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Abstract

:

The polynomial bounds of Jordan’s inequality, especially the cubic and quartic polynomial bounds, have been studied and improved in a lot of the literature; however, the linear and quadratic polynomial bounds can not be improved very much. In this paper, new refinements and improvements of Jordan’s inequality are given. We present new lower bounds and upper bounds for strengthened Jordan’s inequality using polynomials of degrees 1 and 2. Our bounds are tighter than the previous results of polynomials of degrees 1 and 2. More importantly, we give new improvements of Jordan’s inequality using polynomials of degree 5, which can achieve much tighter bounds than those previous methods.
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1. Introduction


The following inequality


2π≤sinc(x)=sinxx<1,x∈(0,2/π],



(1)




with equality holds if and only if x=π/2, is the famous Jordan’s inequality [1]. sinc(x) is also called the “sampling function” that arises frequently in signal processing and the theory of Fourier transforms. The Jordan’s inequality plays an important role in many areas of pure and applied mathematics. Many improvements and refinements of Jordan’s inequality were presented in the recent period [2,3,4,5,6,7]. There are some sharp lower and upper bounds for the sinc(x) function by using polynomial degrees from 1 to 4.



Zhang et al. [8] gave that


2π+π−2π2(π−2x)≤sinxx≤2π+2π2(π−2x),x∈(0,2/π].



(2)







Qi et al. [9] proved that


2π+1π3(π2−4x2)≤sinxx≤2π+π−2π3(π2−4x2),x∈(0,2/π].



(3)







Deng [10] presented


2π+23π4(π3−8x3)≤sinxx≤2π+π−2π4(π3−8x3),x∈(0,2/π],



(4)




and Jiang et al. [11], similarly, gave the result


2π+12π5(π4−16x4)≤sinxx≤2π+π−2π5(π4−16x4),x∈(0,2/π].



(5)







Equalities in Labels (2)–(5) are valid if and only if x=π/2. As x→0+, the equalities on the right-hand sides of (3)–(5) are valid, but strict inequalities on the left-hand sides of (3)–(5) and two sides of (2) persist. Debnath et al. [12] gave the improvements of (3) and (5)


g4,D1l(x)≤sinxx≤g4,D1u(x),x∈(0,2/π]



(6)




and


g4,D2l(x)≤sinxx≤g4,D2u(x),x∈(0,2/π],



(7)




where g4,D1l(x)=2π+1π3(π2−4x2)+(1−3π)−(16−4π3)x2, g4,D1u(x)=2π+1π3(π2−4x2)+(1−3π)−(16−4π3)x2+1120x4, g4,D2l(x)=2π+12π5(π4−16x4)+(1−52π)−16x2, g4,D2u(x)=2π+π−22π5(π4−16x4)+(1−52π)−16x2+(8π5+1120)x4.



As x→0−, equalities on two sides of (6) and (7) are valid; however, as x→π2−, the lower and upper limits of (6) and (7) are different from that of sinc(x). The problem of strict inequalities of (6) and (7) still exists.



In order to ensure that the equality of Jorand’s inequality is valid near zero and π/2, Agarwal et al. [13] and Chen et al. [14] gave new lower and upper bounds by using polynomials of degree of 3 and 4,


g3,Al(x)≤sinxx≤g3,Au(x),x∈(0,2/π],



(8)






g3,Cl(x)≤sinxx≤g3,Cu(x),x∈(0,2/π],



(9)






g4,Cl(x)≤sinxx≤g4,Cu(x),x∈(0,2/π),



(10)




where g3,Al(x)=1+4(66−43π+7π2)π2x−4(124−83π+14π2)π3x2−4(12−4π)π4x3, g3,Au(x)=1+4(75−49π+8π2)π2x−4(142−95π+16π2)π3x2−4(12−4π)π4x3, g3,Cl(x)=1−4(3π−8)π3x2+16(π−3)π4x3, g3,Cu(x)=1−2(5π−2−162+22π)π2x+8(4π−4−162+32π)π3x2−32(π−2−42+2π)π4x3, g4,Cl(x)=1−4(−482−2+17π+42π)π3x2+32(−282−2+9π+32π)π4x3−64(−162−2+5π+22π)π5x4, g4,Cu(x)=1−4(−82−7+3π+22π)π2x+4(−322−68+13π+162π)π3x2−32(−42−26+3π+52π)π4x3+64(−12+π+22π)π5x4.



Zeng and Wu [15] gave the polynomial bounds of degree m(m≥2) for sinc(x)


2π+2mπm+1(πm−2mxm)≤sinxx≤2π+π−2πm+1(πm−2mxm),x∈(0,2/π].



(11)







Putting m=2,3,4 in (11) results in (3), (4) and (5), respectively.



The cubic and quartic polynomial lower and upper bounds of sinc(x) have been improved in a lot of literature; however, the linear and quadratic polynomial lower and upper bounds can not be improved very well. To give new tighter linear and quadratic polynomial bounds is the first aim of the paper. The second aim is to further refine and generalize the Jordan’s inequality.



The paper gives improvements of the polynomial bounds of degrees 1 and 2. More importantly, we present new improvements of Jordan’s inequality using polynomials of degree 5, which can achieve much tighter bounds than those previous methods.




2. Results


In this section, we will give some results about the n-th-order derivative and two-sides bounds of sinc(x). Firstly, we present a Lemma that is very useful for our proof [16].



Lemma 1.

Let w0,w1,⋯,wr be r+1 distinct points in [a,b], and n0,n1,⋯nr be r+1 integers ≥ 0. Let N=n0+⋯+nr+r. Suppose that g(t) is a polynomial of degree N such that


g(i)(wj)=f(i)(wj),i=0,⋯,nj,j=0,⋯,r.













Then, there exists ξ(t)∈[a,b] such that


f(t)−g(t)=f(N+1)(ξ(x))(N+1)!∏i=0r(t−wi)ni+1.








Next, we give Theorems of n-th-order derivative and two sides bounds of sinc(x) using polynomials of degrees 1 and 2.



Theorem 1.

For x∈(0,π/2], we have


sinc(n)(x)=fn(x)xn+1,








where fn(x)=xfn−1′(x)−nfn−1(x), fn′(x)=−xnsin(x+nπ2), f1(x)=−sin(x)+xcos(x), and sinc(n(x) denotes the n-th-order derivative of sinc(x).





Proof. 

For the definition of sinc(x), we have


sinc′(x)=−sin(x)+xcos(x)x2;








then, f1(x)=−sin(x)+xcos(x), f1′(x)=−xsin(x).



Let sinc(m)(x)=fm(x)xm+1=xfm−1′(x)−mfm−1(x)xm+1, fm′(x)=−xmsin(x+mπ2); then, as n=m+1,


sinc(m+1)(x)=ddxsinc(m)(x)=ddxfm(x)xm+1=xfm′(x)−(m+1)fm(x)xm+2=fm+1(x)xm+2,










fm+1′(x)=xfm″(x)−mfm′(x)=−x(m+1)sin(x+(m+1)π2).











The proof of Theorem 1 is completed. □





Theorem 2.

For x∈(0,π/2],


1+4−2ππ2x≤sinxx≤82−2π2π+22−82π2x.



(12)









Proof. 

Let b=π/2,c=π/4,e1,l(x)=sinc(x)−1−4−2ππ2x, and e1,u(x)=sinc(x)−82−2π2π+22−82π2x, for x∈(0,π/2], we have


e1,l(0)=el,1(b)=0,e1,u(c)=e1,u′(c)=0.











By Lemma 1 and Theorem 1, e1,l″(x)=eu,1″(x)=sinc″(x)≤0, and there exists ξj(x)∈[0,π/2],j=1,2, such that


e1,l(x)=el,1″(ξ1(x))x(x−b)≥0,e1,u(x)=e1,u″(ξ2(x))(x−c)2≤0.











The proof is finished. □





Theorem 3.

For x∈(0,π/2],


g2l(x)≤sinxx≤g2u(x),



(13)




where g2l(x)=1+12−4ππ2x+4π−16π3x2, g2u=1+8−4ππ3x2.





Proof. 

Let b=π/2, e2,l(x)=sinc(x)−g2l(x),


e2,l(0)=e2,l(b)=e2,l′(b)=0,e2,u(0)=e2,u(b)=e2,u′(0)=0.











By Lemma 1 and Theorem 1, e1,l(3)(x)=eu,1(3)(x)=sinc(3)(x)≥0, and there exists ξj(x)∈[0,π/2], j=3,4, such that


e2,l(x)=e2,l(3)(ξ(x))x(x−b)2≥0,e2,u(x)=e2,u(3)(ξ(x))x2(x−b)≤0.











The proof is finished. □





Theorems 2 and 3 give new bounds of sinc(x) using polynomials of degrees 1 and 2. Figure 1 and Figure 2 give the error between sinc(x) and the polynomial bounds from degree 1 to 2. Both figures show that our bounds are tighter than the previous results. The same conclusion can also be shown in Table 1. Errorlow and Errorupp denote the maximum errors between sinc(x) and the lower and upper bounds, respectively. It is obvious that the maximum errors are less than or equal to those of previous methods using polynomials of degrees 1 and 2.



Theorem 4.

For x∈(0,π/2],


g5l(x)≤sinxx≤g5u(x),



(14)




where g5l(x)=1+32−20482+21873−(113+1282)π2π2x+−448+266242−277023+(1255+15362)π2π3x2+1168−624642+641523−(2825+33922)ππ4x3+−2688+1259522−1283043+(5664+65282)ππ5x4+2304−921602+933123−(4176+46082)ππ6x5, g5u(x)=1+64+2562−(92+322)ππ3x2+−624−15362+(528+2562)ππ4x3+1920+30722−(1088+6402)ππ5x4+−1792−20482+(768+5122)ππ6x5.





Proof. 

Let b=π2, c=π4, d=π3, e5,l(x)=sinc(x)−g5l(x), e5,u(x)=sinc(x)−g5u(x). It is obvious that for x∈(0,π/2], e5,l(6)(x)=e5,u(6)(x)=sinc(6)(x). □





By Theorem 1 and Lemma 1, we have sinc(6)(x)≤0 and there exists ε∈(0,π/2] such that


e5,l(0)=e5,l(b)=e5,l(c)=e5,l(d)=e5,l′(c)=e5,l′(d)=0,










e5,l(x)=e5,l(6)(ε)x(x−b)(x−c)2(x−d)2≥0,










e5,u(0)=e5,u(b)=e5,u(c)=e5,l′(0)=e5,l′(b)=e5,l′(c)=0,










e5,u(x)=e5,u(6)(η)x2(x−b)2(x−c)2≤0,








which means that g5l(x)≤sinxx≤g5u(x). The theorem is proved.



Theorem 4 gives new two-sided bounds of sinc(x) using polynomials of degree 5. The conclusion that Equation (14) achieves much tighter bounds than those of previous methods is easy to be verified. Figure 3 gives the errors between sinc(x) and polynomial bounds of degree 3 and 5. However, the results of Equations (8), (9) and (14) are close in Figure 3; in particular, we give the errors between sinc(x) and the polynomial bounds of Equations (8), (9) and (14) in Figure 4. Figure 4 shows that Equations (8) and (9) have similar errors and the error of Equation (14) is obviously smaller than that of Equations (8) and (9).



Figure 5 gives the errors between sinc(x) and the polynomial bounds of degrees 4 and 5. For the same reason, we also give the errors between sinc(x) and the polynomial bounds of Equations (10) and (14) in Figure 6.



Figure 7 gives a comparison between Equations (14) and (11); here, we set m=5,8,10 in Equation (11), where m is the degree of the polynomial. Our results are obviously better than that of Zeng [15]; meanwhile, we find that the error is even greater with the increase of m’s value of Equation (11). Maximum errors of different methods are presented in Table 1. Although Equation (11) gives the polynomial bounds of degree m for sinc(x), the error of Equation (11) is relatively large. The maximum errors of Equation (10) is close to the results of Equation (14); however, it is still very obvious that the maximum error of Equation (14) is the smallest.




3. Conclusions


In this paper, we gave new refinements and improvements of Jordan’s inequality. Firstly, the new polynomial bounds of degrees 1 and 2 were given. The results show that our bounds are tighter than the previous results of polynomials of degrees 1 and 2. Meanwhile, we presented new improvements of Jordan’s inequality using polynomials of degree 5, which can achieve much tighter bounds than those previous methods.



Much work still remains. The polynomial bounds of degree 5 were given in this paper, and the polynomial bounds of higher degree are needed for tighter bounds. However, it will require more complicated calculations. Furthermore, it is still an important problem to find tighter polynomial bounds of lower degrees.
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Figure 1. Error plots between sinc(x) and the bounds of Equations (2) and (12). 






Figure 1. Error plots between sinc(x) and the bounds of Equations (2) and (12).
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Figure 2. Error plots between sinc(x) and the bounds of Equations (3) and (13). 






Figure 2. Error plots between sinc(x) and the bounds of Equations (3) and (13).
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Figure 3. Error plots between sinc(x) and the polynomial bounds of degrees 3 and 5. 






Figure 3. Error plots between sinc(x) and the polynomial bounds of degrees 3 and 5.
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Figure 4. Error plots between sinc(x) and the polynomial bounds of Equations (8), (9) and (14). 






Figure 4. Error plots between sinc(x) and the polynomial bounds of Equations (8), (9) and (14).
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Figure 5. Error plots between sinc(x) and the polynomial bounds of degrees 4 and 5. 






Figure 5. Error plots between sinc(x) and the polynomial bounds of degrees 4 and 5.
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Figure 6. Error plots between sinc(x) and the polynomial bounds of Equations (10) and (14). 
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Figure 7. Error plots between sinc(x) and the polynomial bounds of Equations (11) and (14). 






Figure 7. Error plots between sinc(x) and the polynomial bounds of Equations (11) and (14).
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Table 1. Maximum errors from different methods.






Table 1. Maximum errors from different methods.





	
Method

	
Error




	
Errorlow

	
Errorupp






	
Linear polynomial (Equation (2))

	
0.08239552616791

	
0.27319901792837




	
Linear polynomial (Equation (12))

	
0.08239552616791

	
0.09343987891909




	
Quadratic polynomial (Equation (3))

	
0.04507034107202

	
0.01161202091677




	
Quadratic polynomial (Equation (13))

	
0.01541234761755

	
0.01161202091677




	
Cubic polynomial (Equation (4))

	
0.15117363517661

	
0.06535850279048




	
Cubic polynomial (Equation (8))

	
0.00263153345090

	
0.00098638493116




	
Cubic polynomial (Equation (9))

	
0.18004172509621

	
0.00065651979512




	
Quartic polynomial (Equation (5))

	
0.20422528287386

	
0.10245473620764




	
Quartic polynomial (Equation (6))

	
0.04777095540497

	
0.00287304555420




	
Quartic polynomial (Equation (7))

	
0.20664387547518

	
0.20422528454052




	
Quartic polynomial (Equation (10))

	
0.00010491761462

	
0.00011278132149




	
Quintic Polynomial (Equation (11) m = 5)

	
0.236056271492236

	
0.129868221438454




	
Quintic Polynomial (Equation (14))

	
0.00001059989622

	
0.00000545628343




	
Octic Polynomial (Equation (11) m = 8)

	
0.283802754419804

	
0.182471527648186




	
Decic Polynomial (Equation (11) m = 10)

	
0.299718248728994

	
0.204647143136328












© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
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