m|≤n and |m| 2≡n}

C1
n,m( f )V1

nm(r, θ), (20)

where:

C1
n,m( f ) :=

∫ 1

0

∫ 2π

0
f (r, θ)V1

nm(r, θ)rdrdθ. (21)

3. Fourier–Zernike Series of Functions Supported on Disks

This section is dedicated to studying the analytical aspects of Fourier–Zernike series of functions
supported on disks (2D balls). We shall present a unified method for computing the Fourier–Zernike
coefficients of functions supported on disks.

First, we need some preliminary results.

Proposition 1. Let r, a > 0, 0 ≤ s ≤ a, and 0 < α, θ ≤ 2π. We then have:

eirs cos(α−θ) =
√

2π
∞

∑
m=−∞

∑
{n:|m|≤n and |m| 2≡n}

√
2n + 2

im(−1)
n−m

2 Jn+1(ar)
r

e−imαVa
nm(s, θ). (22)

Proof. Let x = suθ and ω= ruα. By the Jacobi–Anger expansion, we can write:

eirs cos(α−θ) = eiω·x =
∞

∑
m=−∞

im Jm(rs)eimθe−imα. (23)

Let m ∈ Z. Expanding Jm(rs) with respect to s, using (14), we can write:

Jm(rs) = ∑
{n:|m|≤n and |m| 2≡n}

(∫ a

0
Z a

nm(p)Jm(rp)pdp
)
Z a

nm(s).

Using (13), we can write:

∫ a

0
Z a

nm(p)Jm(rp)pdp =

√
2n + 2

a

∫ a

0
Znm(a−1 p)Jm(rp)pdp

=

√
2n + 2

r
(−1)

n−m
2 Jn+1(ar).
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We then deduce that:

Jm(rs) = r−1 · ∑
{n:|m|≤n and |m| 2≡n}

√
2n + 2(−1)

n−m
2 Jn+1(ar)Z a

nm(s). (24)

Applying Equation (24) in (23), we get:

eirs cos(α−θ) =
∞

∑
m=−∞

im Jm(rs)eimθe−imα

= r−1 ·
∞

∑
m=−∞

im

 ∑
{n:|m|≤n and |m| 2≡n}

√
2n + 2(−1)

n−m
2 Jn+1(ar)Z a

nm(s)

 eimθe−imα

=
√

2π
∞

∑
m=−∞

∑
{n:|m|≤n and |m| 2≡n}

√
2n + 2

im(−1)
n−m

2 Jn+1(ar)
r

e−imαVa
nm(s, θ).

We then conclude the following consequences.

Corollary 1. Let a > 0 and m ∈ Z, n ≥ |m| with n
2≡ |m|. We then have:

∫ a

0

∫ 2π

0
eirs cos(α−θ)Va

nm(s, θ)sdsdθ = 2
√

π(n + 1)
im(−1)

n−m
2 Jn+1(ar)
r

e−imα, (25)

for all r > 0 and 0 < α ≤ 2π.

For an integral vector k := (k1, k2)
T ∈ Z2, let:

ρ(k) = ρ(k1, k2) :=
√

k2
1 + k2

2,

and 0 ≤ Φ(k) = Φ(k1, k2) < 2π be given by:

k1 = ρ(k1, k2) cos Φ(k1, k2), k2 = ρ(k1, k2) sin Φ(k1, k2).

We may denote ρ(k) with |k|, as well.

Corollary 2. Let a > 0 and k ∈ Z2. Furthermore, let m ∈ Z and n ≥ |m| with n
2≡ |m|. We then have:

∫ a

0

∫ 2π

0
eπia−1suT

θ kVa
nm(suθ)sdsdθ = 2

√
n + 1

im(−1)
n−m

2 Jn+1(π|k|)
a−1
√

π|k|
e−imΦ(k). (26)
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Proof. Let a > 0 and k ∈ Z2. Suppose m ∈ Z and n ≥ |m| with n
2≡ |m|. Applying Equation (25), for

r := a−1π|k| and α := Φ(k), we get:

∫ a

0

∫ 2π

0
eπia−1suT

θ kVa
nm(suθ)sdsdθ =

∫ a

0

∫ 2π

0
eπia−1s|k| cos(Φ(k)−θ)Va

nm(suθ)sdsdθ

=
∫ a

0

∫ 2π

0
eirs cos(α−θ)Va

nm(suθ)sdsdθ

= 2
√

π(n + 1)
im(−1)

n−m
2 Jn+1(ar)
r

e−imα

= 2
√

π(n + 1)
im(−1)

n−m
2 Jn+1(π|k|)

a−1π|k| e−imΦ(k)

= 2
√

n + 1
im(−1)

n−m
2 Jn+1(π|k|)

a−1
√

π|k|
e−imΦ(k).

The next result presents a closed form for Fourier–Zernike coefficients of functions defined
on disks.

Theorem 1. Let a > 0 and Ωa := [−a, a]2. Let f ∈ L2(Ωa) be a function supported in B2
a. Furthermore, let

m ∈ Z and n ≥ |m| with n
2≡ |m|. We then have:

Ca
n,m( f ) = ∑

k∈Z2

ca(k; n, m) f̂ (k), (27)

where, for each k ∈ Z2, we have:

f̂ (k) :=
∫ a

−a

∫ a

−a
f (x1, x2)e−πia−1(k1x1+k2x2)dx1dx2, (28)

and:

ca(k; n, m) :=
√

n + 1
im(−1)

n−m
2 Jn+1(π|k|)

2a
√

π|k|
e−imΦ(k). (29)

Proof. Let a > 0 and Ωa := [−a, a]2. Let f ∈ L2(Ωa) be a function supported in B2
a. Hence, we have:

f (x) =
1

4a2 ∑
k∈Z2

f̂ (k)eπia−1xTk, (30)

for all x = (x1, x2)
T ∈ Ωa, where for k = (k1, k2)

T ∈ Z2, we have:

f̂ (k) =
∫ a

−a

∫ a

−a
f (x1, x2)e−πia−1(k1x1+k2x2)dx1dx2.

Hence, using (26), we get:

Ca
n,m( f ) =

∫ a

0

∫ 2π

0
f (suθ)Va

nm(suθ)sdsdθ

=
∫ a

0

∫ 2π

0

(
1

4a2 ∑
k∈Z2

f̂ (k)eπia−1suT
θ k

)
Va

nm(suθ)sdsdθ

=
1

4a2 ∑
k∈Z2

f̂ (k)
(∫ a

0

∫ 2π

0
eπia−1suT

θ kVa
nm(suθ)sdsdθ

)
= ∑

k∈Z2

ca(k; n, m) f̂ (k).
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Corollary 3. Let a > 0 and Ωa := [−a, a]2. Let f ∈ L2(Ωa) be a function supported in B2
a. We then have:

f (r, θ) =
∞

∑
m=−∞

∑
{n:|m|≤n and |m| 2≡n}

Ca
n,m( f )Va

nm(r, θ),

for 0 ≤ r ≤ a and 0 ≤ θ ≤ 2π.

Remark 1. Equation (27) guarantees that the Fourier–Zernike coefficients of functions supported on disks can
be computed from the standard Fourier coefficients f̂ (k), which can be implemented by FFT.

The next result presents a closed form for Fourier–Zernike coefficients of functions supported
on disks.

Theorem 2. Let a > 0 and f ∈ L1(R2) be a function supported on B2
a. We then have:

f (r, θ) =
∞

∑
m=−∞

∑
{n:|m|≤n and |m| 2≡n}

Ca
n,m( f )Va

nm(r, θ),

for 0 ≤ r ≤ a and 0 ≤ θ ≤ 2π, with:

Ca
n,m( f ) = ∑

k∈Z2

ca(k; n, m) f̂ (k), (31)

where, for each k := (k1, k2)
T ∈ Z2, we have:

f̂ (k) :=
∫ a

−a

∫ a

−a
f (x1, x2)e−πia−1(k1x1+k2x2)dx1dx2. (32)

The next result gives an explicit closed form for Fourier–Zernike coefficients of zero-padded
functions.

Proposition 2. Let a > 0 and f ∈ L1(R2) be a continuous function. Let R( f ) be the restriction of f to the
disk B2

a and E( f ) be the extension of R( f ) to the rectangle Ωa := [−a, a]2 by zero-padding. Furthermore, let

m ∈ Z and n ≥ |m| with n
2≡ |m|. We then have:

Ca
n,m(R( f )) = ∑

k∈Z2

ca(k; n, m)Ê( f )(k), (33)

where, for k := (k1, k2)
T ∈ Z2:

Ê( f )(k) =
∫ a

−a

∫ a

−a
f (x1, x2)e−πia−1(k1x1+k2x2)dx1dx2. (34)

LetR := {ρ(k1, k2) : k1, k2 ∈ Z}. For each r ∈ R, let:

Θr := {Φ(i, j) : r = ρ(i, j), i, j ∈ Z} .

Proposition 3. With the above assumptions, we have:

1. N∪ {0} ⊆ R ⊆
√
N := {

√
n : n ∈ N∪ {0}}.

2. R is a discrete subset of [0, ∞).
3. For each r ∈ R, the set Θr is a finite subset of [0, 2π).
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4. Z2 =
⋃

r∈R{(r cos θ, r sin θ)T : θ ∈ Θr}.

Proof. (1)–(3) are straightforward.
(4) Let x ∈ ⋃

r∈R{(r cos θ, r sin θ)T : θ ∈ Θr}. Suppose r ∈ R and θ ∈ Θr with x =

(r cos θ, r sin θ)T . Hence, θ = Φ(i, j) with ρ(i, j) = r, for some i, j ∈ Z. We then have:

r cos θ = ρ(i, j) cos Φ(i, j) =
√

i2 + j2
i√

i2 + j2
= i ∈ Z,

r sin θ = ρ(i, j) sin Φ(i, j) =
√

i2 + j2
j√

i2 + j2
= j ∈ Z.

Thus, we deduce that x = (r cos θ, r sin θ)T ∈ Z2. Therefore, we get
⋃

r∈R{(r cos θ, r sin θ)T : θ ∈
Θr} ⊆ Z2. Conversely, let x = (k1, k2)

T ∈ Z2 be given. We then have k1, k2 ∈ Z, and hence, we get k1 =

ρ(k1, k2) cos Φ(k1, k2) and k2 = ρ(k1, k2) sin Φ(k1, k2). Then, we conclude that x = (r cos θ, r sin θ)T ,
with r := ρ(k1, k2) and θ := Φ(k1, k2). This implies that x ∈ ⋃r∈R{(r cos θ, r sin θ)T : θ ∈ Θr}, and
hence, Z2 ⊆ ⋃r∈R{(r cos θ, r sin θ)T : θ ∈ Θr}.

We then present the following polarized version of Theorem 1.

Theorem 3. Let a > 0 and Ωa := [−a, a]2. Let f ∈ L2(Ωa) be a function supported on B2
a. Furthermore, let

m ∈ Z and n ≥ |m| with n
2≡ |m|. We then have:

Ca
n,m( f ) = ∑

τ∈R
∑

α∈Φτ

Aa
mn(τ, α) f̂ (τuα), (35)

where:
Aa

mn(τ, α) := ca(τuα; n, m). (36)

Proof. Let m ∈ Z and n ≥ |m| with n
2≡ |m|. First, suppose that τ ∈ R and α ∈ Φτ . Let k := τuα =

(τ cos α, τ sin α)T ∈ Z2. Thus, |k| = τ and Φ(k) = α. Therefore, using (27), we get:

Cn,m( f ) = ∑
k∈Z2

c(k; n, m) f̂ (k)

= ∑
τ∈R

∑
α∈Φτ

c(τuα; n, m) f̂ (τuα) = ∑
τ∈R

∑
α∈Φτ

Amn(τ, α) f̂ (τuα).

Theorem 4. Let a > 0 and f ∈ L1(R2) be a function supported on B2
a. Furthermore, let m ∈ Z and n ≥ |m|

with n
2≡ |m|. We then have:

Ca
n,m( f ) = ∑

τ∈R
∑

α∈Φτ

Aa
mn(τ, α) f̂ (τuα), (37)

where:
Aa

mn(τ, α) := ca(τuα; n, m). (38)

The next result gives a polarized version for explicit closed form of Fourier–Zernike coefficients
for zero-padded functions.
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Proposition 4. Let a > 0 and f ∈ L1(R2) be a continuous function. Let R( f ) be the restriction of f to the
unit disk B2

a and E( f ) be the canonical extension of R( f ) to the rectangle Ωa := [−a, a]2 by zero-padding.

Furthermore, let m ∈ Z and n ≥ |m| with n
2≡ |m|. We then have:

Ca
n,m(R( f )) = ∑

τ∈R
∑

α∈Φτ

Aa
mn(τ, α)Ê( f )(τuα), (39)

where:
Ê( f )(τuα) =

∫ a

−a

∫ a

−a
f (x1, x2)e−πiτa−1(x1 cos α+x2 sin α)dx1dx2. (40)

Theorem 5. Let a > 0 and f ∈ L1(R2) be a continuous function. Let R( f ) be the restriction of f to the unit
disk B2

a and E( f ) be the canonical extension of R( f ) to the rectangle Ωa := [−a, a]2 by zero-padding. We then
have:

f (r, θ) =
∞

∑
m=−∞

∑
{n:|m|≤n and |m| 2≡n}

Ca
n,m(R( f ))Va

nm(r, θ),

for 0 ≤ r ≤ a and 0 ≤ θ ≤ 2π, where:

Ca
n,m(R( f )) = ∑

τ∈R
∑

α∈Φτ

Aa
mn(τ, α)Ê( f )(τuα). (41)

4. Fourier–Zernike Series for Convolution of Functions Supported on Disks

We then continue by investigating analytical aspects of Fourier–Zernike series as a constructive
approximation for the convolution of functions supported on disks.

The following theorem introduces a constructive method for computing the Fourier–Zernike
coefficients of the convolution of functions supported on disks.

Theorem 6. Let a > 0 and f j ∈ L1(R2) with j ∈ {1, 2} be functions supported on B2
a/2. Furthermore, let

m ∈ Z and n ≥ |m| with n
2≡ |m|. The Fourier–Zernike coefficient Ca

n,m( f1 ∗ f2) of f1 ∗ f2 is given by:

Ca
n,m( f1 ∗ f2) = ∑

k∈Z2

ca(k; n, m) f̂1(k) f̂2(k), (42)

where, for j ∈ {1, 2}, k ∈ Z2, m ∈ Z, and n ∈ N, we have:

f̂ j(k) :=
∫ a

−a

∫ a

−a
f j(x1, x2)e−πia−1(k1x1+k2x2)dx1dx2, (43)

and:

ca(k; n, m) :=
√

n + 1
im(−1)

n−m
2 Jn+1(π|k|)

2a
√

π|k|
e−imΦ(k). (44)

Proof. Let a > 0 and f j ∈ L1(R2) with j ∈ {1, 2} be functions supported on B2
a/2. Then, f1 ∗ f2 is

supported on B2
a. Let m ∈ Z and n ≥ |m| with n

2≡ |m|. Regarding each f j as a function supported on
B2

a, by the convolution property of the Fourier transform, we have:

̂( f1 ∗ f2)(k) = f̂1(k) f̂2(k), (45)
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for each k ∈ Z2. Then, applying (45) in Equation (27), we get:

Ca
n,m( f1 ∗ f2) = ∑

k∈Z2

ca(k; n, m) f̂1 ∗ f2(k)

= ∑
k∈Z2

ca(k; n, m) f̂1(k) f̂2(k).

Corollary 4. Let a > 0 and f j ∈ L1(R2) with j ∈ {1, 2} be functions supported on B2
a/2. We then have:

( f1 ∗ f2)(r, θ) =
∞

∑
m=−∞

∑
{n:|m|≤n and |m| 2≡n}

Ca
n,m( f1 ∗ f2)Va

nm(r, θ), (46)

where:
Ca

n,m( f1 ∗ f2) = ∑
k∈Z2

ca(k; n, m) f̂1(k) f̂2(k). (47)

We then present the following polarized version of Theorem 6.

Theorem 7. Let a > 0 and f j ∈ L1(R2) with j ∈ {1, 2} be functions supported on B2
a/2. Furthermore, m ∈ Z

and n ≥ |m| with n
2≡ |m|. We then have:

Ca
n,m( f1 ∗ f2) = ∑

τ∈R
∑

α∈Φτ

Aa
mn(τ, α) f̂1(τuα) f̂2(τuα). (48)

Corollary 5. Let a > 0 and f j ∈ L1(R2) with j ∈ {1, 2} be functions supported on B2
a/2. We then have:

f1 ∗ f2(r, θ) =
∞

∑
m=−∞

∑
{n:|m|≤n and |m| 2≡n}

Ca
n,m( f1 ∗ f2)Va

nm(r, θ), (49)

where:
Ca

n,m( f1 ∗ f2) = ∑
τ∈R

∑
α∈Φτ

Aa
mn(τ, α) f̂1(τuα) f̂2(τuα). (50)

Next, we present a closed form for Fourier–Zernike coefficients of zero-padded functions.

Theorem 8. Let a > 0 and b := a/2. Suppose f j ∈ L1(R2) with j ∈ {1, 2} are continuous functions. Let
R( f j) be the restriction of f j to B2

b and E( f j) be the canonical extension of R( f j) to the rectangle Ωa := [−a, a]2

by zero-padding. Furthermore, let m ∈ Z and n ≥ |m| with n
2≡ |m|. We then have:

Ca
n,m( f1 ~ f2) = ∑

k∈Z2

ca(k; n, m) f̂1[k] f̂2[k], (51)

where, for k := (k1, k2)
T ∈ Z2:

f̂ j[k] :=
∫ b

0

∫ 2π

0
f j(r, θ)e−πia−1r(k1 cos θ+k2 sin θ)rdrdθ. (52)

Proof. Let a > 0 and b := a/2. Suppose f j ∈ L1(R2) with j ∈ {1, 2} are continuous functions. Let R( f j)

be the restriction of f j to the disk B2
b and E( f j) be the extension of R( f j) to the rectangle Ωa := [−a, a]2

by zero-padding. We then have:
f1 ~ f2 = E( f1) ∗ E( f2).
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Let m ∈ Z and n ≥ |m| with n
2≡ |m|. Then, using Equation (42), we get:

Ca
n,m( f1 ~ f2) = Ca

n,m(E( f1) ∗ E( f2))

= ∑
k∈Z2

ca(k; n, m)Ê( f1)(k)Ê( f2)(k),

with:
Ê( f j)(k) =

∫ a

−a

∫ a

−a
E( f j)(x1, x2)e−πia−1(k1x1+k2x2)dx1dx2,

for j ∈ {1, 2}. Since each E( f j) is an extension of R( f j) to the rectangle Ωa by zero-padding and R( f j)

is the restriction of f j to the disk B2
b ⊆ [−b, b]2, we can write:

Ê( f j)(k) =
∫ a

−a

∫ a

−a
E( f j)(x1, x2)e−πia−1(k1x1+k2x2)dx1dx2

=
∫

Ωa
E( f j)(x1, x2)e−πia−1(k1x1+k2x2)dx1dx2

=
∫
B2

b

f j(x1, x2)e−πia−1(k1x1+k2x2)dx1dx2

=
∫ b

0

∫ 2π

0
f j(r, θ)e−πia−1r(k1 cos θ+k2 sin θ)rdrdθ = f̂ j[k].

Corollary 6. Let a > 0 and b := a/2. Suppose f j ∈ L1(R2) with j ∈ {1, 2} are continuous functions. Let
R( f j) be the restriction of f j to B2

b and E( f j) be the canonical extension of R( f j) to the rectangle Ωa := [−a, a]2

by zero-padding. We then have:

( f1 ~ f2)(r, θ) =
∞

∑
m=−∞

∑
{n:|m|≤n and |m| 2≡n}

Ca
n,m( f1 ~ f2)Va

nm(r, θ), (53)

where:
Ca

n,m( f1 ~ f2) = ∑
k∈Z2

ca(k; n, m) f̂1[k] f̂2[k]. (54)

We then present the following polarized version of closed forms for Fourier–Zernike
approximations of zero-padded functions.

Theorem 9. Let a > 0 and b := a/2. Suppose f j ∈ L1(R2) with j ∈ {1, 2} are continuous functions. Let
R( f j) be the restriction of f j to B2

b and E( f j) be the canonical extension of R( f j) to the rectangle Ωa := [−a, a]2

by zero-padding. Furthermore, let m ∈ Z and n ≥ |m| with n
2≡ |m|. We then have:

Ca
n,m( f1 ~ f2) = ∑

τ∈R
∑

α∈Φτ

Aa
mn(τ, α) f̂1[τuα] f̂2[τuα]. (55)

Corollary 7. Let a > 0 and b := a/2. Suppose f j ∈ L1(R2) with j ∈ {1, 2} are continuous functions. Let
R( f j) be the restriction of f j to B2

b and E( f j) be the canonical extension of R( f j) to the rectangle Ωa := [−a, a]2

by zero-padding. We then have:

( f1 ~ f2)(r, θ) =
∞

∑
m=−∞

∑
{n:|m|≤n and |m| 2≡n}

Ca
n,m( f1 ~ f2)Va

nm(r, θ), (56)
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Convolution Approximation of Fourier–Zernike Basis Elements

Let a > 0 and b := a/2. Suppose f j : R2 → R with j ∈ {1, 2} are continuous functions supported

on the disk B2
b with the associated Fourier–Zernike coefficients

{
Cb

n,m( f j) : m ∈ Z, n ∈ Im

}
, with

Im := {n : |m| ≤ n and |m| 2≡ n}. Hence, we can write:

f j =
∞

∑
m=−∞

∑
{n:|m|≤n and |m| 2≡n}

Cb
n,m( f j)Vb

nm, (57)

where:
Cb

n,m( f j) = ∑
k∈Z2

cb(k; n, m) f̂ j(k),

for m ∈ Z and n ≥ |m| with n
2≡ |m|.

Using the linearity of convolutions, as linear operators, we get:

f1 ∗ f2 =

 ∞

∑
m=−∞

∑
{n:|m|≤n and |m| 2≡n}

Cb
n,m( f1)Vb

nm

 ∗
 ∞

∑
m′=−∞

∑
{n′ :|m′ |≤n′ and |m′ | 2≡n′}

Cb
n′ ,m′( f2)Vb

n′m′


=

∞

∑
m=−∞

∑
{n:|m|≤n and |m| 2≡n}

∞

∑
m′=−∞

∑
{n′ :|m′ |≤n′ and |m′ | 2≡n′}

Cb
n,m( f1)Cb

n′ ,m′( f2)Vb
nm ~ Vb

n′m′ ,

where Vb
nm ~ Vb

n′m′ is the standard convolution of Fourier–Zernike basis elements, considering them as
functions defined on R2 by zero-padding and supported in B2

b.
Therefore, the convolution of Fourier–Zernike basis elements can be viewed as pre-computed

kernels.

Proposition 5. Let a > 0 and b := a/2. Suppose k ∈ Z2, m ∈ Z and n ≥ |m| with n
2≡ |m|. We then have:

V̂b
nm[k] = 2

√
n + 1i−meimΦ(k)a(−1)n−m Jn+1(π|k|/2)√

π|k|
. (58)
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Proof. Let m ∈ Z and n ≥ |m| with n
2≡ |m|. Regarding Vb

nm as a function defined on R2 by
zero-padding and supported on B2

b, still denoted by Vb
nm, for each k ∈ Z2, we can write:

V̂b
nm[k] = V̂b

nm[|k|uΦ(k)]

=
∫
B2

b

Vnm(x)e
−πi|k|uT

Φ(k)xdx

=
∫ 2π

0

∫ b

0
Vb

nm(r, θ)e−πia−1r|k|uT
Φ(k)uθ rdrdθ

=
∫ 2π

0

∫ b

0
Vb

nm(r, θ)

(
∞

∑
l=−∞

i−l Jl(a−1πr|k|)e−ilθeilΦ(k)

)
rdrdθ

=

√
2n + 2

b
√

2π

∫ 2π

0

∫ b

0
Znm(b−1r)eimθ

(
∞

∑
l=−∞

i−l Jl(a−1πr|k|)e−ilθeilΦ(k)

)
rdrdθ

=

√
2n + 2

b
√

2π

∞

∑
l=−∞

i−leilΦ(k)
(∫ 2π

0

∫ b

0
Znm(b−1r)Jl(a−1πr|k|)eimθe−ilθrdrdθ

)
=

√
2n + 2

b
√

2π

∞

∑
l=−∞

i−leilΦ(k)
(∫ 2π

0
eimθe−ilθdθ

)(∫ b

0
Znm(b−1r)Jl(a−1πr|k|)rdr

)

=

√
2π(2n + 2)

b

∞

∑
l=−∞

i−leilΦ(k)δml

(∫ b

0
Znm(b−1r)Jl(a−1πr|k|)rdr

)

=

√
2π(2n + 2)

b
i−meimΦ(k)

(∫ b

0
Znm(b−1r)Jm(a−1πr|k|)rdr

)
.

Hence, we get:

V̂b
nm[k] =

√
2π(2n + 2)

b
i−meimΦ(k)

(∫ b

0
Znm(b−1r)Jm(a−1πr|k|)rdr

)
. (59)

Applying (13) in (59), we can write:

∫ b

0
Znm(b−1r)Jm(a−1πr|k|)rdr = b(−1)

n−m
2

Jn+1(ba−1π|k|)
a−1π|k| = a2(−1)

n−m
2

Jn+1(π|k|/2)
2π|k| .

which implies that:

V̂b
nm[k] =

√
2π(2n + 2)

b
i−meimΦ(k)

(∫ b

0
Znm(b−1r)Jm(a−1πr|k|)rdr

)
=

√
2π(2n + 2)

b
i−meimΦ(k)a2(−1)

n−m
2

Jn+1(π|k|/2)
2π|k|

= 2
√

n + 1i−meimΦ(k)a(−1)n−m Jn+1(π|k|/2)√
π|k|

.

Proposition 6. Let a > 0 and b := a/2. Furthermore, let m, m′ ∈ Z and n ∈ Im, n′ ∈ Im′ . Then, for each
` ∈ Z and k ∈ I`, we have:

Ca
k,`(V

b
nm ~ Vb

n′m′) =
a2
√

(n+1)(n′+1)
i(m+m′)(−1)m−n−m′+n′π

∑k∈Z2 ca(k; k, `)
ei(m+m′)Φ(k) Jn′+1(π|k|/2)Jn′+1(π|k|/2)

|k| . (60)
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Proof. Let a > 0 and b := a/2. Furthermore, let m, m′ ∈ Z and n ∈ Im, n′ ∈ Im′ . Regarding Vb
nm and

Vb
n′m′ as functions supported on B2

b, Vb
nm ~ Vb

n′m′ is a function supported on the disk B2
a. Suppose ` ∈ Z

and k ∈ I`. Using (51), we have:

Ca
k,`(V

b
nm ~ Vb

n′m′) = ∑
k∈Z2

ca(k; k, `)V̂b
nm[k]V̂b

n′m′ [k]

=
a2
√
(n + 1)(n′ + 1)

i(m+m′)(−1)m−n−m′+n′π
∑

k∈Z2

ca(k; k, `)
ei(m+m′)Φ(k) Jn′+1(π|k|/2)Jn′+1(π|k|/2)

|k| .

Theorem 10. Let a > 0 and b := a/2. Suppose m, m′ ∈ Z, n ∈ Im and n′ ∈ Im′ . We then have:

Vb
nm ~ Vb

n′m′(r, θ) =
∞

∑
`=∞

∑
k∈I`

Ca
k,`(V

b
nm ~ Vb

n′m′)V
a
k,`(r, θ), (61)

where for each ` ∈ Z and k ∈ I`, we have:

Ca
k,`(V

b
nm ~ Vb

n′m′) =
a2
√

(n+1)(n′+1)
i(m+m′)(−1)m−n−m′+n′π

∑k∈Z2 ca(k; k, `)
ei(m+m′)Φ(k) Jn′+1(π|k|/2)Jn′+1(π|k|/2)

|k| . (62)

5. Conclusions

The mathematical foundations for computing convolutions of functions supported on disks in the
plane are derived. The motivation for this work is the way that the Fourier–Zernike basis transforms
under rotation, which is not shared by the multi-dimensional Fourier series of periodized functions.
Extensions to functions supported on balls in d-dimensional Euclidean space with the Fourier series
for the angular direction being replaced by hyper-spherical harmonics follow in a natural way.
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