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Abstract

:

We consider a family of higher degree Enneper minimal surface Em for positive integers m in the three-dimensional Euclidean space E3. We compute algebraic equation, degree and integral free representation of Enneper minimal surface for m=1,2,3. Finally, we give some results and relations for the family Em.
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1. Introduction


Minimal surfaces have an important role in the mathematics, physics, biology, architecture, etc. These kinds of surfaces have been studied over the centuries by many mathematicians and also geometers. A minimal surface in E3 is a regular surface for which the mean curvature vanishes identically.



There are many important classical works on minimal surfaces in the literature such as [1,2,3,4,5,6,7,8,9,10]. However, we only see a few notable works about algebraic minimal surfaces, including general results and the properties. They were given by Enneper [11,12], Henneberg [13,14] and Weierstrass [9,15].



One of them is the classical Enneper minimal surface that was given by Enneper. See [11,12] for details. About Enneper minimal surface, many nice papers were done such as [16,17,18,19,20,21,22,23,24] in the last few decades.



In this paper, we introduce a family of higher degree Enneper minimal surface Em for positive integers m in the three-dimensional Euclidean space E3. In Section 2, we give the family of Enneper minimal surfaces Em. We obtain the algebraic equation and degree of surface E1 (resp., E2,E3). Using the integral free form of Weierstrass, we find some algebraic functions for Em(m≥1,m∈Z) in Section 3. Finally, we give some general findings for a family of higher degree Enneper minimal surface Em with a table in the last section.




2. The Family of Enneper Minimal Surfaces Em


We will often identify x→ and xt→ without further comment. Let E3 be a three-dimensional Euclidean space with natural metric .,.=dx2+dy2+dz2.



Let U be an open subset of C. A minimal (or isotropic) curve is an analytic function Ψ:U→Cn such that Ψ′ζ·Ψ′ζ=0, where ζ∈U, and Ψ′:=∂Ψ∂ζ. In addition, if Ψ′·Ψ′¯=Ψ′2≠0, then Ψ is a regular minimal curve.



Thus, let see the following lemma for complex minimal curves.



Lemma 1.

Let Ψ:U→C3 be a minimal curve and write Ψ′=φ1,φ2,φ3. Then,


F=φ1−iφ22andG=φ3φ1−iφ2








lead to the Weierstrass representation of Ψ. That is,


Ψ′=F1−G2,iF1+G2,2FG.













Therefore, we have minimal surfaces in the associated family of a minimal curve, as given by the following Weierstrass representation theorem [9] for minimal surfaces:



Theorem 1.

Let F and G be two holomorphic functions defined on a simply connected open subset U of C such that F does not vanish on U. Then, the map


xζ=Re∫ζF1−G2iF1+G22FGdζ








is a minimal, conformal immersion of U into C3, and x is called the Weierstrass patch.





We now consider the Enneper’s curve of value m:



Lemma 2.

The Enneper’s curve of value m


Emζ=ζ−ζ2m+12m+1,iζ+ζ2m+12m+1,2ζm+1m+1



(1)




is a minimal curve in C3, where m∈R−−1,−1/2,ζ∈C, i=−1.





Then, we have Em′·Em′=0. Hence, Enneper’s surface of value m in E3 is


Emζ=Re∫Em′ζdζ.



(2)







Lemma 3.

The Weierstrass patch determined by the functions


Fζ=1andGζ=ζm








is a representation of Enneper’s higher degree surfaces Em, where m≥2.





For m=1, we get the classical Enneper’s surface E1 (see also [4,11,25] for details).



Remark 1.

Note that the catenoid and classical Enneper’s surface are the only complete regular minimal surfaces in E3 with finite total curvature −4π.





See [5] for details.



Gray, Abbena and Salamon [26] gave the complex forms of the Enneper’s curve and surface of value m. Therefore, the associated family of minimal surfaces is described by


Er,θ;α=Re∫e−iαEm′=cosαRe∫Em′+sinαIm∫Em′=cosαEmr,θ+sinαEm∗r,θ.











When α=0 (resp. α=π/2), we have the Enneper’s surface of value m (resp. the conjugate surface Em∗).



The parametric equation of Em, in polar coordinates, is


Emr,θ=rcosθ−r2m+12m+1cos2m+1θ−rsinθ−r2m+12m+1sin2m+1θ2rm+1m+1cosm+1θ.



(3)







Using the binomial formula, we obtain the following parametric equations of Emu,v:


x(u,v)=Reu+iv−12m+1∑k=02m+12m+1ku2m+1−kivk,y(u,v)=Re−v+iu+i2m+1∑k=02m+12m+1ku2m+1−kivk,z(u,v)=Re2m+1∑k=0m+1m+1kum+1−kivk.



(4)







Next, we will focus on the algebraic equation and degree of surface Em.



With R3={(x,y,z)∣x,y,z∈R}, the set of roots of a polynomial f(x,y,z)=0 gives an algebraic surface. An algebraic surface is said to be of degreen, when n=deg(f).



It is seen that degx=2m+1,degy=2m+1,degz=m+1 for Emu,v (see also Table 1 for details). Using polynomial eliminate methods, we calculate the algebraic equations and degrees of the surfaces E1,E2,E3. For the surface E1 (i.e., classical Enneper surface), it is known that the surface has degree 9. Thus, it is also an algebraic minimal surface. For expanded results of E1, see [4].



2.1. Algebraic Equation of Enneper Minimal Surface E1


The simplest Weierstrass representation F,G=1,ζ gives classical Enneper minimal surfaceof value 1. In polar coordinates, the parametric equation of E1 is


E1r,θ=rcosθ−r33cos(3θ)−rsinθ−r33sin3θr2cos2θ,



(5)




where r∈[−1,1], θ∈[0,π]. The parametric form of the surface E1, in u,v coordinates, is


E1u,v=−13u3+uv2+u−u2v+13v3−vu2−v2,



(6)




where u,v∈R.



Lemma 4.

A plane intersects an algebraic minimal surface in an algebraic curve [13].





See also [4] for details. Considering the above lemma, we find the algebraic equation of the curve


E1u,0=γ1u=u−u33,0,u2








on the xz-plane is as follows (see Figure 1, left):


z3−6z2−9x2+9z=0,








and its degree is deg(γ1)=3. Thus, xz-plane intersects the algebraic minimal surface E1 in an algebraic curve γ1u.



Using the polynomial eliminate method, we calculate the irreducible algebraic equation E1(x,y,z)=0 of surface E1(u,v) by hand as follows (see Figure 1, right):


−64z9+432x2z6−432y2z6+1215x4z3+6318x2y2z3+3888x2z5+1215y4z3+3888y2z5+1152z7+729x6−2187x4y2+4374x4z2+2187x2y4+6480x2z4−729y6−4374y4z2−6480y2z4−729x4z+1458x2y2z−3888x2z3−729y4z−3888y2z3−5184z5=0.











Its degree is deg(E1)=9. Therefore, E1 is an algebraic minimal surface. All of these results for classical Enneper surface E1 were obtained first in [11] by Enneper.



Next, we study algebraic equations and degrees of the higher degree Enneper minimal surfaces for values m = 2 and m = 3.




2.2. Algebraic Equation of Enneper Minimal Surface E2


In polar coordinates, the parametric equation of E2 is


E2r,θ=rcosθ−r55cos(5θ)−rsinθ−r55sin5θ23r3cos3θ,



(7)




where r∈[−1,1], θ∈[0,π]. The parametric form of the surface E2, in u,v coordinates, is


E2u,v=u−15u5+2u3v2−uv4−v−u4v+2u2v3−15v523u3−2uv2,



(8)




where u,v∈R.



Using the polynomial eliminate method, we find the algebraic equation of the curve


E2u,0=γ2u=u−u55,0,23u3








on the xz-plane as follows (see Figure 2, left)


−243z5−4000x3−5400xz2+6000z=0,








and its degree is deg(γ2)=5. Hence, xz-plane intersects the algebraic minimal surface E2 in an algebraic curve γ2u.



We calculate the irreducible algebraic equation E2(x,y,z)=0 of surface E2(u,v) by using Maple software (version 17, Waterloo Maple Inc., Waterloo, ON, Canada) as follows (see Figure 2, right)


847288609443z25+4358480501250x3z20−13075441503750xy2z20−131157978046875x6z15−474186536015625x4y2z15+107otherlowerdegreeterms=0,








and its degree is deg(E2)=25. Hence, E2 is an algebraic minimal surface.




2.3. Algebraic Equation of Enneper Minimal Surface E3


The parametric equation of Enneper’s minimal surface of value 3, in polar coordinates, is


E3r,θ=rcosθ−r77cos(7θ)−rsinθ−r77sin7θ12r4cos4θ,



(9)




where r∈[−1,1], θ∈[0,π]. In u,v coordinates, E3 has the following form:


E3u,v=u−17u7+3u5v2−5u3v4+uv6−v−u6v+5u4v3−3u2v5+17v712u4−3u2v2+12v4,



(10)




where u,v∈R.



We get the algebraic equation of the curve


E3u,0=γ3u=u−u77,0,u42








on the xz-plane as follows:


128z7−1568z4−2401x4−5488x2z2+4802z=0.











Its degree is deg(γ3)=7. Then, we see that the xz-plane intersects the algebraic minimal surface E3 in an algebraic curve γ3u.



In Cartesian coordinates x,y,z, the algebraic equation E3(x,y,z)=0 of surface E3(u,v) by using Maple software is as follows:


−2475880078570760549798248448z49+5079604062565768134821675008x4z42−30477624375394608808930050048x2y2z42+5079604062565768134821675008y4z42+633850350654216217766624493568x8z35+406otherlowerdegreeterms=0.











Its degree is deg(E3)=49. Thus, E3 is an algebraic minimal surface.



Corollary 1.

The family of higher degree (also classical) Enneper minimal surfaces Emu,v are algebraic minimal surfaces, where m∈Z,m≥1 (see Table 1).





Next, we obtain the general algebraic equation for the curve γm:



Corollary 2.

We consider the curve


Emu,0=γmu=u−u2m+12m+1,0,2um+1m+1








on the xz-plane. By using Mathematica (version 8, Wolfram Research Inc., Champaign, IL, USA; Oxfordshire, UK; Tokyo, Japan; Boston, MA, USA), we get the following algebraic equation:


(2m+1)(x−2−1m+1[(m+1)z]1m+1)m+1+(2−1(m+1)z])2m+1=0,



(11)




where m+1≠0,2m+1≠0, and its degree is deg(γm)=2m+1.







3. Integral Free Form


Integral free form of the Weierstrass representation (see [15]) is


xyz=Re1−w2ϕ″(w)+2wϕ′(w)−2ϕ(w)i1+w2ϕ″(w)−2wϕ′(w)+2ϕ(w)2wϕ″(w)−ϕ′(w)≡Ref1wf2wf3w,



(12)




where algebraic function ϕ(w) and the functions fiw are connected by the relation


ϕ(w)=14w2−1f1w−i4w2+1f2w−12wf3w



(13)




for w∈C. Integral free form is suitable for algebraic minimal surfaces. For instance, ϕ(w)=16w3 gives rise to classical Enneper minimal surface E1 (see [4] for details).



After some calculations by using the last two equations above, we get following corollary:



Corollary 3.

We obtain algebraic functions ϕ(w), and then get the function ϕ(w)=w32−w43+w510, which leads to Enneper minimal surface E2. We also find ϕ(w)=w32−w54+w714 for E3,ϕ(w)=w32−w65+w918 for E4, and so on.





Hence, we have following lemma:



Lemma 5.

The algebraic function in the integral free form for a higher degree (also classical) Enneper minimal surfaces Em is as follows:


ϕEm(w)=w32−wm+2m+1+w2m+12(2m+1),



(14)




where m≥1,m∈Z.






4. Conclusions


Briefly, we give all findings, calculated in Section 2 and Section 3 for the Enneper surface family, in Table 1 as follows.



Looking at the table above, we also have the following results:



Corollary 4.

We find the following relation between degree of algebraic function ϕEm(w) in the integral free form and curve γm of surface Em:


degγm=2m+1=degϕEm








and


degEm=(2m+1)2=(degγm)2=(degϕEm)2,








where integers m≥1.





Remark 2.

For integers m≥4, algebraic equations and also degrees of Enneper minimal surfaces Em can be calculated. However, calculation is a time problem for software programmes.
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Figure 1. left: algebraic curve γ1u; right: algebraic surface E1(x,y,z)=0. 






Figure 1. left: algebraic curve γ1u; right: algebraic surface E1(x,y,z)=0.
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Figure 2. left: algebraic curve γ2u; right: algebraic surface E2(x,y,z)=0. 






Figure 2. left: algebraic curve γ2u; right: algebraic surface E2(x,y,z)=0.
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Table 1. Algebraic Enneper minimal surfaces Em,m≥1,m∈Z.






Table 1. Algebraic Enneper minimal surfaces Em,m≥1,m∈Z.





	Surface
	deg(x,y,z)
	degEm
	degγm
	Algebraic Function





	E1(classical)
	(3,3,2)
	9
	3
	16w3



	E2
	(5,5,3)
	25
	5
	12w3−13w4+110w5



	E3
	(7,7,4)
	49
	7
	12w3−14w5+114w7



	⋮
	⋮
	⋮
	⋮
	⋮



	Em
	(2m+1,2m+1,m+1)
	(2m+1)2
	2m+1
	12w3−1m+1wm+2+12(2m+1)w2m+1
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