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Abstract: In order to overcome the several shortcomings of Particle Swarm Optimization (PSO)
e.g., premature convergence, low accuracy and poor global searching ability, a novel Simple Particle
Swarm Optimization based on Random weight and Confidence term (SPSORC) is proposed in
this paper. The original two improvements of the algorithm are called Simple Particle Swarm
Optimization (SPSO) and Simple Particle Swarm Optimization with Confidence term (SPSOC),
respectively. The former has the characteristics of more simple structure and faster convergence
speed, and the latter increases particle diversity. SPSORC takes into account the advantages of
both and enhances exploitation capability of algorithm. Twenty-two benchmark functions and
four state-of-the-art improvement strategies are introduced so as to facilitate more fair comparison.
In addition, a t-test is used to analyze the differences in large amounts of data. The stability and
the search efficiency of algorithms are evaluated by comparing the success rates and the average
iteration times obtained from 50-dimensional benchmark functions. The results show that the SPSO
and its improved algorithms perform well comparing with several kinds of improved PSO algorithms
according to both search time and computing accuracy. SPSORC, in particular, is more competent for
the optimization of complex problems. In all, it has more desirable convergence, stronger stability
and higher accuracy.

Keywords: particle swarm optimization; confidence term; random weight; benchmark functions;
t-test; success rates; average iteration times

1. Introduction

Since the 1950s, heuristic algorithms based on evolutionary algorithms (EAs) [1] have sprung up
and been widely applied to the field of optimization control, such as moth search (MS) algorithm [2,3],
genetic algorithm (GA) [4], ant colony optimization (ACO) algorithm [5], differential evolution
(DE) algorithm [6], simulated annealing (SA) algorithm [7], krill herd (KH) algorithm, etc. [8–12].
Compared with traditional optimization methods such as golden section [13], Newton method [14,15],
gradient method [16], heuristic algorithms have better biological characteristics and higher efficiency.
It has been proved that heuristic algorithms perform well in some advanced existing fields e.g.,
grid computing [17], the superfluid management of 5G Networks [18], TCP/IP Mobile Cloud [19],
IIR system identification [20], etc.

The Particle Swarm Optimization (PSO) algorithm proposed by Kennedy and Eberhart [21,22] in
1995 is also a member of the heuristic algorithm. Unlike other EAs, PSO does not require such steps as
crossover, mutation, and selection, and it has fewer parameters. Its optimization process relies entirely
on formula iteration, hence its calculation burden is low. The efficiency is very high, especially for
continuous unimodal function model optimization. Due to these advantages, it has been widely used
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in various theoretical and practical problems such as function optimization [23], Non-Deterministic
Polynomial(NP) problem [24], and multi-objective optimization [25].

PSO is a typical algorithm that relies on swarm intelligence [26–31] to optimize complex problems,
and it is inspired by the foraging behavior of birds. It can be imagined that a group of gold rushers find
gold in a region. They all have instruments that can detect gold mines under the stratum, and they can
communicate with their nearest gold rushers. Through communication, they can know whether the
person next to them finds gold. At the beginning, in order to explore this area more comprehensively,
they randomly select a location to explore and maintain a certain distance. As the exploration begins,
if someone finds some gold, the neighboring gold rushers can choose whether to change his position
based on his own experience and whether he trusts him. This constant search may make it easier to
find more gold than to be alone. In this example, a group of gold rushers and the gold are, respectively,
equivalent to the particles of PSO and the optima that needs to be searched.

In actual operation, it is observed that PSO is very prone to premature convergence and falls
into the local optima when faced with multimodal functions, especially some ones with traps or
discontinuities. Based on this observation, a huge amount of particle swarm optimization variants have
been proposed to deal with these issues. From the literature, it can be clearly observed that most of the
existing PSO algorithms can be roughly divided into six categories: principle study, parameter setting,
topology improvement, updating formula improvement, hybrid mechanism, practical application.

1. Principle study: The inertia weight factor, which adjusts the ability of PSO algorithm in local
and global search was introduced by Shi and Eberhart [32], effectively avoiding falling into local
optimum for PSO. Shi and Eberhart provided a way of thinking for future improvement. In 2001,
Parsopoulos and Vrahatis [33]’s research showed that basic PSO can work effectively and stably in
noisy environments, and in many cases, the presence of noise can also help PSO avoid falling into
local optimum. The basic PSO was introduced for continuous nonlinear function [21,22]. However,
because the basic PSO is easy to fall into the local optima, local PSO(LPSO) [34] was introduced in
2002. Clerc and Kennedy [35] proposed a constriction factor to enhance the explosion, stability,
and convergence in a multidimensional complex space. Xu and Yu [36] used the super-martingale
convergence theorem to analyze the convergence of the particle swarm optimization algorithm.
The results showed that the particle swarm optimization algorithm achieves the global optima in
probability and the quantum-behaved particle swarm optimization (QPSO) [37] has also been
proved to have global convergence.

2. Parameter setting: A particle swarm optimization with fitness adjustment parameters (PSOFAB) [38],
based on the fitness performance, was proposed in order to converge to an approximate optimal
solution. The experimental results were analyzed by the Wilcoxon signed rank test, and its analysis
showed that PSOFAP [38] is effective in increasing the convergence speed and the solution
quality. It accurately adapts the parameter value without performing parametric sensitivity
analysis. The inertia weight of the hybrid particle swarm optimization incorporating fuzzy
reasoning and weighted particle (HPSOFW) [39] is changed based on defuzzification output.
The chaotic binary PSO with time-varying acceleration coefficients (CBPSOTVAC) [40] using
116 benchmark problems from the OR-Library to test has time-varying acceleration coefficients
for the multidimensional knapsack problem. A self-organizing hierarchical PSO [41] also uses
time-varying acceleration coefficients.

3. Topology improvement: In 2006, Kennedy and Mendes [42] explained the neighborhood
topologies in fully informed and best-of-neighborhood particle swarms in detail. A dynamic
multiswarm particle swarm optimizer (DMSPSO) [43] was proposed, and it adopts a neighborhood
topology including a random selection of small swarms with small neighborhood. Moreover, the
regrouped group is dynamic and randomly assigned. In 2014, FNNPSO [44] use Fluid Neural
Networks (FNNs) to create a dynamic neighborhood mechanism. The results showed that
FNNPSO can outperform both the standard PSO algorithm and PCGT-PSO. Sun and Li proposed a
two-swarm cooperation particle swarm optimization (TCPSO) [45] that used the slave swarm and
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the master swarm to exchange the information, which is beneficial for enhancing the convergence
speed and maintaining the swarm diversity in TCPSO, and particles update the next particle
with information from its neighboring particles, rather than its own history best solution and
current velocity. This strategy makes the particles of the subordinate group more inclined to
local optimization, thus accelerating convergence. Inspired by the cluster reaction of the starlings,
Netjinda et al. [46] used the collective response mechanism to influence the velocity and position
of the current particle by seven adjacent ones, thereby increasing the diversity of the particles.
A nonparametric particle swarm optimization (NP-PSO) [47] combines local and global topologies
with two quadratic interpolation operations to enhance the PSO capability without tuning any
algorithmic parameter.

4. Updating formula improvement: Mendes [48] changed the PSO’s velocity and personal best
solution updating formula and proposed a fully informed particle swarm (FIPS) algorithm to
make good use of the whole entire swarm. Mendes [49] proposed a Comprehensive learning
particle swarm optimizer (CLPSO) whose velocity updating formula eliminates the influence from
global best solution to to suit the multimodal functions, and CLPSO uses two tournament-selected
particles to help particles study better case during iteration. The results showed that CLPSO
performs better than other PSO variants for multimodal problems. A learning particle swarm
optimization (*LPSO) algorithm [50] was proposed with a new framework that changed the
velocity updating formula so as to organically hybridize PSO with another optimization technique.
*LPSO is composed of two cascading layers: exemplar generation and a basic PSO algorithm
updating method. A new global particle swarm optimization (NGPSO) algorithm [51] uses a new
position updating equation that relies on the global best particle to guide the searching activities
of all particles. In the latter part of the NGPSO search, the random distribution based on uniform
distribution is used to increase the particle swarm diversity and avoid premature convergence.
Kiran proposed a PSO with a distribution-based position update rule (PSOd) [52] whose position
updating formula is combined with three variables.

5. Hybrid mechanism: In 2014, Wang et al. [53] proposed a series of chaotic particle-swarm krill
herd (CPKH) algorithms for global numerical optimization. The CPKH is a hybird Krill herd
(KH) [54] algorithm with APSO [55] which has a mutation operator and chaotic theory. This hybrid
algorithm, which with an appropriate chaotic map performs superiorly to the standard KH
and other population-based optimization, has quick exploitation for solution. DPSO [56] is
a accelerated PSO (APSO) [55] algorithm hybridized with a DE algorithm mutation operator.
It has a superior performance due to combining the advantages from both APSO and DE. Wang
et al., finally, studied and analyzed the effect of the DPSO parameters on convergence and
performance by detailed parameter sensitivity studies. In he hybrid learning particle swarm
optimizer with genetic disturbance (HLPSO-GD) [57], the genetic disturbance is used to cross
the corresponding particle in the external archive, and new individuals are generated, which
will improve the swarm’s ability to escape from the local optima. Gong et al. proposed a
genetic learning particle swarm optimization (GLPSO) algorithm that uses genetic evolution
to breed promising exemplars based on *LPSO [50] enhancing the global search ability and
search efficiency of PSO. PSOTD [58] namely a particle swarm optimization algorithm with two
differential mutation, which has a novel structure with two swarms and two layers including
bottom layer and top layer, was proposed for 44 benchmark functions. HNPPSO [59] is a novel
particle swarm optimization combined with a multi-crossover operation, a vertical crossover,
and an exemplar-based learning strategy. To deal with production scheduling optimization in
foundry, a hybrid PSO combined the SA [7] algorithm [60] was proposed.

6. Practical application: Zou et al. used NGPSO [51] to solve the economic emission dispatch
(EED) problems and the results showed that NGPSO is the most efficient approach for solving
the economic emission dispatch (EED) problems. PS-CTPSO [61] based on the predatory search
strategy was proposed to do with web service combinatorial optimization, which is an NP
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problem, and it improves overall ergodicity. To improve the changeability of ship inner shell,
IPSO [62] was proposed for a 50,000 DWT product oil tanker. MBPSO [63] was proposed for sensor
management of LEO constellation to the problem of utilizing a low Earth orbit (LEO) infrared
constellation in order to track the midcourse ballistic missile. GLNPSO [64] is for a capacitated
Location-Routing Problem. The particle swarm algorithm is also applied to many other practical
problems e.g., PID (Proportion Integration Differentiation) controller [65], optimal strategies
of energy management integrated with transmission control for a hybrid electric vehicle [66],
production scheduling optimization in foundry [60], etc.

In view of the shortcomings of PSO [21,22], three improvements are proposed in this paper.
The first is Simple Particle Swarm Algorithm (SPSO). It does not use the velocity updating formula,
and abandons the use of self-cognitive term. Although the speed of the algorithm has been greatly
improved, some deficiencies have been found in actual tests. It is observed that the particles’ difference
is too small to jump out of the local optimal solution, which is not suitable for searching for multimodal
problems. For this purpose, a second improvement named Simple Particle Swarm Optimization
with Confidence Term (SPSOC) is proposed in this paper. That is, the confidence term is introduced
in the SPSO’s position updating formula. Although having a slight increase in time compared to
SPSO, the results show that SPSOC is better for multi-peak function optimization. On the basis of this,
the inertia weight is improved by introducing the difference between the stochastic objective function
value and the worst one, and the final improvement is called Simple Particle Swarm Optimization based
on Random weight and Confidence term (SPSORC). The inertial weight not only has a crucial effect
on its convergence, but also plays an important role in balancing exploration and exploitation during
the evolution. The strategy in this paper makes particle position movements more random. A large
number of experiments suggest that all three improvements are very effective, and the combination of
the three improvements has greatly improved the search efficiency of the particle swarm algorithm.

The rest of this paper is organized as follows: Section 2 introduces the basic PSO [21,22] and three
recently improved PSO methods. In Section 3, three improvements are presented in detail. In Section 4,
some analysis of PSO is further discussed. The experimental results are discussed and analyzed
between four state-of-the-art PSOs and three improved ones proposed in this paper. Finally, this paper
presents some important conclusions and the outlook of future work in Section 5.

2. Related Works

2.1. The Basic PSO

In general, the particle swarm optimization algorithm is composed of the position updating
formula and the velocity updating formula. Each particle iterates with reference to its own history best
solution pbest and the global best value gbest to change position and velocity information. The basic
particle swarm optimization (bPSO) [21,22] algorithm iteration formula is as follows:

vt+1
in = vt

in + c1r1(pt
best − xt

in) + c2r2(gt
best − xt

in), (1)

xt+1
in = xt

in + vt+1
in . (2)

As shown in the above formula, Equations (1) and (2) are the velocity updating formula and the
position updating formula, respectively. The particles whose population is m search for the optima in
the -dimensional space. In that process, the i-th particle’s position in the n-dimensional space is xin
and the current velocity is vin. pbest is the individual history best solution and gbest is the global one.
t is the current iteration numbers. c1 and c2 are cognitive and social factors, and r1 and r2 are random
numbers belonging to [0,1). Figure 1 is an optimization procedure of PSO.

From Figure 1, the area U is the solution space of a function. O is the theoretical optima that needs
to be found. xt

i is the position of the initial particle. The velocity vt
i is the current particle velocity.

vt+1
i is the velocity after being affected by various aspects. Particle memory influence and swarm
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influence are parallel to the connecting lines from xt
i to gbest and pbest, respectively, indicating the

influence from gbest and pbest. In this generation, the particle i is affected by vt
i first. After particle

memory influence and swarm influence, i arrives at xt+1
i from xt

i at velocity vt+1
i . From the next

iteration, the particle will move from xt+1
i towards the new position. It keeps iterating as the step

above and moves to the theoretical optima more and more close.

gbest

O

u

xi
t

xi
t+1

Swarm influence

pbest

vi
t+1

Particle memory influence

vi
t

Figure 1. Optimization procedure of bPSO.

The velocity updating formula had changed to Equation (3), when Shi and Eberhart put the inertia
weight ω into it, and the position updating formula remained unchanged:

vt+1
in = ωvt

in + c1r1(pt
best − xt

in) + c2r2(gt
best − xt

in). (3)

The introduction of inertia weight effectively keeps a balance between the local and global search
capability. The larger the inertia weight, the stronger the global search capability of the algorithm.
On the contrary, the local search capability is more prominent. This particle swarm optimization model
is the most commonly used nowadays, and many scholars have improved it.

The steps to achieve it are as follows:

Step 1: Initialize the population randomly. Set the maximum number of iterations, population size,
inertia weight, cognitive factors, social factors, position limits and the maximum velocity limit.

Step 2: Calculate the fitness of each particle according to fitness function or models.
Step 3: Compare the fitness of each particle with its own history best solution pbest. If the fitness is

smaller than pbest, the smaller value is assigned to pbest, otherwise, pbest is reserved. Then,
the fitness is compared with the global best solution gbest, and the method is the same as
selecting pbest.

Step 4: Use Equations (2) and (3) to update the particle position and velocity. In addition, we must
make sure that its velocity and position are, respectively, within the maximum velocity limit
and position limits.

Step 5: Check if the theoretical optimum is reached, output the value and stop the operation; otherwise,
return to Step 2 (Section 2.1) until it reaches the theoretical optima or peaks the maximum
number of iterations.

In this paper, a basic particle swarm optimization with decreasing linear inertia weight is used.
The weight formula is as Equation (4):

ω = ωmax − ωmax−ωmin
T × t. (4)

In Equation (4), ωmax is starting weight. ωmin is final weight. tmax is the maximum number of
iterations. PSO needs to set a still more larger starting weight ωmax according to the influence of inertia
weight on the search capability of PSO, so as to pay more attention to the global optima. As the number
of iterations increases, the weight will be decreased. The search process would be more inclined to
explore the local optima, which is more conducive to the final convergence.



Mathematics 2018, 6, 287 6 of 34

2.2. The PSO with a Distribution-Based Position Update Rule

In 2017, a distribution-based update rule for PSO (PSOd) [52] algorithm was proposed by Kiran.
This improved strategy changed PSO’s iteration formula.

xt+1
in = µ + σ× Z. (5)

Those three variables in Equation (5) work by Equations (6)–(8):

µ =
xt

in+pt
best+gt

best
3 , (6)

σ =

√
(xt

in−µ)2+(pt
best−µ)2+(pt

best−µ)2

3 , (7)

Z = (−2 ln k1)
1
2 × cos(2πk2). (8)

It works as follows:

Step 1: The population is initialized randomly.
Step 2: The fitness is calculated and compared to get the best individual history solution and the best

global one.
Step 3: Equation (5) is used to update the particle position that is limited in the upper and lower limits.
Step 4: If the termination condition is met, the best solution is reported.

2.3. A Hybrid PSO with Sine Cosine Acceleration Coefficients

In order to make better use of parameters on PSO algorithm, such as inertia weight, learning
factors, etc., Chen et al. proposed a hybrid PSO algorithm with the sine cosine acceleration coefficients
(HPSOscac) [67].

Step 1: The population is initialized randomly.
Step 2: The reverse population of the initial population is calculated by Equation (9)

x
′
in = xmax + xmin − xin. (9)

In this equation, xin and x
′
in are initial population and reverse population, respectively. xmax

and xmin are combined the upper and lower limits of particles position i.e., the solution
space boundary.

Step 3: Fitness values of those two populations are sorted, and the best half is used as the initial
population. Then, the pbest and gbest are obtained by comparing.

Step 4: Equations (10) and (11) are used to update the inertia weight and learning factors, respectively:{
ωt+1 = c

4 × sin (πωt),
ω1 = 0.4; cε(0, 4],

(10)

{
c1 = 2× sin ((1− t

T )×
π
2 ) + 0.5,

c2 = 2× cos ((1− t
T )×

π
2 ) + 0.5.

(11)

Among them, c is a constant among 0 and 4. c1 and c2 are cognitive and social factors, respectively.
Step 5: Updating the particle velocity and position, use Equations (1) and (12). The particle position

updating formula is as follows:

xt+1
in = xt

in ×Wt
in + vt

in ×Wt′
in + ρ× gt

best ×Wt
in. (12)
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Wt
in and Wt′

in are the dynamic weights that control position and velocity terms. Its formula is
like Equation (13). ρ is a random value between 0 and l:

 Wt
in =

exp fi
favg

1+exp − fi
favg

t ,

Wt′
in = 1−Wt

in.

(13)

In this formula, fi is the particle fitness value, and favg is the average one.
Step 6: The iteration is ended if end condition is reached. Otherwise, it comes back to Step 2

(Section 2.3).

2.4. A Two-Swarm Cooperative PSO

A two-swarm cooperative particle swarm optimization (TCPSO) [45] was proposed who uses
two particle swarms, the slave swarm and the master swarm with the clear division of their works to
overcome the shortcomings such as lack of diversity, slow convergence in the later period, etc. It works
like the following:

Step 1: Initialization. Initialize the slave swarm and the master swarm’s velocity and position randomly.
Step 2: Calculate the fitness of these two swarms and get the gS

best , pS
best , gbest and pM

best . The first two
come from the slave swarm and the last two come from the master swarm.

Step 3: Reproduction and updating.

Step 3.1: Update the slave swarm by Equations (14) and (15). Ensure that velocity and position are
within the limits:

vS,t+1
in = cS

1 r1(1− r2)(xS,t
kn − xS,t

in ) + cS
2 (1− r1)r2(gbest − xS,t

in ), (14)

xS,t+1
in = xS,t

in + vS,t+1
in . (15)

S in these two formulas means that this variable from the slave swarm, except gbest in
Equation (14) from the master swarm. Finally, we will get the gS

best. xk is randomly chosen
from the neighberhood of the xi according to Equation (16) [42]:

kε

{
[i− l

2 + 1, i + l
2 ], i f l is even,

[i− l−1
2 , i + l−1

2 ], i f l is odd.
(16)

l is the size of neighborhood. Sun and Li found that the size of neighborhood equal to 2 is
best in their experiments.

Step 3.2: Update the master swarm by Equations (17) and (18). Ensure that velocity and position are
within the limits:

vM,t+1
in = ωMvM,t

in + cM
1 r1(1− r2)(1− r3)(pM

best − xM,t
in ) + cM

2 r2(1− r1)(1− r3)(gS
best − xM,t

in )

+ cM
3 r3(1− r1)(1− r2)(gbest − xM,t

in )
(17)

xM,t+1
in = xM,t

in + vM,t+1
in . (18)

M here means that this variable is from the master swarm. In the end of Step 3.2 (Section 2.4),
gbest wil be obtained for the next iteration.

Step 4: Get the optima if it meets the termination condition; otherwise, go to Step 2 (Section 2.4).
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3. SPSO, SPSOC, SPSORC

3.1. Simple PSO

Zou et al. proposed a novel harmony search algorithm [68] that used the optimal harmony and
worst harmony in the harmony memory to guide the configuration of the harmony vector. It obtained
very suitable results. Inspired by its thoughts, we try to round off the velocity formula and cognitive
term of PSO and directly use the social term to control the algorithm optimization, so that the formula
Equation (21) is the most simplified, namely the Simple Particle Swarm Optimization (SPSO) algorithm.
According to the results of the literature [69], the influence of the velocity term on the performance
of the particle swarm algorithm can be neglected. Drawing on literature [69], we can simply do the
following derivation. Before abandoning the velocity updating formula, SPSO velocity updating
formula is shown as follows. Particles’ positions are updated according to Equation(2):

vt+1
in = ωvt

in + cr(gt
best − xt

in). (19)

According to Equations (19) and (2), we make the following assumptions:

Hypothesis 1. The update of particles per dimension is independent from each other, except that gbest is the
one that connects the information to the other dimensions.

Hypothesis 2. When particle i is updated, the other particles’ velocities and positions are not changed.

Hypothesis 3. The particles’ positions are moving continuously.

According to the above assumptions, it is only necessary to prove a certain dimension of a certain
particle search process that can be universal. Iterating over Equations (19) and (2) yields a second-order
differential equation:

xt+2 + (rc−ω− 1)xt+1 + ωxt = rcgt
best. (20)

We can observe that there is no velocity updating in Equation (20). This result can be applied to
each dimension update of other particles. Now, we get SPSO’s updating formula:

xt+1
in = ωxt

in + cr(gt
best − xt

in). (21)

SPSO only uses this formula to iterate. The experimental results show that this strategy improves
the search efficiency and stability of the bPSO.

It works like the following:

Step 1: The maximum generation, population number, inertia weight, learning factor are set up.
Population is initialized.

Step 2: Fitness is calculated according to the function.
Step 3: Every particle compares with its history best solution to get the pbest and compares with the

global best one to get the gbest.
Step 4: Particle position is updated by Equation (21).
Step 5: If the theoretical optimal value is not found, the program returns to Step 2 (Section 3.1);

otherwise, the program stops.

After changing, the particle direction is only affected by the global optima. Graphical display of
one of the particle optimization process is shown in Figure 2.
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gbest

Ou

xi

t

xi

t+1

Swarm influence

Figure 2. Optimization procedure of SPSO.

As shown in the figure, compared with the bPSO optimization process diagram in Section 2.1,
in the optimization of SPSO, the particles are only affected by gbest and the direction of the particles
always faces gbest . This feature also brings some drawbacks. For example, whether the algorithm can
or cannot search for the theoretical optima depends entirely on the selection position of the global
optima, which makes it likely for particles develop in a certain local optimal direction. It is possible
to reach the current gbest value directly if the movement is fast enough. This is a search trajectory of
one, while when all particles are only optimized in one direction, it obviously reduces the difference
between the population. The lack of diversity directly leads to the fact that SPSO are easily trapped in
local optimal solutions.

What is gratifying is that SPSO is very fast because of the simplification. This is very suitable for
single-peak problems. This advantage can be clearly reflected in the experimental results in Section 4.
However, the unconstrained functions, especially single-peak problems, are a minority after all. In
order to make this improvement apply into more functions or environment, we propose adding a
confidence term so that some part of the particles can determine the distance to advance based on its
own level of trust to gbest, so as to get rid of the defects that all particles are looking for at one point.

3.2. SPSO with Confidence Term

In order to better solve the multimodal problem and make the improvement universal, we decided
to add a confidence item(SPSOC) that rewrites Equation (21) into Equation (22):

xt+1
in = ω1xt

in + cr1(gt
best − xt

in)−ω2r2gt
best. (22)

Compared with SPSO, the algorithm formula adds one item, namely the confidence term. ω2 is
the inertia weight of the confidence term. r2 is the random value between [0, 1].

Referring to Figure 3, the principle of the item can be understood as: at a certain iteration,
the position calculated by the SPSO moves a distance suffered from confidence influence. The effect is
equivalent to the particle being optimized from xt

i to x
′t+1
i . Then, the particle retreats a distance from

the beginning in the opposite direction to the gbest direction. Finally, this particle reaches the position
of xt+1

i . Using the inertia weight ω2 and the random number r2, the distance of the particles retreating
in the opposite direction would be uncertain. It can be imagined that the degree of particles trust
at different generation is different, that is, the influence of gbest is different. This improvement can
effectively slow the convergence of particles, so that the particles are not too dense, thus maintaining
particle diversity.
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gbest
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t
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t+1
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influence

xi

’ t+1

Figure 3. Optimization procedure of SPSOC.

A discussion of the impact of this improved algorithm using a combination of different weights
will be explained in the experiment of Section 4.4. In order to minimize the program running time
and ensure that the program structure is simple and the effect is optimal, this paper makes ω1 = ω2.
SPSOC’s iteration process is the same as SPSO.

3.3. SPSOC Based on Random Weight

Adding a confidence item to the SPSO does significantly enhance the search ability of the
algorithm, but it does not achieve theoretical optimization when searching for most of the benchmark
functions. Compared with many improved PSOs proposed recently, SPSOC has no big advantage
except for the short amount of time. Therefore, we think about randomization improvement of inertia
weight named SPSOC based on random weight (SPSORC). The improved inertia weight formula is
shown in Equation (23):

ω =


pr

best− fbest
fworst− fbest

, i f set minimum as target,
fbest−pr

best
fbest− fworst

, i f set maximum as target.
(23)

In this formula, if we set the minimum as the target we want to find, fbest is the minimum fitness
in the current iteration, fworst is the worst fitness target value in the current iteration, and pr

best is one
of the most pbest that a random particle has searched for from total swarm.

The use of Equation (23) allows the weights to be generated randomly, which effectively reduces
the possibility that the algorithm falls into a local solution and enhance the exploitation capability.
This strategy will at least make algorithms better for some multimodel problems. The random weight,
however, also increases the risk of finding non-optimal solutions. This will be reflected in the large
amount of experimental data in Section 4, but the experimental results show that the overall search
ability of SPSOC has been very significantly improved.

It is more concise that the flow of SPSORC is similar to that of the bPSO, which just calculates the
random weight. Its procedure is shown in Table 1.
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Table 1. The procedure of SPSORC.

Line Procedure of SPSORC

1 Initialize parameters: dimension N, population size m, iteration number T, weight ω, learing factors
c1, c2, etc; % Step 1

2 Initialize and reserve matrix space: pbest = [Inf11· · · InfmN], gbest = [Inf1· · · Infm],
xmin = lower limits of position, xmax = upper limits;

3 For i = 1:m
4 For j = 1:N
5 Randomly initialize velosity and position: vin, xin; % Step 2
6 End For
7 End For

8 For i = 1:m
9 Calculate the fitness. Compared to get the p1

best and g1
best

10 End For

11 While the optima is not found or the termination condition is not met
12 Calculate the fbest and fworst. Then, get the ω by Equation (23); % Step 3
13 For i = 1:m
14 For j = 1:N
15 Update the particle positon according to Equation (22); % Step 4
16 If xt

in > xmax
17 xt

in = xmax;
18 ElseIf xt

in < xmin
19 xt

in = xmin;
20 End If
21 End For

22 Substitute the current particle into the fitness formula to calculate the fitness value of the current
particle;

23 Compare to get the pbest and gbest ;
24 End For
25 End While

26 Return Results. % Step 5

4. Experimental Study and Results Analysis

4.1. Benchmark Functions

The aim of this improved strategy is to solve the problem of unconstrained optimization
better. In order to demonstrate the effectiveness of the algorithm more fully, this experiment will
use 22 commonly used benchmark functions to simulate and contrast, including the unimodal
benchmark functions represented by Sphere Function, the complex multimodel solution functions
such as Rastrigrin Problem, the ill-conditioned quadratic Rosenbrock function, Xin–She Yang 3 with
discontinuity and trap near the optimal solution, noise-containing functions like Quartic Function and
other functions which is hard to find the best solution. Of course, these 22 functions also contain four
test functions ( f7, f15, f20 and f21) with negative optima.

These 22 benchmark functions arranged in alphabetical order are shown in Table A1. The following
test functions may change slightly in form for consistency or convenience because of the large
number of types for test function versions, but the test results will not be affected. The last column,
‘Accuracy (50)’, is the convergence accuracy we want to reach for the test function in the 50-dimensional
case, which will be used in Section 4.5.3, ‘Success Rate and Average Iteration Times’.

4.2. Parameters Setting and Simulation Environment

One of the reasons why particle swarm optimization algorithm was proposed late but had a
relatively wide range of use is that it needs fewer parameters and is set up simply. When dealing with
general problems, its requirements on population numbers, the maximum iteration numbers and other
parameters are not high, which also determines that the algorithm has the advantages of small size
and fast searching speed when it is implemented. Under normal circumstances, the population set at
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40 can get a good solution for most problems. More complex problems can be solved by increasing the
population number and the maximum iteration times.

Table 2 is about the specific parameter settings. NR is the number of times each algorithm searches
for the benchmark functions. m is population number. T is the maximum iteration times per search.
ωmax and ωmin are the maximum weight and the minimum weight. c1 and c2 are the acceleration
factors.

Table 2. Parameters for candidates.

NR m T ωmax ωmin c1 c2 c3

bPSO 30 40 100 0.9 0.4 2 2 -
PSOd 30 40 100 - - - - -

HPSOscac 30 40 100 Equation (10) - Equation (11) Equation (11) -
TCPSO 30 80 100 0.9 - 1.6 1.6 1.6
SPSO 30 40 100 0.9 0.4 - 2 -

SPSOC 30 40 100 0.9 0.4 - 2 -
SPSORC 30 40 100 Equation (23) - - 2 -

Simulation environment is shown in Table 3.

Table 3. Simulation environment.

Operation System Windows 7 Professional ( × 32)
CPU Core 2 Duo 2.26 GHz

Memory 4.00 GB
Platform Matlab R2014a
Network Gigabit Ethernet

4.3. Discussion on Improvement Necessity For SPSO

The search speed is a great advantage of SPSO because of a simple structure. However, its advantages
are its disadvantages. The over-simplified structure makes the SPSO’s population lack of diversity,
which makes it converge to local optima quickly, so the further improvement of SPSO becomes
indispensable. Therefore, in Section 3, we present two improvements to SPSO. In this section, we will
let SPSO, SPSOC and SPSORC solve the high dimension benchmark functions. Then, we discuss the
necessity of those two improvement steps in Section 3 by analyzing its results.

In this experiment, the function dimension is set to 200 dimensions. The other parameters are
consistent with the parameter setting table in Table 2 of Section 4.2. Table 4 shows the optimal results
of the experiment. The minimum number in each set of data (min and mean) is represented in bold in
the following table.

From the experimental results for the 200-dimensional benchmark functions in Table 4, we can
see that SPSORC can search the other 21 functions for the theoretical optimal solution or a better
solution than SPSO and SPSOC except for searching Quartic Function with noises. The optimization
results of SPSO and SPSOC, however, are in straitened circumstances compared to SPSORC. SPSO gets
better solutions four times, while SPSOC gets better solutions six times. Compared with the 30 search
average solutions of SPSO and SPSOC, the optima of SPSOC is also smaller. it is indicated that the
solution searched by SPSO after adding the confidence item can be kept smaller and its performance
is greatly improved and the optimization capability is more enhanced after using random inertia
weight. Thus, it can be seen that the two improvements to the SPSO are very necessary. SPSO is more
inclined to exploration, which is more conducive to the local search of particles. Confidence term
change the trajectory of some particles, which increases particle diversity. Meanwhile, the random
inertia weight balances the exploitation capabilities of the algorithm so that it improves the search
range and robustness of the algorithm significantly.
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Table 4. Discussion on the necessity of improving SPSO.

Instance
SPSO SPSOC SPSORC

min mean min mean min max

f1 4.44 × 10−15 4.44 × 10−15 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 1.48 × 10−15

f2 1.53 × 10−18 5.91 × 10−3 6.94 × 10−56 6.93 × 10−50 0 6.65 × 10−268

f3 2.16 × 10−35 2.68 × 10−35 3.84 × 10−106 1.33 × 10−97 0 0
f4 5.40 × 10−76 7.42 × 10−76 2.27 × 10−216 8.96 × 10−195 0 0
f5 0 8.32 × 10−3 0 0 0 3.37 × 10−16

f6 1.61 × 10−30 2.63 × 10−30 2.88 × 10−102 4.12 × 10−93 0 0
f7 −1.12 × 101 7.87 × 10−2 −1.49 × 102 −1.49 × 102 −1.49 × 102 −1.49 × 102

f8 9.51 × 10−1 6.61 × 101 0 0 0 1.87 × 101

f9 2.33 × 10−4 3.15 × 10−2 9.12 × 10−4 2.30 × 10−2 5.75 × 10−3 3.63 × 10−1

f10 0 4.52 × 101 0 0 0 6.51 × 10−16

f11 1.49 × 102 1.49 × 102 1.49 × 102 1.49 × 102 1.48 × 102 1.49 × 102

f12 7.97 × 10−33 2.79 × 10−32 2.95 × 10−82 8.39 × 10−21 0 1.77 × 10−04

f13 6.25 × 10−49 1.07 × 10−45 1.89 × 10−75 1.24 × 10−60 0 0
f14 1.20 × 10−17 1.36 × 10−17 5.46 × 10−55 3.75 × 10−47 0 1.48 × 10−270

f15 −5.26 × 103 −3.37 × 103 −4.31 × 103 −2.61 × 103 −5.99 × 103 −3.80 × 103

f16 1.21 × 10−34 1.47 × 10−34 1.91 × 10−106 1.81 × 10−96 0 1.90 × 10−321

f17 0 1.64 × 10−315 0 0 0 1.36 × 10−256

f18 1.76 × 10−29 2.81 × 10−6 2.34 × 10−60 1.85 × 10−18 0 0
f19 7.48 × 10−25 1.02 × 10−16 1.75 × 10−21 1.04 × 10−14 0 3.96 × 10−20

f20 3.63 × 10−55 3.95 × 10−43 7.93 × 10−46 1.69 × 10−33 −1 −1
f21 1.75 × 10−44 1.78 × 10−42 1.59 × 10−36 4.71 × 10−32 −1 −1
f22 2.61 × 10−36 3.15 × 10−36 2.20 × 10−33 6.20 × 10−14 0 2.14 × 10−8

4.4. Discussion on Weight Selection for SPSOC

The proposed SPSOC has two inertia weights. The first inertia weight balances the search ability
to global optima and the local one, while the second weight determines the degree to which the particle
converges to the global optima in current generation. Obviously, whether these two weights are set
properly or not has a significant impact on the performance of the algorithm. Then, the discussion of
how these two inertia weights should be selected becomes quite necessary. The experiment comparing
the optimal solution and the average solution found by the algorithm with different weights introduces
three kinds of inertia weight strategies, which are divided into six kinds of situations. Those three
kinds of inertia weights used in the experiment are as follows:

1. Linear decreasing inertia weight, i.e., Equation (4);
2. Classic nonlinear dynamic inertia weight, i.e., Equation (24);

ω =

{
ωmax, xin > favg,
ωmin − (ωmax −ωmin)×

xin− fmin
favg− fmin

, xin ≤ favg. (24)

3. Random inertia weight proposed in this paper, i.e., Equation (23).

Table 5 reports the results of this experiment. Taking ω2,1 for example, the first subscript 2
indicates that ω1 in Equation (22) uses the second kind of weight formula i.e., Equation (24), and the
second subscript 1 indicates that ω2 uses the first kind of weight formula i.e., Equation (4). The others
are similar. Experimental benchmark functions’ upper dimensions are set at 100. We represnt the
minimum value for min and mean in bold in the following table.
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Table 5. Discussion on the weights selection of SPSOC.

Instance
Different Weight Matching

ω21 ω31 ω32 ω11 ω22 ω22

f1
min 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16

mean 1.80 × 101 3.85 × 10−15 1.27 × 101 8.88 × 10−16 1.53 × 101 1.36 × 10−15

f2
min 1.54 × 10−85 4.67 × 10−65 9.25 × 10−83 8.09 × 10−61 2.10 × 10−80 0

mean 4.34 × 10−16 1.53 × 10−57 7.90 × 10−75 2.73 × 10−53 4.14 × 10−63 0

f3
min 7.53 × 10−163 3.54 × 10−125 1.81 × 10−169 8.92 × 10−122 2.07 × 10−156 0

mean 1.75 × 10−38 4.85 × 10−109 4.84 × 10−91 1.37 × 10−101 4.97 × 10−50 0

f4
min 1.78 × 10−240 8.32 × 10−258 0 4.48 × 10−235 2.22 × 10−304 0

mean 1.68 × 10−34 7.32 × 10−214 5.03 × 10−106 1.99 × 10−205 2.65 × 10−21 0

f5
min 0 0 2.17 × 101 0 0 0

mean 1.20 × 102 0 2.17 × 101 0 2.17 × 10−2 0

f6
min 2.20 × 10−161 2.59 × 10−121 1.45 × 10−155 6.26 × 10−114 1.41 × 10−151 0

mean 3.58 × 10−67 4.98 × 10−104 7.88 × 10−142 2.66 × 10−92 9.16 × 10−72 0
f7

min −9 −9 −9 −9 −9 −9
mean −9 −9 −9 −9 −9 −9

f8
min 1.30 0 9.02 × 10−1 0 9.02 × 10−1 0

mean 1.50 1.54 1.60 7.29 × 10−2 1.25 3.25 × 10−1

f9
min 9.13 × 10−4 1.37 × 10−3 1.51 × 10−3 1.05 × 10−3 5.92 × 10−4 2.71 × 10−3

mean 2.01 × 10−2 3.16 × 10−2 4.61 × 10−2 1.51 × 10−2 3.11 × 10−2 4.44 × 10−2

f10
min 0 0 0 0 0 0

mean 2.89 × 101 0 0 0 5.67 × 10−7 0
f11

min 7.28 8.03 7.69 8.04 7.86 7.97
mean 8.09 8.83 8.81 8.45 8.22 8.54

f12
min 1.60 × 10−157 1.76 × 10−116 8.56 × 10−158 5.08 × 10−105 2.32 × 10−148 0

mean 3.04 × 10−22 7.01 × 10−8 9.69 × 101 6.71 × 10−67 3.90 × 10−35 0

f13
min 1.35 × 10−96 2.36 × 10−73 1.39 × 10−93 2.91 × 10−77 1.92 × 10−92 0

mean 9.62 × 10−26 3.02 × 10−59 3.63 × 10−43 7.25 × 10−58 2.42 × 10−41 0

f14
min 1.56 × 10−84 1.14 × 10−64 2.91 × 10−85 1.66 × 10−60 6.95 × 10−84 0

mean 4.04 × 10−56 1.89 × 10−55 1.94 × 10−67 3.04 × 10−52 5.80 × 10−35 0

f15
min −1.60 × 103 −1.57 × 103 −1.52 × 103 −1.36 × 103 −1.38 × 103 −1.34 × 103

mean −8.99 × 102 −9.81 × 102 −1.05 × 103 −8.06 × 102 −8.09 × 102 −8.84 × 102

f16
min 9.16 × 10−164 1.56 × 10−121 3.15 × 10−164 3.83 × 10−117 1.96 × 10−150 0

mean 2.09 × 10−27 9.99 × 10−101 1.05 × 10−144 1.05 × 10−97 1.04 × 10−62 0

f17
min 1.78 × 10−199 2.74 × 10−154 1.09 × 10−192 8.20 × 10−148 2.80 × 10−158 0

mean 6.33 × 10−1 1.43 × 10−116 1.63 × 10−33 2.37 × 10−118 6.53 × 10−24 0

f18
min 5.61 × 10−84 1.49 × 10−52 1.97 × 10−82 2.24 × 10−59 7.48 × 10−80 0

mean 3.89 × 10−13 7.36 × 10−19 1.94 × 10−19 4.60 × 10−29 1.48 × 10−19 0

f19
min 3.54 × 10−3 1.01 × 10−2 9.08 × 10−3 1.47 × 10−2 1.09 × 10−2 0

mean 6.15 × 10−2 4.33 × 10−2 4.10 × 10−2 9.36 × 10−2 7.27 × 10−2 2.24 × 10−2

f20
min 3.97 × 10−25 7.05 × 10−17 3.97 × 10−25 1.81 × 10−12 3.97 × 10−25 −1

mean 3.68 × 10−14 2.75 × 10−11 4.58 × 10−10 1.01 × 10−7 3.97 × 10−25 −1

f21
min 9.28 × 10−4 5.44 × 10−4 1.88 × 10−3 1.61 × 10−3 2.95 −1

mean 2.85 2.35 × 10−3 1.07 × 10−1 3.14 × 10−3 2.95 −1

f22
min 7.70 × 10−155 7.35 × 10−115 3.27 × 10−159 1.75 × 10−113 1.61 × 10−146 0

mean 3.08 × 10−30 2.71 × 10−45 5.07 × 10−100 2.32 × 10−88 1.26 × 10−40 0

As can be seen from the experimental data in Table 5, when the ω1 and ω2 take the random
weights proposed in this paper, the obtained optima are satisfactory. It has 19 times to find the best
solution, but only dominated by other algorithms when searching for the three functions ( f9, f11 and
f15)—followed by ω1 using the second kind of weight improvement strategy and ω2 using the first
strategy with the way. This method has six times to search for smaller results. The conclusion of this
discussion is that the optimization of the algorithm is better when ω1 is equal to ω2. If they all use
the randomized weights proposed in this paper at the same time, the capability of the SPSOC will be
the best and it can easily do this with most of the benchmark functions. Comparing with the 30-times
average values, we can find that, when the weight ω1 is equal to ω2, the average value is smaller and
the randomization strategy proposed in this paper is the best among them. If they use the same weight
equation, the algorithm will be simpler and faster because only one weight needs to be calculated.
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However, this paper uses only six kinds of collocation ways which are combined into three kinds
of improvement strategies to carry on the simulation experiment. Whether there is a better weight
improvement strategy to make SPSOC have a better performance needs to be further developed
and improved.

4.5. Comparison and Analysis with Other PSOs

The most commonly used method which better reflects that the improved algorithm is excellent
is bound to be compared with other classical improvement methods. In this section, we have
a comparative test between three improved strategies proposed in this paper and bPSO and its
three representative improved ones namely, bPSO, PSOd, HPSO-SCAC and TCPSO. The experiment
consists of three parts mainy. The first part is to test the seven kinds of particle swarm algorithms
separately for 0-dimensional, 50-dimensional and 100-dimensional functions. Each function is searched
for 30 times. A t-test is used to analyze the large amount of experimental data obtained. Twenty-two
distinct evolution curves of fitness from optimizng 100-dimensional functions will be analyzed briefly.
Here, all the experiments were conducted on the same conditions as Zhang et al. [70,71]. The second
part is to analyze the complexity by the Big O notation [72] and the actual running time for search for
the optima in 50-dimensional problems. The third part is to calculate the success rate and the average
iteration times of seven algorithms in solving twenty-two 50-dimensional problems, respectively.
The stability and effectiveness of the algorithm will be analyzed by these two indices. More details of
those three parts will be elaborated in sequence in the following subsections.

4.5.1. Different Dimensional Experiments and t-Test Analysis

Students’ t-test (t-test) is a frequently used method of data analysis in statistics to compare
whether two sets of data is in one solution space or not, that is, the comparasion for data differences.
In this paper, a two-independent-samples t-test as the following formulas is used to analyze the
difference between the 30 optima searched by SPSORC and the 30 ones by others:

t = (X̄1−X̄2)−(µ1−µ2)
SX̄1−X̄2

= (X̄1−X̄2)
SX̄1−X̄2

, (25)

SX̄1−X̄2
=
√

S2
c

n1
+ S2

c
n2

, (26)

where X̄1 and X̄2 are, respectively, the average of two sets of data; S2
c is the combined variance;

The sample size is 30; the two-tailed test level is taken as 0.05. The Matlab R2014a test2 function
(MathWorks, Natick, MA, USA) instruction is used to calculate directly so as to avoid unnecessary
calculation error in the paper.Table 6 shows the optima of the seven improved algorithms for the
10-dimensional, 50-dimensional and 100-dimensional benchmark functions from Table A1, respectively.
In Table 6, each algorithm solves the specified function 30 times separately and minimum value(min),
average values(mean) and standard deviation values(std) of them are calculated. The minimum one of
this three sets of data are highlighted in boldface. ‘+’, ‘−’ and ‘=’ respectively indicate that the SPSORC
results are ‘better’ than, ‘worse’ than and ‘same’ as the improved algorithm. To calculate the SPSORC’s
net score for convenience, ‘1’, ‘−1’, and ‘0’ corresponding to the three symbols here indicate the score
of the SPSORC.
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Table 6. Optimization results for the function in 3 kinds of dimension.

10 50 100

min mean std ttest min mean std ttest min mean std ttest

f1

bPSO 3.16 × 10−1 1.29 6.68 × 10−1 +(1) 1.26 × 101 1.77 × 101 1.82 +(1) 1.95 × 101 2.02 × 101 3.23 × 10−1 +(1)
PSOd 1.16 3.32 1.64 +(1) 1.09 × 101 1.36 × 101 1.16 +(1) 1.39 × 101 1.54 × 101 6.67 × 10−1 +(1)

HPSOscac 2.08 × 10−10 2.20 5.69 +(1) 1.68 × 10−11 1.13 2.98 +(1) 6.66 × 10−10 6.94 × 10−1 2.65 =(0)
TCPSO 8.92 × 10−01 2.08 6.35 × 10−1 +(1) 1.03 × 101 1.39 × 101 2.08 +(1) 1.72 × 101 1.85 × 101 7.74 × 10−1 +(1)
SPSO 8.88 × 10−16 3.38 × 10−15 1.66 × 10−15 +(1) 8.88 × 10−16 3.73 × 10−15 1.45 × 10−15 +(1) 8.88 × 10−16 3.85 × 10−15 1.35 × 10−15 +(1)

SPSOC 8.88 × 10−16 8.88 × 10−16 0 =(0) 8.88 × 10−16 8.88 × 10−16 0 =(0) 8.88 × 10−16 8.88 × 10−16 0 −(−1)
SPSORC 8.88 × 10−16 8.88 × 10−16 0 8.88 × 10−16 8.88 × 10−16 0 8.88 × 10−16 2.19 × 10−15 4.01 × 10−15

f2

bPSO 3.46 × 10−2 6.10 × 10−1 6.44 × 10−1 +(1) 3.97 × 101 5.60 × 101 8.63 +(1) 1.43 × 102 1.68 × 102 1.25 × 101 +(1)
PSOd 4.28 × 10−3 1.29 × 10−1 1.79 × 10−1 +(1) 1.53 × 101 2.12 × 101 4.77 +(1) 5.40 × 101 6.94 × 101 1.07 × 101 +(1)

HPSOscac 0 6.88 × 10−77 3.77 × 10−76 =(0) 0 1.27 × 10−68 6.95 × 10−68 =(0) 0 8.67 × 10−49 4.75 × 10−48 =(0)
TCPSO 6.42 × 10−2 1.46 1.69 +(1) 2.24 × 101 4.92 × 101 1.33 × 101 +(1) 1.05 × 102 1.35 × 102 2.11 × 101 +(1)
SPSO 2.58 × 10−24 2.81 × 10−2 1.49 × 10−1 =(0) 4.28 × 10−20 2.40 × 10−4 1.25 × 10−3 =(0) 3.06 × 10−19 1.94 × 10−3 1.06 × 10−2 =(0)

SPSOC 7.18 × 10−59 1.01 × 10−45 5.54 × 10−45 =(0) 2.12 × 10−56 5.22 × 10−41 2.73 × 10−40 =(0) 1.07 × 10−53 5.71 × 10−42 2.35 × 10−41 =(0)
SPSORC 0 0 0 0 5.61 × 10−281 0 0 0 0

f3

bPSO 1.31 × 10−3 8.95 × 10−1 4.78 =(0) 7.69 × 102 1.37 × 103 4.27 × 102 +(1) 1.12 × 104 1.37 × 104 1.33 × 103 +(1)
PSOd 6.53 × 10−4 2.91 × 10−1 3.50 × 10−1 +(1) 2.95 × 102 5.68 × 102 1.66 × 102 +(1) 2.88 × 103 4.32 × 103 1.02 × 103 +(1)

HPSOscac 0 8.09 × 10−132 4.43 × 10−131 =(0) 0 1.62 × 10−155 8.88 × 10−155 =(0) 0 3.60 × 10−120 1.97 × 10−119 =(0)
TCPSO 1.66 × 10−2 7.68 × 10−2 6.09 × 10−2 +(1) 1.70 × 102 4.56 × 102 2.85 × 102 +(1) 3.40 × 103 5.24 × 103 1.15 × 103 +(1)
SPSO 1.80 × 10−52 2.39 × 10−46 6.91 × 10−46 =(0) 2.97 × 10−38 1.11 × 10−32 4.16 × 10−32 =(0) 3.39 × 10−35 2.39 × 10−29 1.31 × 10−28 =(0)

SPSOC 4.92 × 10−112 3.50 × 10−90 1.89 × 10−89 =(0) 1.91 × 10−108 9.54 × 10−73 5.22 × 10−72 =(0) 7.38 × 10−104 5.55 × 10−69 3.04 × 10−68 =(0)
SPSORC 0 0 0 0 0 0 0 0 0

f4

bPSO 2.10 × 10−8 5.60 × 10−7 5.78 × 10−7 +(1) 7.19 3.05 × 101 1.35 × 101 +(1) 2.32 × 102 4.93 × 102 1.54 × 102 +(1)
PSOd 3.81 × 10−7 4.00 × 10−4 9.29 × 10−4 +(1) 1.69 4.84 2.59 +(1) 1.94 × 101 6.03 × 101 2.18 × 101 +(1)

HPSOscac 0 9.26 × 10−285 0 +(1) 0 6.20 × 10−224 0 +(1) 0 1.36 × 10−274 0 +(1)
TCPSO 2.30 × 10−8 3.68 × 10−6 4.79 × 10−6 +(1) 4.50 × 10−1 4.35 6.46 +(1) 4.11 × 101 1.07 × 102 5.20 × 101 +(1)
SPSO 6.17 × 10−108 4.10 × 10−94 2.23 × 10−93 =(0) 9.65 × 10−83 3.38 × 10−72 1.77 × 10−71 =(0) 4.66 × 10−78 1.25 × 10−69 4.73 × 10−69 =(0)

SPSOC 5.88 × 10−234 1.19 × 10−183 0 =(0) 2.87 × 10−218 1.52 × 10−152 8.31 × 10−152 =(0) 1.56 × 10−222 4.13 × 10−155 2.26 × 10−154 =(0)
SPSORC 0 1.73 × 10−321 0 0 2.96 × 10−323 0 0 2.02 × 10−320 0

f5

bPSO 4.22 × 10−1 9.36 × 10−1 1.64 × 10−1 +(1) 6.46 × 101 2.11 × 102 6.99 × 101 +(1) 8.91 × 102 1.15 × 103 1.48 × 102 +(1)
PSOd 1.37 × 10−1 8.46 × 10−1 6.67 × 10−1 +(1) 4.36 × 101 8.91 × 101 2.69 × 101 +(1) 2.38 × 102 3.18 × 102 4.27 × 101 +(1)

HPSOscac 3.38 × 10−6 6.26 × 101 1.14 × 102 +(1) 7.84 × 10−2 4.02 × 102 5.68 × 102 +(1) 1.57 × 10−5 1.37 × 103 1.67 × 103 +(1)
TCPSO 1.04 1.16 9.72 × 10−2 +(1) 1.90 × 101 6.24 × 101 3.63 × 101 +(1) 2.46 × 102 4.14 × 102 7.97 × 101 +(1)
SPSO 0 3.87 × 10−1 3.41 × 10−1 +(1) 0 5.40 × 10−2 1.49 × 10−1 =(0) 0 7.33 × 10−3 2.37 × 10−2 =(0)

SPSOC 0 0 0 −(−1) 0 0 0 =(0) 0 0 0 =(0)
SPSORC 0 3.70 × 10−18 2.03 × 10−17 0 0 0 0 5.18 × 10−17 1.23 × 10−16



Mathematics 2018, 6, 287 17 of 34

Table 6. Cont.

10 50 100

min mean std ttest min mean std ttest min mean std ttest

f6

bPSO 4.16 × 103 6.97 × 105 1.22 × 106 +(1) 1.38 × 108 3.70 × 108 1.82 × 108 +(1) 7.95 × 108 1.90 × 109 6.34 × 108 +(1)
PSOd 2.60 × 103 5.58 × 104 7.67 × 104 +(1) 1.80 × 107 8.68 × 107 4.80 × 107 +(1) 2.99 × 108 5.38 × 108 1.37 × 108 +(1)

HPSOscac 0 3.69 × 10−149 2.02 × 10−148 =(0) 0 3.77 × 10−157 2.06 × 10−156 =(0) 0 3.40 × 10−124 1.86 × 10−123 =(0)
TCPSO 5.51 × 104 8.43 × 105 1.26 × 106 +(1) 4.79 × 107 1.91 × 108 1.33 × 108 +(1) 3.51 × 108 1.04 × 109 6.43 × 108 +(1)
SPSO 1.44 × 10−45 5.73 × 10−41 1.56 × 10−40 +(1) 1.71 × 10−33 1.72 × 10−28 7.68 × 10−28 =(0) 8.51 × 10−33 2.42 × 10−27 5.20 × 10−27 +(1)

SPSOC 3.77 × 10−113 8.59 × 10−84 4.71 × 10−83 +(1) 1.15 × 10−101 1.94 × 10−76 7.40 × 10−76 =(0) 1.47 × 10−102 1.67 × 10−76 9.16 × 10−76 +(1)
SPSORC 0 0 0 0 0 0 0 0 0

f7

bPSO −6.76 −5.32 6.63 × 10−1 +(1) −1.20 × 101 −9.16 1.64 +(1) −1.66 × 101 −1.23 × 101 2.52 +(1)
PSOd −7.93 −6.49 6.48 × 10−1 +(1) −2.64 × 101 −2.13 × 101 2.01 +(1) −3.78 × 101 −3.27 × 101 2.57 +(1)

HPSOscac −2.46 −2.46 4.73 × 10−1 +(1) −3.51 −4.39 4.35 +(1) −1.48 × 101 −5.40 4.02 +(1)
TCPSO −6.83 −4.91 9.48 × 10−1 +(1) −1.43 × 101 −8.66 3.01 +(1) −1.58 × 101 −9.52 3.65 +(1)
SPSO −9 −5.47 2.81 +(1) −4.90 × 101 −1.20 × 101 1.79 × 101 +(1) −3.31 × 101 −3.96 8.44 +(1)

SPSOC −9 −9 0 =(0) −4.90 × 101 −4.90 × 10+01 0 =(0) −9.90 × 101 −9.90 × 101 0 −(−1)
SPSORC −9 −9 0 −4.90 × 101 −4.90 × 101 0 −9.90 × 101 −9.90 × 101 2.64 × 10−15

f8

bPSO 9.02 × 10−1 1.71 5.13 × 10−1 +(1) 1.04 × 101 1.24 × 101 1.36 +(1) 2.39 × 101 2.69 × 101 1.36 +(1)
PSOd 1.65 2.41 3.26 × 10−1 +(1) 1.94 × 101 2.11 × 101 6.65 × 10−1 +(1) 4.29 × 101 4.53 × 101 9.08 × 10−1 +(1)

HPSOscac 2.22 × 10−16 1.82 1.47 +(1) 6.75 × 10−12 1.43 × 101 9.26 +(1) 9.03 × 10−6 2.68 × 101 2.09 × 101 +(1)
TCPSO 7.05 × 10−1 1.68 7.04 × 10−1 +(1) 9.91 1.19 × 101 1.05 +(1) 2.33 × 101 2.56 × 101 1.65 +(1)
SPSO 1.47 2.81 5.56 × 10−1 +(1) 2.11 × 10−4 1.87 × 101 6.17 +(1) 6.62 × 10−1 4.30 × 101 8.94 +(1)

SPSOC 0 2.87 × 10−2 1.57 × 10−1 -(-1) 0 6.58 × 10−1 3.60 −(−1) 0 1.50 8.22 +(1)
SPSORC 0 4.43 × 10−1 1.16 0 1.47 5.59 0 0 0

f9

bPSO 1.97 × 10−2 9.62 × 10−2 5.02 × 10−2 +(1) 4.21 2.94 × 101 1.63 × 101 +(1) 2.64 × 102 4.90 × 102 1.22 × 102 +(1)
PSOd 1.23 × 10−2 5.86 × 10−2 3.47 × 10−2 +(1) 3.09 6.44 3.01 +(1) 3.35 × 101 6.07 × 101 2.06 × 101 +(1)

HPSOscac 4.17 × 10−1 1.27 × 101 1.70 × 101 +(1) 6.76 8.72 × 102 6.17 × 102 +(1) 7.34 × 101 3.51 × 103 2.21 × 103 +(1)
TCPSO 2.68 × 10−2 7.16 × 10−2 4.05 × 10−2 +(1) 2.39 5.04 3.05 +(1) 6.29 × 101 1.07 × 102 4.38 × 101 +(1)
SPSO 2.16 × 10−4 2.27 × 10−2 2.16 × 10−2 =(0) 2.39 × 10−3 2.13 × 10−2 1.70 × 10−2 −(−1) 2.52 × 10−3 3.08 × 10−2 2.90 × 10−2 −(−1)

SPSOC 9.79 × 10−4 2.07 × 10−2 2.35 × 10−2 =(0) 1.00 × 10−3 2.15 × 10−2 1.65 × 10−2 +(1) 9.11 × 10−4 2.15 × 10−2 1.66 × 10−2 −(−1)
SPSORC 7.03 × 10−4 3.65 × 10−2 3.08 × 10−2 4.43 × 10−3 6.27 × 10−2 5.32 × 10−2 5.05 × 10−3 1.72 × 10−1 2.82 × 10−1

f10

bPSO 8.03 2.76 × 101 1.21 × 101 +(1) 4.55 × 102 5.47 × 102 5.13 × 101 +(1) 1.05 × 103 1.31 × 103 9.25 × 101 +(1)
PSOd 1.05 × 10−1 8.86 4.17 +(1) 1.65 × 102 2.06 × 102 2.38 × 101 +(1) 5.15 × 102 6.36 × 102 5.58 × 101 +(1)

HPSOscac 9.35 × 10−5 5.13 × 101 5.40 × 101 +(1) 2.50 × 10−1 3.47 × 102 3.03 × 102 +(1) 3.08 × 10−1 6.13 × 102 5.71 × 102 +(1)
TCPSO 1.12 × 101 4.68 × 101 2.10 × 101 +(1) 4.02 × 102 5.42 × 102 7.35 × 101 +(1) 1.03 × 103 1.22 × 103 1.15 × 102 +(1)
SPSO 0 1.78 × 101 2.31 × 101 +(1) 0 1.09 3.67 =(0) 0 3.24 × 10−1 1.24 =(0)

SPSOC 0 0 0 =(0) 0 0 0 =(0) 0 0 0 =(0)
SPSORC 0 0 0 0 0 0 0 2.96 × 10−16 9.43 × 10−16
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Table 6. Cont.

10 50 100

min mean std ttest min mean std ttest min mean std ttest

f11

bPSO 1.31 × 101 6.35 × 103 2.28 × 1004 =(0) 5.06 × 106 1.71 × 107 8.00 × 106 +(1) 1.80 × 108 2.98 × 108 7.48 × 107 +(1)
PSOd 6.50 8.95 × 102 2.03 × 103 +(1) 1.89 × 106 6.49 × 106 3.13 × 106 +(1) 2.08 × 107 4.22 × 107 1.46 × 107 +(1)

HPSOscac 9.00 × 103 8.68 × 107 8.12 × 107 +(1) 5.64 × 107 1.01 × 109 6.13 × 108 +(1) 2.42 × 108 2.41 × 109 1.33 × 109 +(1)
TCPSO 4.24 × 101 8.01 × 102 1.04 × 103 +(1) 5.18 × 105 2.45 × 106 1.01 × 106 +(1) 3.84 × 107 7.88 × 107 3.19 × 107 +(1)
SPSO 7.74 8.15 1.28 × 10−1 −(−1) 4.81 × 101 4.87 × 101 3.08 × 10−1 −(−1) 9.81 × 101 9.88 × 101 2.02 × 10−1 =(0)

SPSOC 8.11 8.32 1.99 × 10−1 +(1) 4.81 × 101 4.87 × 101 3.05 × 10−1 +(1) 9.82 × 101 9.89 × 101 1.48 × 10−1 =(0)
SPSORC 8.00 8.64 6.52 × 10−1 4.86 × 101 4.89 × 101 1.05 × 10−1 9.82 × 101 9.89 × 101 1.54 × 10−1

f12

bPSO 6.41 × 102 3.89 × 103 1.89 × 103 +(1) 3.09 × 105 1.53 × 106 1.12 × 106 +(1) 5.44 × 106 1.94 × 107 1.18 × 107 +(1)
PSOd 1.66 × 102 1.73 × 103 7.79 × 102 +(1) 1.23 × 105 3.16 × 105 1.43 × 105 +(1) 1.26 × 106 4.46 × 106 2.47 × 106 +(1)

HPSOscac 0 7.30 × 10−131 4.00 × 10−130 =(0) 0 1.56 × 10−144 8.56 × 10−144 =(0) 0 1.10 × 10−120 6.01 × 10−120 =(0)
TCPSO 4.44 × 102 3.89 × 103 1.64 × 103 +(1) 5.48 × 105 2.50 × 106 1.72 × 106 +(1) 1.05 × 107 3.86 × 107 3.14 × 107 +(1)
SPSO 2.39 × 10−45 9.73 × 10−42 3.27 × 10−41 =(0) 1.84 × 10−38 1.73 × 10−36 3.39 × 10−36 +(1) 1.09 × 10−36 5.55 × 10−35 8.02 × 10−35 +(1)

SPSOC 3.41 × 10−117 3.44 × 10−52 1.56 × 10−51 =(0) 8.83 × 10−74 2.38 × 10−24 9.28 × 10−24 +(1) 8.79 × 10−66 2.06 1.13 × 101 +(1)
SPSORC 0 0 0 0 0 0 0 0 0

f13

bPSO 5.56 × 10−9 1.23 × 10−6 2.22 × 10−6 +(1) 7.47 × 10−10 1.01 × 10−6 1.96 × 10−6 +(1) 1.25 × 10−8 9.08 × 10−7 1.18 × 10−6 +(1)
PSOd 1.42 × 10−34 1.88 × 10−30 4.49 × 10−30 +(1) 7.15 × 10−36 6.07 × 10−31 1.23 × 10−30 +(1) 6.10 × 10−35 4.29 × 10−30 1.65 × 10−29 =(0)

HPSOscac 0 1.06 × 10−83 5.79 × 10−83 =(0) 0 1.13 × 10−73 6.15 × 10−73 =(0) 3.62 × 10−321 3.14 × 10−86 1.25 × 10−85 =(0)
TCPSO 3.23 × 10−4 2.43 × 10−2 2.73 × 10−2 +(1) 4.45 × 10−04 1.88 × 10−2 1.83 × 10−2 +(1) 2.17 × 10−4 2.45 × 10−2 2.75 × 10−2 +(1)
SPSO 3.11 × 10−51 5.41 × 10−47 1.16 × 10−46 +(1) 3.93 × 10−53 6.62 × 10−47 1.57 × 10−46 +(1) 8.32 × 10−52 1.34 × 10−45 5.05 × 10−45 =(0)

SPSOC 7.15 × 10−77 4.92 × 10−60 2.68 × 10−59 +(1) 2.13 × 10−77 7.72 × 10−60 4.23 × 10−59 +(1) 3.79 × 10−79 1.10 × 10−60 6.01 × 10−60 =(0)
SPSORC 0 0 0 0 0 0 0 0 0

f14

bPSO 6.81 × 10−2 2.34 × 10−1 1.12 × 10−1 +(1) 8.67 × 101 3.08 × 102 9.07 × 102 =(0) 2.94 × 102 3.55 × 102 2.47 × 101 +(1)
PSOd 2.74 × 10−2 6.15 × 10−1 5.46 × 10−1 +(1) 3.43 × 101 5.81 × 101 1.55 × 101 +(1) 1.19 × 102 1.62 × 102 2.39 × 101 +(1)

HPSOscac 0 1.04 × 10−59 5.71 × 10−59 =(0) 1.79 × 10−238 3.77 × 10−61 1.45 × 10−60 =(0) 0 5.56 × 10−63 2.57 × 10−62 =(0)
TCPSO 2.30 × 10−1 4.88 × 10−1 1.66 × 10−1 +(1) 9.95 × 101 8.94 × 1013 4.83 × 1014 =(0) 3.25 × 102 1.60 × 1037 7.61 × 1037 =(0)
SPSO 1.38 × 10−25 1.28 × 10−23 2.21 × 10−23 +(1) 6.30 × 10−20 3.34 × 10−17 6.71 × 10−17 +(1) 1.70 × 10−19 2.24 × 10−15 5.95 × 10−15 +(1)

SPSOC 8.49 × 10−58 9.72 × 10−48 3.86 × 10−47 +(1) 7.86 × 10−55 1.25 × 10−34 6.82 × 10−34 +(1) 2.92 × 10−56 3.42 × 10−37 1.85 × 10−36 +(1)
SPSORC 0 0 0 0 0 0 0 0 0

f15

bPSO −3.83 × 103 −3.41 × 103 3.02 × 102 +(1) −1.31 × 104 −1.12 × 104 1.03 × 103 −(−1) −1.91 × 104 −1.57 × 104 1.40 × 103 −(−1)
PSOd −3.83 × 103 −3.18 × 103 3.54 × 102 +(1) −1.10 × 104 −9.40 × 103 7.22 × 102 +(1) −1.77 × 104 −1.46 × 104 1.31 × 103 −(−1)

HPSOscac −1.91 × 103 −1.28 × 103 3.96 × 102 +(1) −5.62 × 103 −3.34 × 103 1.02 × 103 +(1) −7.58 × 103 −4.87 × 103 1.20 × 103 +(1)
TCPSO −4.06 × 103 −3.41 × 103 3.01 × 102 −(−1) −1.34 × 104 −1.11 × 104 9.24 × 102 +(1) −2.04 × 104 −1.72 × 104 1.78 × 103 −(−1)
SPSO −1.51 × 103 −9.53 × 102 2.22 × 102 =(0) −3.05 × 103 −1.91 × 103 5.22 × 102 =(0) −4.12 × 103 −2.69 × 103 6.78 × 102 =(0)

SPSOC −1.19 × 103 −7.02 × 102 1.89 × 102 =(0) −2.61 × 103 −1.54 × 103 4.49 × 102 =(0) −3.62 × 103 −2.09 × 103 6.72 × 102 =(0)
SPSORC −1.35 × 103 −8.69 × 102 2.55 × 102 −2.62 × 103 −1.87 × 103 4.16 × 102 −4.26 × 103 −2.82 × 103 6.11 × 102
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Table 6. Cont.

10 50 100

min mean std ttest min mean std ttest min mean std ttest

f16

bPSO 2.15 × 10−1 2.48 2.76 +(1) 7.73 × 103 1.87 × 104 6.62 × 103 +(1) 9.11 × 104 1.15 × 105 1.47 × 104 +(1)
PSOd 9.32 × 10−1 1.02 × 101 1.21 × 101 +(1) 4.26 × 103 9.67 × 103 2.81 × 103 +(1) 2.34 × 104 3.40 × 104 6.67 × 103 +(1)

HPSOscac 0 6.95 × 10−126 3.81 × 10−125 =(0) 0 5.30 × 10−144 2.90 × 10−143 =(0) 0 1.15 × 10−92 6.31 × 10−92 =(0)
TCPSO 1.41 7.52 5.62 +(1) 1.74 × 103 6.23 × 103 4.27 × 103 +(1) 3.12 × 104 5.11 × 104 1.05 × 104 +(1)
SPSO 1.38 × 10−50 3.20 × 10−44 1.11 × 10−43 =(0) 2.69 × 10−36 5.43 × 10−32 1.61 × 10−31 =(0) 3.40 × 10−35 8.65 × 10−30 2.53 × 10−29 =(0)

SPSOC 2.11 × 10−114 3.46 × 10−89 1.66 × 10−88 =(0) 8.39 × 10−107 5.65 × 10−70 3.10 × 10−69 =(0) 2.21 × 10−103 5.27 × 10−79 2.85 × 10−78 =(0)
SPSORC 0 0 0 0 0 0 0 0 0

f17

bPSO 2.52 × 10−12 1.09 × 10−8 2.37 × 10−8 +(1) 7.44 × 10−55 2.75 × 10−3 2.89 × 10−3 +(1) 1.48 × 10−2 2.36 × 10−1 2.58 × 10−1 +(1)
PSOd 2.07 × 10−11 3.03 × 10−6 9.79 × 10−6 =(0) 5.86 × 10−8 4.53 × 10−5 7.70 × 10−5 +(1) 7.17 × 10−7 1.85 × 10−4 3.29 × 10−4 +(1)

HPSOscac 0 5.38 × 10−135 2.95 × 10−134 =(0) 0 2.62 × 10−148 1.34 × 10−147 =(0) 0 2.87 × 10−154 1.57 × 10−153 =(0)
TCPSO 1.51 × 10−8 6.10 × 10−7 6.72 × 10−7 +(1) 6.45 × 10−6 5.69 × 10−4 1.10 × 10−3 +(1) 1.48 × 10−3 1.27 × 10−1 3.65 × 10−1 =(0)
SPSO 1.16 × 10−94 4.96 × 10−86 1.50 × 10−85 =(0) 6.17 × 10−94 1.10 × 10−84 5.95 × 10−84 =(0) 1.78 × 10−92 8.69 × 10−87 1.71 × 10−86 +(1)

SPSOC 8.84 × 10−141 1.97 × 10−115 1.08 × 10−114 =(1) 6.16 × 10−158 1.01 × 10−121 5.52 × 10−121 =(0) 2.52 × 10−146 1.22 × 10−118 6.19 × 10−118 +(1)
SPSORC 0 0 0 0 0 0 0 4.94 × 10−324 0

f18

bPSO 5.10 × 10−4 6.20 × 10−1 2.15 =(0) 1.82 × 1013 2.27 × 1019 1.11 × 1020 =(0) 2.83 × 1034 6.97 × 1046 3.76 × 1047 =(0)
PSOd 5.79 × 10−4 3.73 × 10−1 6.15 × 10−1 +(1) 2.48 × 104 8.59 × 1010 4.26 × 1011 =(0) 8.86 × 1020 5.66 × 1032 2.80 × 1033 =(0)

HPSOscac 5.26 × 10−319 1.20 × 103 3.72 × 103 +(1) 4.63 × 10−237 3.53 × 1028 1.66 × 1029 =(0) 0 2.88 × 1054 1.34 × 1055 =(0)
TCPSO 2.75 × 10−3 3.15 × 10−1 4.89 × 10−1 +(1) 1.10 × 108 4.18 × 1016 2.20 × 1017 =(0) 4.98 × 1030 1.22 × 1042 6.28 × 1042 =(0)
SPSO 2.25 × 10−31 1.23 × 10−4 6.69 × 10−4 =(0) 1.65 × 10−33 3.98 × 10−6 2.12 × 10−5 =(0) 1.97 × 10−34 1.67 × 10−5 6.35 × 10−5 =(0)

SPSOC 4.34 × 10−70 2.51 × 10−21 1.37 × 10−20 =(0) 5.00 × 10−64 2.23 × 10−8 1.22 × 10−7 =(0) 7.22 × 10−63 3.73 × 10−20 2.04 × 10−19 =(0)
SPSORC 0 0 0 0 0 0 0 0 0

f19

bPSO 9.08 × 10−4 2.66 × 10−3 4.25 × 10−4 =(0) 1.59 × 10−19 1.68 × 10−19 3.35 × 10−21 +(1) 1.88 × 10−40 1.94 × 10−40 3.45 × 10−42 −(−1)
PSOd 5.66 × 10−4 9.64 × 10−4 3.49 × 10−4 −(−1) 8.35 × 10−18 1.41 × 10−16 2.64 × 10−16 +(1) 3.03 × 10−31 1.19 × 10−28 3.03 × 10−28 −(−1)

HPSOscac 1.59 × 10−3 3.43 × 10−3 3.74 × 10−4 =(0) 1.79 × 10−19 1.79 × 10−19 4.90 × 10−35 +(1) 2.04 × 10−40 2.04 × 10−40 4.15 × 10−56 −(−1)
TCPSO 2.12 × 10−3 3.50 × 10−3 2.34 × 10−3 =(0) 1.45 × 10−19 9.59 × 10−16 5.21 × 10−15 +(1) 1.69 × 10−40 4.24 × 10−34 2.32 × 10−33 −(−1)
SPSO 7.91 × 10−3 5.49 × 10−2 3.83 × 10−2 +(1) 1.32 × 10−10 4.32 × 10−7 8.07 × 10−7 =(0) 1.24 × 10−16 2.36 × 10−12 1.22 × 10−11 =(0)

SPSOC 2.34 × 10−2 9.80 × 10−2 5.49 × 10−2 +(1) 1.79 × 10−8 3.53 × 10−5 4.99 × 10−5 =(0) 2.94 × 10−13 1.58 × 10−09 4.91 × 10−9 =(0)
SPSORC 0 9.35 2.22 × 10−2 0 3.81 × 10−7 6.51 × 10−7 3.57 × 10−18 1.13 × 10−13 2.35 × 10−13

f20

bPSO 3.97 × 10−25 3.97 × 10−25 1.87 × 10−40 +(1) 9.83 × 10−123 9.83 × 10−123 0 +(1) 9.66 × 10−245 9.66 × 10−245 0 +(1)
PSOd 4.66 × 10−25 2.90 × 10−19 1.51 × 10−18 +(1) 4.66 × 10−63 1.10 × 10−51 5.13 × 10−51 +(1) 7.68 × 10−90 1.59 × 10−73 8.73 × 10−73 +(1)

HPSOscac 3.97 × 10−25 3.97 × 10−25 1.87 × 10−40 +(1) 9.83 × 10−123 9.83 × 10−123 0 +(1) 9.66 × 10−245 9.66 × 10−245 0 +(1)
TCPSO 3.97 × 10−25 3.97 × 10−25 1.87 × 10−40 +(1) 9.83 × 10−123 9.83 × 10−123 0 +(1) 9.66 × 10−245 9.66 × 10−245 0 +(1)
SPSO 9.48 × 10−14 2.11 × 10−8 9.45 × 10−8 +(1) 8.01 × 10−31 1.32 × 10−21 4.61 × 10−21 +(1) 1.95 × 10−49 3.65 × 10−34 1.91 × 10−33 +(1)

SPSOC 1.15 × 10−12 4.77 × 10−7 1.37 × 10−6 +(1) 1.19 × 10−22 2.22 × 10−16 4.89 × 10−16 +(1) 1.69 × 10−41 5.40 × 10−22 2.89 × 10−21 +(1)
SPSORC −1.00 −1.00 0 −1.00 −9.33 × 10−1 2.54 × 10−1 −1.00 −9.00 × 10−1 3.05 × 10−1
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Table 6. Cont.

10 50 100

min mean std ttest min mean std ttest min mean std ttest

f21

bPSO 3.73 × 10−7 3.57 × 10−6 3.53 × 10−6 +(1) 5.81 × 10−19 9.30 × 10−17 1.28 × 10−16 +(1) 1.04 × 10−32 4.59 × 10−29 9.83 × 10−29 +(1)
PSOd 2.54 × 10−8 8.53 × 10−6 1.06 × 10−5 +(1) 1.35 × 10−20 6.03 × 10−20 5.19 × 10−20 +(1) 3.97 × 10−39 7.51 × 10−38 9.24 × 10−38 +(1)

HPSOscac −1.00 -5.27 × 10−1 5.13 × 10−1 +(1) −1.00 -3.33 × 10−2 1.83 × 10−1 +(1) 3.14 × 10−31 1.87 × 10−14 5.55 × 10−14 +(1)
TCPSO 8.71 × 10−7 1.33 × 10−5 1.67 × 10−5 +(1) 6.93 × 10−20 2.42 × 10−18 3.80 × 10−18 +(1) 1.30 × 10−38 1.17 × 10−32 5.38 × 10−32 +(1)
SPSO 4.39 × 10−4 1.04 × 10−3 3.19 × 10−4 +(1) 4.00 × 10−16 2.15 × 10−14 1.99 × 10−14 +(1) 2.51 × 10−29 6.77 × 10−27 1.10 × 10−26 +(1)

SPSOC 6.88 × 10−4 3.24 × 10−3 1.69 × 10−3 +(1) 9.35 × 10−14 7.28 × 10−12 1.12 × 10−11 +(1) 1.13 × 10−25 3.10 × 10−22 6.75 × 10−22 +(1)
SPSORC −1.00 −1.00 0 −1.00 −1.00 2.92 × 10−17 −1.00 −1.00 2.92 × 10−17

f22

bPSO 2.26 2.62 × 101 2.76 × 101 +(1) 1.16 × 103 2.76 × 103 4.53 × 103 +(1) 3.39 × 103 1.70 × 105 5.90 × 105 =(0)
PSOd 5.39 × 10−1 4.98 2.55 +(1) 1.80 × 102 3.28 × 102 9.49 × 101 +(1) 7.23 × 102 9.14 × 102 1.20 × 102 +(1)

HPSOscac 0 1.93 × 10−174 0 +(1) 0 1.17 × 10−167 0 +(1) 0 1.89 × 10−143 1.04 × 10−142 =(0)
TCPSO 5.77 × 10−1 1.15 × 101 1.52 × 101 +(1) 1.03 × 103 1.60 × 104 5.36 × 104 =(0) 2.51 × 103 6.23 × 105 2.09 × 106 =(0)
SPSO 1.63 × 10−48 1.59 × 10−43 6.83 × 10−43 =(0) 1.69 × 10−40 3.13 × 10−38 6.42 × 10−38 +(1) 1.89 × 10−40 3.88 × 10−38 8.35 × 10−38 =(0)

SPSOC 1.29 × 10−113 1.69 × 10−81 8.46 × 10−81 =(0) 3.35 × 10−61 2.71 × 10−29 1.08 × 10−28 +(1) 8.00 × 10−61 3.24 × 10−20 1.76 × 10−19 =(0)
SPSORC 0 0 0 0 0 0 0 1.64 × 10−4 8.99 × 10−4
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The search results of the heuristic algorithm are random, so the average value (mean) of the
results after multiple searches is the most valuable data. Observing the mean values in Table 6,
when searching for 10-dimensional functions, we can see that SPSORC outperforms the other six PSO
on 16 functions ( f1, f2, f3, f4, f6, f7, f10, f12, f13, f14, f16, f17, f18, f20, f21 and f22) in terms of the criteria
‘mean’, and 15 out of 16 were theoretical optimal solutions. Secondly, the number of that SPSOC find
the minimum mean solutions for 10-dimensional functions is 6 times ( f1, f5, f7, f8, f9, f10). PSOd,
TCPSO and SPSO only find the minimum mean once. bPSO and HPSOscac are unable to search for
the minimum mean at one time. Regarding the three functions ( f1, f7, f10), SPSOC and SPSORC can
obtain the same mean.

On the other hand, both SPSORC and HPSOscac can find the same values in many functions
including f2, f3, f4, f6, f12, f13, f14, f16, f17, f21 and f22. In addition, SPSORC has achieved the best
results for ninth, indicating that SPSORC and HPSOscac have the opportunity to yield a better solution
than the average one, but the results are volatility, especially for HPSOscac.

The use of standard deviation (std) can observe the volatility of the algorithm results. The standard
deviation is a measure of the degree to which a set of data averages is dispersed. A larger standard
deviation represents a larger difference between most of the values and their average values; a smaller
standard deviation means that these values are closer to the average. It is clear that the standard
deviation of SPSORC is almost the smallest of all algorithms.

The comparison of ‘min’, ‘mean’ and ‘std’ from 50-dimensional and 100-dimensional dimensional
functions between SPSORC and other six PSO variants is also illustrated in Table 6. It is clearly seen
that, for both 50-dimensional and 100-dimensional functions except for f9, f11, f15, f19, SPSORC is
able to obtain better ‘mean’ than the most of the other improved strategies. In 50-dimensional optima
values, SPSORC outperforms the other six PSOs on 17 functions ( f1, f2, f3, f4, f5, f6, f7, f10, f12, f13,
f14, f16, f17, f18, f20, f21 and f22), in which, 14 out of 17 were searched for theoretical optima. SPSOC
has searched for the best solution five times ( f1, f5 , f7, f8, f10). Then, PSOd and SPSO has two times
( f15, f19) and once ( f9), respectively. Regrettably, other algorithms have no chance. Almost the same
situation also appears in 100-dimensional results. In addition, as for ‘std’ of SPSORC, it should be
noted that the ‘std’ without any fluctuations many times is markedly superior to that of the others.
Second, with regard to the experimental results comparison in 100-dimensional results of Table 6,
SPSOC is also able to achieve good performance with smaller mean value such as for f1, f5, f7, f9 and
f10 out of the twenty-two 100-dimensional test functions.

To sum up, from Table 6, it has been identified experimentally that SPSORC is superior or highly
competitive with several improved PSO variants, and this improving strategy is shown to be able to
find fairly good solutions for most of the well-known benchmark functions.

Table 7 is a summary of the scores based on the t-test analysis of search results in three kinds
of dimensions. Score is the net score of SPSORC, which is better than the score obtained by the
comparison function minus the number of comparison functions. Take the comparison result of SPSOC
and RSMPSOc in Table 7 as an example, that is, the A6 algorithm in 100-dimensional in Table 7.
The SPSORC result is seven times better than SPSOC and three times worse than SPSOC. Therefore, the
net score of SPSORC is: Score = 7− 3 = 4, and the calculation process of other net scores is the same.

Observed from Table 7, SPSORC has a stable net score for these six algorithms, all greater than 0.
Careful observation can show us that the performance is slightly higher in the 50-dimensional scores
compared to 10-and-100 dimensions. It is again proven that the capability of SPSORC is better than
bPSO, PSOd, HPSOscac, TCPSO, SPSO and SPSOC, especially when solving the 50-dimensional
problem. The convergence curves of seven improved PSO algorithms on twenty-two benchmark
functions with 100 dimensions are plotted in Section 4.5.1 Figure 4, respectively.
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Figure 4. Average convergence curves of seven improved PSO algorithms for twenty-two functions in
10 dimensions.
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Table 7. Simulation environment.

N Results bPSO PSOd HPSOscac SPSO SPSOC SPSORC

10
+ 18 20 12 20 11 6
= 4 1 10 1 10 14
− 0 1 0 1 1 2

Score 18 19 12 19 10 4

50
+ 19 21 13 19 9 8
= 2 1 9 3 11 13
− 1 0 0 0 2 1

Score 18 21 13 19 7 7

100
+ 18 18 10 16 9 7
= 2 2 11 4 12 12
− 2 2 1 2 1 3

Score 16 16 9 14 8 4

Figure 4a is the legend for the other twenty-two convergence curves. Figure 4b indicates that, on f1,
PSPSOC converges the fastest in the early stage among the seven improvements. HPSOscac converges
relatively slowly compared to SPSORC. The order of performance on f1 is SPSORC, HPSOscac, SPSOC,
SPSO, bPSO, PSOd, TCPSO. Almost the same situation occurs simultaneously on the other 11 function
convergence curves. This should be the effect of algorithm simplifying so that the algorithm can
converge very quickly in the early stage. On f3, f4, f5, et al., RSPSO has found the best solution within
the maximum generation. Figure 4 l,m, on f11 and f12, show that SPSORC converges relatively slowly
compared to HPSOscac in the beginning, but it surpasses HPSOscac in about 20th generation.

Next, it is further analyzed by the box diagram in Figure 5. Box diagram is mainly used to reflect
the characteristics of the original data distribution, and can also compare the distribution characteristics
of multiple sets of data. On the same number of axes, the box plots of several sets of data are arranged
in parallel. Shape information such as median, tail length, outliers, and distribution intervals of several
batches of data can be seen at a glance. + indicates an abnormal point.

From Figure 5a, the order of these boxes from high to low is bPSO, TCPSO, PSOd, HPSOscac,
SPSO, SPSORC and SPSOC, respectively. The upper quartile and median values of bPSO and TCPSO
are closer to the upper edge, which indicates that the data of the two algorithms are more biased toward
larger values. In comparison, the box of PSOd is more symmetrical and the data distribution is relatively
uniform. Unfortunately, the distribution of the boxes of these three algorithms is too high, and the
search results are not good. The box of HPSOscac is at the bottom of the coordinate system. However,
we can clearly see that there are many outliers in its data. Some even have exceeded the median of
PSOd. Its skewed nature tends to be smaller, but the distribution of data is more scattered. Compared
with the above four algorithms, the distribution of the boxes of the three algorithms proposed in this
paper is obviously more optimistic. The optimization results of the three algorithms are almost neat,
concentrated and smaller. The situation of other box diagrams is not much different from that of Figure
5a. Throughout the 22 box diagrams in Figure 5, the bPSO, PSOd, HPSOscac and TCPSO seem to have
more difficulty locating the solution than the SPSORC for from the box diagrams. The boxes of PSOd
are mostly too top, followed by TCPSO. HPSOscac has a lot of outliers. Its maximum and minimum
span is large, and distribution is extremely non-uniform and decentral. It is observed that the results
of HPSOscac are highly volatile and the improvement of the algorithm is unstable. This may be related
to its weight mixed with the trigonometric function. For the above reasons, the results of SPSORC and
SPSOC are not obvious in the box diagram, almost all posted at the bottom. Combining the results of
Table 6, we can roughly know that SPSORC has better performance, and the more oblate box can show
that the 30 search results have little differences and the performance is very stable.

To sum up, the test results indicate that : Both confidence term and random weight can enhance
diversity. The former can yield a significant improvement in performance, while the latter can preserve
much more diversity. The aforementioned two methods are compatible. Combining both of them
with SPSO can preserve the highest diversity and achieve the best overall performance among the six
improved strategies.
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Figure 5. Box diagram of thirty results, each function with 100 dimensions.
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4.5.2. Algorithm Complexity Analysis

Comparing the steps of the bPSO algorithm, the time complexity of SPSO’s two improvements
mainly depends on two aspects: (1) random initialization, and (2) particle velocity and position updating.
These two parts can all be expressed as O(m×N) by the Big O notation [72], in that, m is the population
and N is the problem dimensions. In this paper, we haven’t changed the algorithm’s initialization
method, so we only compare the time complexity from particle velocity and position updating.
The SPSO, which does not consider the inertia weight updating and confidence term calculating, has
a reduced computational complexity compared to the basic particle swarm optimization algorithm,
but the Big O notation can also be represented by O(m× N). Compared with the bPSO and the SPSO,
the most complex algorithm we proposed is named SPSORC, which has increased weight, and the
confidence term has surely increased in computational complexity, but we can see from Table 1 that its
loop body has not changed. According to the Big O notation, its time complexity is still O(m× N).
Overall, the complexity of SPSO and its two improved ones are not increased by orders of magnitude.

Then, we analyze the real computational time from Table 8. In Table 8, we show the computational
time for three kinds of dimension functions.

Table 8. Real computational time.

N Alg bPSO PSOd HPSOscac TCPSO SPSO SPSOC SPSORC

10

f1 0.0346 0.0408 0.0681 0.0755 0.0193 0.0293 0.0298
f2 0.0324 0.0396 0.0651 0.0731 0.0188 0.0295 0.0296
f3 0.0309 0.0374 0.0606 0.0673 0.0178 0.0280 0.0274
f4 0.0378 0.0465 0.0700 0.0857 0.0269 0.0374 0.0367
f5 0.0334 0.0421 0.0655 0.0783 0.0196 0.0298 0.0304
f6 0.0358 0.0444 0.0676 0.0825 0.0245 0.0349 0.0348
f7 0.0380 0.0449 0.1343 0.0856 0.0244 0.0328 0.0332
f8 0.0542 0.0626 0.0867 0.1214 0.0423 0.0517 0.0561
f9 0.0484 0.0559 0.0815 0.1066 0.0362 0.0470 0.0475
f10 0.0329 0.0410 0.0654 0.0758 0.0199 0.0294 0.0311
f11 0.0303 0.0388 0.0623 0.0704 0.0174 0.0278 0.0286
f12 0.0428 0.0517 0.0760 0.0967 0.0313 0.0421 0.0423
f13 0.0288 0.0378 0.0622 0.0676 0.0180 0.0285 0.0289
f14 0.0290 0.0381 0.0608 0.0690 0.0181 0.0286 0.0280
f15 0.0355 0.0435 0.0736 0.0803 0.0215 0.0325 0.0324
f16 0.0288 0.0379 0.0624 0.0681 0.0181 0.0289 0.0280
f17 0.0365 0.0462 0.0681 0.0852 0.0265 0.0368 0.0363
f18 0.0471 0.0555 0.0800 0.1043 0.0347 0.0466 0.0466
f19 0.0358 0.0428 0.0676 0.0812 0.0220 0.0319 0.0319
f20 0.0447 0.0543 0.0769 0.1006 0.0339 0.0439 0.0407
f21 0.0406 0.0488 0.0745 0.0914 0.0269 0.0369 0.0347
f22 0.0294 0.0381 0.0617 0.0695 0.0181 0.0292 0.0287

50

f1 0.1515 0.1912 0.2889 0.3502 0.0813 0.1311 0.1325
f2 0.1515 0.1874 0.2897 0.3465 0.0815 0.1329 0.1329
f3 0.1323 0.1718 0.2726 0.3145 0.0732 0.1247 0.1241
f4 0.1798 0.2172 0.3179 0.4042 0.1174 0.1713 0.1704
f5 0.1589 0.1976 0.2964 0.3633 0.0868 0.1378 0.1383
f6 0.1761 0.2157 0.3130 0.3969 0.1163 0.1687 0.1678
f7 0.1820 0.2190 0.5396 0.4080 0.1150 0.1543 0.1552
f8 0.2847 0.3195 0.4206 0.5978 0.2137 0.2620 0.2682
f9 0.2330 0.2727 0.3809 0.5160 0.1716 0.2246 0.2250
f10 0.1554 0.1933 0.2921 0.3546 0.0851 0.1343 0.1356
f11 0.1380 0.1775 0.2819 0.3236 0.0765 0.1289 0.1295
f12 0.2696 0.3012 0.4074 0.5677 0.1996 0.2533 0.2527
f13 0.1306 0.1709 0.2713 0.3072 0.0702 0.1236 0.1246
f14 0.1324 0.1733 0.2629 0.3136 0.0744 0.1287 0.1276
f15 0.1569 0.1965 0.3368 0.3581 0.0913 0.1459 0.1466
f16 0.1348 0.1727 0.2703 0.3113 0.0727 0.1262 0.1244
f17 0.1738 0.2125 0.3016 0.3952 0.1126 0.1623 0.1649
f18 0.2277 0.2688 0.3719 0.5035 0.1682 0.2176 0.2197
f19 0.1644 0.2027 0.2985 0.3724 0.0985 0.1469 0.1495
f20 0.2089 0.2507 0.3380 0.4681 0.1501 0.1996 0.1881
f21 0.1892 0.2241 0.3240 0.4226 0.1209 0.1707 0.1541
f22 0.1308 0.1680 0.2694 0.3077 0.0700 0.1220 0.1222
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Table 8. Cont.

N Alg bPSO PSOd HPSOscac TCPSO SPSO SPSOC SPSORC

100

f1 0.2977 0.3719 0.5642 0.6830 0.1561 0.2571 0.2612
f2 0.3023 0.3793 0.5775 0.6944 0.1595 0.2655 0.2660
f3 0.2665 0.3431 0.5417 0.6247 0.1416 0.2485 0.2491
f4 0.3588 0.4369 0.6381 0.8083 0.2379 0.3400 0.3387
f5 0.3158 0.3929 0.5894 0.7232 0.1716 0.2729 0.2756
f6 0.3555 0.4288 0.6287 0.7992 0.2284 0.3352 0.3343
f7 0.3655 0.4419 1.3028 0.8107 0.2323 0.3049 0.3061
f8 0.5580 0.6271 0.8395 1.2018 0.4311 0.5230 0.5311
f9 0.4651 0.5443 0.7505 1.0211 0.3380 0.4447 0.4465
f10 0.3098 0.3841 0.5771 0.7101 0.1667 0.2646 0.2687
f11 0.2744 0.3521 0.5583 0.6413 0.1477 0.2529 0.2522
f12 0.6752 0.7524 0.9544 1.4332 0.5468 0.6518 0.6535
f13 0.2651 0.3426 0.5400 0.6193 0.1385 0.2442 0.2468
f14 0.3217 0.3646 0.5121 0.6165 0.1431 0.2478 0.2477
f15 0.3154 0.3918 0.6178 0.7155 0.1852 0.2899 0.2911
f16 0.2632 0.3413 0.5416 0.6519 0.1466 0.2518 0.2498
f17 0.3599 0.4450 0.6326 0.8335 0.2255 0.3279 0.3377
f18 0.4758 0.5581 0.7631 1.0589 0.3491 0.4483 0.4592
f19 0.3406 0.4093 0.6189 0.7589 0.1980 0.2975 0.3253
f20 0.4381 0.5238 0.6735 0.9385 0.2970 0.4000 0.3777
f21 0.3812 0.4604 0.6413 0.8513 0.2433 0.3474 0.3103
f22 0.2658 0.3424 0.5421 0.6204 0.1367 0.2440 0.2443

The time in Table 8 is the average time required to run 30 times independently. The average length
of time varies slightly depending on the problem. Observing the running time of the seven algorithms,
it is certain that the running time of SPSORC is similar to the computational time of other algorithms.
It is clear that the lowest running time is obtained by SPSO, since it greatly simplifies bPSO. SPSOC has
increased slightly over time due to confidence term. HPSOscac’s trigonometric function improvement
strategy makes the algorithm better applicable to multimodal problems. However, because the
regularity distribution of the trigonometric function increases the particle diversity, the particle is
difficult to converge at the later stage, and the actual calculation time is longer. TCPSO uses the
dual population to optimize problems through information exchange. Thus, SPSO and its improved
strategies do not simply consume runtime to improve algorithm performance. The real computational
time is basically distributed as Figure 6. A1–A7 are namely bPSO, PSOd, HPSOscac, TCPSO, SPSO,
SPSOC and SPSORC.
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Figure 6. Real computational time of f11 in 50 dimensions.

4.5.3. Success Rate and Average Iteration Times

The success rate (SR) is the percentage between the times that each algorithm can successfully
achieve convergence accuracy for function optimization and the total number of times. The average
iterations times (AIT) is the average iteration numbers required by the algorithm to find the
convergence accuracy. The former can examine the stability and accuracy of the algorithm, while the
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latter mainly examines the efficiency of the algorithm. The convergence accuracy used for the success
rate and the average iteration times in this paper is the accuracy of the 50-dimensional test functions
we want to meet. The specific values can refer to the last column of Table A1. The other parameters
are set according to Table 2. Figure 7 shows the Radar charts with average iteration times of eight
functions. We can surely, in Figure 7, find that the point of SPSORC is always close to the center origin.
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Figure 7. Radar charts of average iteration times.

Specific data for the average iteration times and the success rate of the seven algorithms in solving
50-dimensional problems are referred to in Table ‘AIT’ is the average iteration times. ‘SR’ represents
the success rate. In order to facilitate the use of differentials, ‘SR’ is expressed in percentage form.
The results round off to retain two digits after the decimal point. ‘−’ means that the algorithm fails to
search this function when convergence accuracy is reached within the maximum generations. For the
convenience of observation, we will show the minimum AIT and the maximum SR for each function
in the bold format.

The results can be analyzed from Table 9. bPSO, PSOd, TCPSO and SPSO have higher success
rates three times. SPSOC and HPSOscac gets six and seven times, respectively. SPSORC, surprisingly,
has 15 times, and seven of them ( f12, f13, f14, f17, f18, f20, f21) have the best success rate that none of
the other six algorithms have achieved. One can see that the SPSORC strategy has a wider range of
types, high precision and stability. Comparing the average iteration times, it is clearly shown that
TCPSO, SPSO and SPSOC do not get the lowest average iteration times.

The above two data comparisons reveal that SPSORC has a large advantage compared with the
other six algorithms. Not only is it more stable, but the search efficiency is also faster. When faced
with a unimodal function, SPSORC can converge to effective precision more quickly. For other
multi-peak complex problems, it is not to be outdone, except for the extremely difficult functions
such as Rosenbrock Function and Schwefel’s Problem 2.26, which show weak stability. It can be
stated that the improved method can be adapted to a variety of test environments, and the results are
quite excellent.
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Table 9. Success rate and average iteration times.

bPSO PSOd HPSOscac TCPSO SPSO SPSOC SPSORC
AIT SR AIT SR AIT SR AIT SR AIT SR AIT SR AIT SR

f1 - 0.00% - 0.00% 32.70 0.00% - 0.00% 15.87 3.33% 53.50 100.00% 18.90 93.33%
f2 - 0.00% - 0.00% 51.53 100.00% - 0.00% - 0.00% - 0.00% 23.37 100.00%
f3 - 0.00% - 0.00% 35.33 100.00% - 0.00% - 100.00% 77.33 100.00% 17.50 100.00%
f4 - 0.00% - 0.00% 58.60 100.00% - 0.00% - 0.00% - 0.00% 16.47 100.00%
f5 - 0.00% - 0.00% 16.43 0.00% - 0.00% 56.80 76.67% 38.97 100.00% 11.00 100.00%
f6 - 0.00% - 0.00% 54.73 100.00% - 0.00% - 0.00% - 0.00% 20.70 100.00%
f7 - 100.00% - 100.00% - 36.67% - 100.00% - 100.00% 34.50 100.00% 13.77 100.00%
f8 - 0.00% - 0.00% 25.00 0.00% - 0.00% - 0.00% 37.03 96.67% 21.80 96.67%
f9 - 0.00% - 0.00% 6.27 0.00% - 0.00% 12.30 96.67% 7.40 100.00% 11.80 66.67%
f10 - 0.00% - 0.00% 23.37 0.00% - 0.00% 63.07 53.33% 36.80 100.00% 14.40 100.00%
f11 - 0.00% - 0.00% 7.87 0.00% - 0.00% 28.30 100.00% 15.30 100.00% 5.33 100.00%
f12 - 0.00% - 0.00% 56.93 100.00% - 0.00% - 0.00% - 0.00% 20.97 100.00%
f13 2.83 0.00% - 0.00% 62.93 93.33% 4.67 0.00% - 0.00% - 0.00% 19.57 100.00%
f14 - 0.00% - 0.00% 66.70 96.67% - 0.00% - 0.00% - 0.00% 16.50 100.00%
f15 1.20 100.00% 1.10 100.00% 1.20 60.00% 1.37 100.00% 1.23 16.67% 4.27 0.00% 2.30 10.00%
f16 - 0.00% - 0.00% 57.73 100.00% - 0.00% - 0.00% − 0.00% 24.50 100.00%
f17 - 0.00% - 0.00% 26.63 43.33% - 0.00% - 0.00% - 0.00% 20.07 100.00%
f18 - 0.00% - 0.00% 14.63 36.67% - 0.00% - 0.00% - 0.00% 8.20 100.00%
f19 1.67 100.00% 6.30 100.00% 1.00 100.00% 1.60 100.00% 9.20 3.33% 4.07 0.00% 1.20 16.67%
f20 − 0.00% - 0.00% - 0.00% - 0.00% - 0.00% - 0.00% 2.53 90.00%
f21 - 0.00% - 0.00% 0.63 0.00% - 0.00% - 0.00% - 0.00% 16.73 96.67%
f22 - 0.00% - 0.00% 38.30 100.00% - 0.00% - 0.00% - 0.00% 13.17 100.00%
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5. Conclusions

Due to the effect on particle swarm optimization, in this paper, a Simple Particle Swarm
Optimization based on Confidence term and Random inertia weight namely SPSORC has been
proposed. SPSORC adopts three different improving strategies—first, particle updating formulas only
use positional items and social items to enhance the exploration capability; second, the confidence term
is introduced to increase particle diversity and avoid excessive particle convergence. Finally, a random
inertia weight is formulated to keep the balance between exploration and exploitation. Extensive
experiments in Section 4 on twenty-two benchmark functions validate and discuss SPSO and its further
improvements’ effectiveness, efficiency, robustness and scalability. It has been demonstrated that, in
most cases, SPSORC performs a better capability of exploitation and exploration than, or at least highly
competitively with, basic PSO and its state-of-the-art improved ones introduced in this paper.

In our future work, we intend to incorporate different initialization strategies, multi-swarm
and hybrid algorithms into SPSORC. This may result in very competitive algorithms. Obviously,
many adaptive methods for PSO have been proposed. In order to improve the performance of
the proposed approach and its application, the research on particle swarm optimization algorithm
and its improvements is a promising research direction. Furthermore, we will apply the proposed
approach to solve some other practical existing engineering optimization problems, e.g., machine-tool
spindle design, logistics distribution region partitioning problem, economic load dispatch problem, etc.
With these evolutionary algorithms, it is unnecessary to know the computing environment and to
calculate the gradient and other information. Thus, it is helpful to save on the cost of computing.
Even better, we can calculate the problem with more dimensions and goals at once, including some
discontinuous problems.
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Abbreviations

The following abbreviations are used in this manuscript:

PSO Particle Swarm Optimization
bPSO The basic PSO [21,22]
PSOd A distribution-based update rule for PSO [52]
HPSOscac A hybrid PSO with sine cosine acceleration coefficients [67]
TCPSO A two-swarm cooperative PSO [45]
SPSO Simple PSO
SPSOC Simple PSO with Confidence Term
SPSORC Simple PSO based on Random weight and Confidence term
v Particle velocity
x Particle position
pbest Personal historical best solution
gbest Global best solution
ω Inertia weight
ωmax The maximum weight
ωmin The minimum wight
c1 Self-cognitive factor
c2 Social communication factor
U (in Figures 1–3) Solution space of a function
O (in Figures 1–3) The theoretical optima of a function
i The current particle
n The current dimension



Mathematics 2018, 6, 287 30 of 34

N The maximum dimension
t The current generation
T The upper limit of generation
NR The number of times that algorithm search for problem
m Population size

min
The minimum values from the optima in which algorithms search for the problem
30 times

mean
The average values for the optima in which algorithms search for the problem
30 times

std
The average values for the optima in which algorithms search for the problem
30 times

ttest (in Table 6) t-test results
AIT (in Section 4.5.2) Average iteration times
SR (in Section 4.5.2) Success rate
A1–A7 (in Figures 5 and 6) bPSO, PSOd, HPSOscac, TCPSO, SPSO, SPSOC and SPSORC, respectively

Appendix A. Benchmark Function Appendix

Table A1. Benchmark functions.

Instance Expression Domain Analytical Solution Accuracy (50)

Ackley’s Path Function f1(x) = −20e−0.2
√

1
30 ∑N

i=1 x2
i [−32, 32] f1(0, · · · , 0) = 8.88̇× 10−16 1× 10−15

− e
1
30 ∑N

i=1 cos 2πxi + 20 + e

Alpine Function f2(x) =
N
∑

i=1
|xi sin(xi) + 0.1xi | [−10, 10] f2(0, · · · , 0) = 0 1× 10−60

Axis Parallel
Hyperellipsoid f3(x) =

N
∑

i=1
ix2

i [−5.12, 5.12] f3(0, · · · , 0) = 0 1× 10−15

De Jong’s Function 4
(no noise) f4(x) =

N
∑

i=1
ix4

i [−1.28, 1.28] f4(0, · · · , 0) = 0 1× 10−240

Girewank Problem f5(x) = 1
4000

N
∑

i=1
x2

i −
N
∏
i=1

(
xi√

i
) + 1 [−600, 600] f5(0, · · · , 0) = 0 1× 10−15

High Conditioned
Elliptic Function f6(x) =

N
∑

i=1
(106)

i−1
n−1 x2

i [−100, 100] f6(0, · · · , 0) = 0 1× 10−110

Inverted Cosine f7(x) = −
N−1
∑

i=1
(e
−x2

i −x2
i+1−0.5xi xi+1

8 ) [−5, 5] f7(0, · · · , 0) = −N + 1 −4.9× 10−1

Wave Function × cos(4
√

x2
i + x2

i+1 + 0.5xi xi+1)

Pathological Function f8(x) =
N−1
∑

i=1
(0.5 +

sin2
√

100x2
i +x2

i+1−0.5

1+ 1
1000 (x2

i −2xi xi+1+x2
i+1)

) [−100, 100] f8(0, · · · , 0) = 0 1× 10−5

Quartic Function,
i.e, noise f9(x) =

N
∑

i=1
ix4

i +rand[0, 1) [−10, 10] f9(0, · · · , 0) = 0 1× 10−1

Rastrigin Problem f10(x) =
N
∑

i=1
[x2

i − 10 cos(2πxi) + 10] [−5.12, 5.12] f10(0, · · · , 0) = 0 1× 10−20

Rosenbrock Problem f11(x) =
N−1
∑

i=1
[100(xi+1 − x2

i )
2 + (xi − 1)2] [−30, 30] f11(0, · · · , 0) = 0 5× 101

Schwefel’s Problem 1.2 f12(x) =
N
∑

i=1
(

m
∑

j=1
xj)

2 [−100, 100] f12(0, · · · , 0) = 0 1× 10−100

Schwefel’s
Problem 2.21

f13(x) = max
i
|xi |, 1 ≤ i ≤ 30 [−100, 100] f13(0, · · · , 0) = 0 1× 10−80

Schwefel’s
Problem 2.22 f14(x) =

N
∑

i=1
|xi |+

N
∏
i=1
|xi | [−10, 10] f14(0, · · · , 0) = 0 1× 10−60

Schwefel’s Problem 2.26 f15(x) =
N
∑

i=1
|xi sin(xi) + 0.1xi | [−500, 500] f15(s, · · · , s) = −419 N −2.5× 103

s ≈ 420.97

Sphere Function f16(x) =
N
∑

i=1
x2

i [−100, 100] f16(0, · · · , 0) = 0 1× 10−120

Sum of Different
Power Function f17(x) =

N
∑

i=1
|xi |i+1 [−1, 1] f17(0, · · · , 0) = 0 1× 10−300

Xin–She Yang 1 f18(x) =
N
∑

i=1
rand[0, 1)× |xi |i [−5, 5] f18(0, · · · , 0) = 0 1× 10−60

Xin–She Yang 2 f19(x) =
∑N

i=1 |xi |

e∑N
i=1 sin x2

i
[−2π, 2π] f19(0, · · · , 0) = 0 1× 10−8



Mathematics 2018, 6, 287 31 of 34

Table A1. Cont.

Instance Expression Domain Analytical Solution Accuracy (50)

Xin–She Yang 3 f20(x) = e
−∑N

i=1(
xi
β
)2α

− 2e−∑N
i=1 x2

i
N
∏
i=1

cos2 xi [−20, 20] f20(0, · · · , 0) = −1 −1
β = 15, α = 3

Xin–She Yang 4 f21(x) = [
N
∑

i=1
sin2 xi − e−∑N

i=1 x2
i ]e

N
∑

i=1
sin2√|xi | [−10, 10] f21(0, · · · , 0) = −1 −1

Zakharov Function f22(x) =
N
∑

i=1
x2

i + (
N
∑

i=1
0.5ix2

i )
2 + (

N
∑

i=1
0.5ix2

i )
4 [−5, 10] f22(0, · · · , 0) = 0 1× 10−80
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