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Abstract: Graph theory plays a substantial role in structuring and designing many problems.
A number of structural designs with crossings can be found in real world scenarios. To model
the vagueness and uncertainty in graphical network problems, many extensions of graph theoretical
ideas are introduced. To deal with such uncertain situations, the present paper proposes the
concept of Pythagorean fuzzy multigraphs and Pythagorean fuzzy planar graphs with some of their
eminent characteristics by investigating Pythagorean fuzzy planarity value with strong, weak and
considerable edges. A close association is developed between Pythagorean fuzzy planar and dual
graphs. This paper also includes a brief discussion on non-planar Pythagorean fuzzy graphs and
explores the concepts of isomorphism, weak isomorphism and co-weak isomorphism for Pythagorean
fuzzy planar graphs. Moreover, it presents a problem that shows applicability of the proposed concept.

Keywords: Pythagorean fuzzy planar graphs; Pythagorean fuzzy planarity value; Pythagorean fuzzy
dual graphs; weak and co-weak isomorphism

1. Introduction

Graph theory is rapidly moving into the core of mathematics due to its applications in various
fields, including physics, biochemistry, biology, electrical engineering, astronomy, operations research
and computer science. The theory of planar graphs is based on Euler’s polyhedral formula, which is
related to the polyhedron edges, vertices and faces. In modern era, the applications of planar graphs
occur naturally such as designing and structuring complex radio electronic circuits, railway maps,
planetary gearbox and chemical molecules. While modeling an urban city, pipelines, railway lines,
subway tunnels, electric transmission lines and metro lines are extremely important. Crossing is
beneficial as it helps in utilizing less space and is inexpensive, but there are some drawbacks too.
As the crossing of such lines is quite dangerous for human lives, but, by taking certain amount of
security measures, it can be made. The crossing between the uncrowded route and crowded route
is less risky as compared to the crossing between two crowded routes. In fuzzy graphs, the terms’
uncrowded route and crowded route referred to as weak edge and strong edge. The allowance of such
crossings leads to fuzzy planar graph theory [1–3].

In the long-established mathematical models, the information about the complex phenomena
is very precise. However, it is an impractical supposition that the exact information is sufficient to
model the real world problems that involve inherent haziness. Fuzzy set theory, originally proposed
by Zadeh [4], is the most efficient tool having the capability to deal with imprecise and incomplete
information. To cope with imprecise and incomplete information, consisting of doubts in human
judgement, the fuzzy set shows some restrictions. Hence, for characterizing the hesitancy more

Mathematics 2018, 6, 278; doi:10.3390/math6120278 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0001-7217-7962
http://dx.doi.org/10.3390/math6120278
http://www.mdpi.com/journal/mathematics
http://www.mdpi.com/2227-7390/6/12/278?type=check_update&version=2


Mathematics 2018, 6, 278 2 of 28

explicitly, fuzzy sets were extended to intuitionistic fuzzy sets (IFSs) by Atanassov [5], which assigns a
membership grade µ and a nonmembership grade ν to the objects, satisfying the condition µ + ν ≤ 1
and the hesitancy part π = 1 − µ − ν. The IFSs have gained extensive attention and have been
broadly applied in different areas of real life. The limitation µ + ν ≤ 1 confines the choice of the
membership and nonmembership grades in IFS. To evade this situation, Yager [6–8] initiated the idea
of Pythagorean fuzzy set (PFS), depicted by a membership grade µ and a nonmembership grade ν

with the condition µ2 + ν2 ≤ 1. Zhang and Xu [9] introduced the concept of Pythagorean fuzzy number
(PFN) for interpreting the dual aspects of an element. The motivation of PFSs can be described as, in a
decision-making environment, a specialist gives the preference information about an alternative with
the membership grade 0.6 and the non-membership grade 0.5. It is noted that the IFN fails to address
this situation, as 0.6 + 0.5 > 1. However, (0.6)2 + (0.5)2 ≤ 1. Thus, PFSs comprise more uncertainties
than IFSs and are usually capable of accommodating greater degrees of uncertainty. The comparison
between intuitionistic fuzzy number space and Pythagorean fuzzy number space is shown in Figure 1.
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Figure 1. Comparison of spaces of the IFN and the PFN.

Graphs are the pictorial representation that bond the objects and highlight their information.
To emphasis a real-world problem, the bondedness between the objects occurs due to some relations.
However, when there exists uncertainty and haziness in the bonding, then the corresponding graph
model can be taken as a fuzzy graph model. In 1973, Kaufmann [10] presented the idea of fuzzy
graphs, based on Zadeh’s fuzzy relation in 1971. Afterwards, Rosenfeld [11] discussed several basic
graphs’ theoretical concepts in fuzzy graphs. Some remarks on fuzzy graphs were explored by
Bhattacharya [12]. Mordeson and Peng [13] discussed fuzzy graphs’ operations and their properties.
The concept of intuitionistic fuzzy relations and intuitionistic fuzzy graphs was initiated by Shannon
and Atanassov [14] and some of their eminent properties were explored in [15]. Parvathi et al. [16]
described operations on intuitionistic fuzzy graphs. Many new concepts involving intuitionistic fuzzy
hypergraphs and strong intuitionistic fuzzy graphs were given by Akram et al. [17,18]. On the basis
of Akram and Davvaz’s IFGs [17], Naz et al. [19] gave the idea of PFGs along with applications.
Some results related to PFGs have been discussed in [20]. Pythagorean fuzzy graph energy was
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studied by Naz and Akram [21]. Dhavudh and Srinivasan [22,23] coped with IFGs2k. Verma et al. and
Akram et al. [24] proposed some operations of PFGs. Recently, Akram et al. [25] introduced certain
graphs under Pythagorean fuzzy environment. Abdul-Jabbar et al. [26] put forward the idea of a fuzzy
dual graph and investigated some of its crucial properties. Yager [27] used the notation of fuzzy bags to
define fuzzy multiset. Pal et al. [1] and Samanta et al. [2] developed the notion of fuzzy planar graphs
and studied its properties. Pramanik et al. [3] discussed special planar fuzzy graphs. Furthermore,
some extensions of planar fuzzy graph were studied [28–30]. For other terminologies and applications,
one can see [31–37]. Under the Pythagorean fuzzy environment, the graph theoretical results have
been extended in this paper. The structure and applicability of planar graphs are full of surprises.
For example, in the designing of complex radioelectronic circuits, elements can be arranged in such a
manner that the conductors connecting each other do not intersect. This problem can be solved by
using the concept of planar graphs. This research paper describes the concept of Pythagorean fuzzy
multigraphs (PFMGs), Pythagorean fuzzy planar graphs (PFPGs) and Pythagorean fuzzy dual graphs
(PFDGs) that allow the mathematical structuring of a road or communication network. By using these
graphs, several real world problems can be analyzed and designed. The work explores a significant
property known as planarity. Meanwhile, a critical analysis is done on nonplanar PFGs. A close
association is developed between Pythagorean fuzzy planar graphs and Pythagorean fuzzy dual
graphs. Furthermore, the concept of isomorphism, co-weak isomorphism and weak isomorphism are
established between PFPGs. Some substantial results are investigated. In the end, an application of
PFPG is discussed.

2. Pythagorean Fuzzy Multigraph

Definition 1. A Pythagorean fuzzy multiset (PFMS) A taken from nonempty set X is classified by two
functions, ‘count membership’ and ‘count non-membership’ of A denoted by CMA and CNA and given as
CMA : X → Q and CNA : X → Q, where Q is the set of all crisp multisets taken from the unit interval
[0, 1], such that, for each r ∈ X , the degree of membership sequence is described as a decreasingly ordered sequence
of objects in CMA (r), represented as (µ1

A (r), µ2
A (r), . . . , µ

p
A (r)), where µ1

A (r) ≥ µ2
A (r) ≥ . . . ≥ µ

p
A (r) and

the corresponding degree of non-membership sequence will be represented as (ν1
A (r), ν2

A (r), . . . , ν
p
A (r)) such

that (µj
A (r))2 + (νj

A (r))2 ≤ 1 for all r ∈ X and j = 1, 2, . . . , p. A PFMS A is denoted by

{〈r, (µ1
A (r), µ2

A (r), . . . , µ
p
A (r)), (ν1

A (r), ν2
A (r), . . . , ν

p
A (r))〉|r ∈ X}.

Multigraphs play a crucial role for any kind of network design where multiedges are involved.
Likewise, in Pythagorean fuzzy graph theory, Pythagorean fuzzy multigraphs have vast usage.
As Pythagorean fuzzy planar graph can not be defined without Pythagorean fuzzy multigraph, hence,
on the basis of Pythagorean fuzzy multiset, we propose the idea of Pythagorean fuzzy multigraph.

Definition 2. Let A = (µA , νA ) be a PFS on X and let B = {(rs, µB(rs)j, νB(rs)j), j = 1, 2, . . . , n | rs ∈
V × V } be a PFMS on V × V such that

µB(rs)j ≤ min{µA (r), µA (s)},
νB(rs)j ≤ max{νA (r), νA (s)},

∀j = 1, 2, . . . , n. Then, G = (A , B) is known as Pythagorean fuzzy multigraph.

Example 1. Consider a multigraph G ∗ = (V , E ), where V = {r1, r2, r3, r4} and E =
{r1r2, r2r3, r3r4, r3r4, r2r4, r2r4, r1r4, r1r4}. Let A and B be PF vertex set and PF multiedge set defined on V

and V × V , respectively,

A =
〈(

r1

0.4
,

r2

0.2
,

r3

0.6
,

r4

0.3

)
,
(

r1

0.7
,

r2

0.9
,

r3

0.5
,

r4

0.8

)〉
and
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B =
〈(

r1r2

0.2
,

r2r3

0.15
,

r3r4

0.3
,

r3r4

0.3
,

r2r4

0.1
,

r2r4

0.2
,

r1r4

0.2
,

r1r4

0.3

)
,

(
r1r2

0.9
,

r2r3

0.45
,

r3r4

0.8
,

r3r4

0.75
,

r2r4

0.9
,

r2r4

0.9
,

r1r4

0.8
,

r1r4

0.75

)〉
.

By direct calculation, one can look from Figure 2 that it is a PFMG.
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Figure 2.1: Pythagorean fuzzy multigraph
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Figure 2. Pythagorean fuzzy multigraph.

Definition 3. Let B = {(rs, µB(rs)j, νB(rs)j), j = 1, 2, . . . , n | rs ∈ V × V } be a PF multiedge set in PFMG
G ; then,

1. The order of G is represented by O(G ) and defined as
O(G ) = (∑r∈V µA (r), ∑r∈V νA (r)).

2. The size of G is represented by S (G ) and defined as
S (G ) = (∑n

j=1 µB(rs)j, ∑n
j=1 νB(rs)j) for all rs ∈ V × V .

3. The degree of vertex r ∈ V is represented by degG (r) and defined as
degG (r) = (∑n

j=1 µB(rs)j, ∑n
j=1 νB(rs)j) for all s ∈ V .

4. The total degree of vertex r ∈ V is represented by tdegG (s) and defined as
tdegG (r) = (∑n

j=1 µB(rs)j + µA (r), ∑n
j=1 νB(rs)j + νA (r)) for all s ∈ V .

Definition 4. Let G be a Pythagorean fuzzy multigraph on G ∗. If each vertex has the same degree of membership
and nonmembership values in G , then G is known as a regular Pythagorean fuzzy multigraph.

Example 2. In Example 1, by direct calculation, one can see

1. The order of G O(G ) = (∑r∈V µA (r), ∑r∈V νA (r)) = (1.5, 2.9).
2. The size of G S (G ) = (∑n

j=1µB(rs)j, ∑n
j=1 νB(rs)j) = (1.75, 6.25).

3. The degree of the vertices are
degG (r1) = (0.7, 2.45), degG (r2) = (0.65, 3.15), degG (r3) = (0.75, 2), degG (r4) = (1.4, 4.9).

4. The total degree of the vertices are
tdegG (r1) = (1.1, 3.15), tdegG (r2) = (0.85, 4.05), tdegG (r3) = (1.35, 2.5), tdegG (r4) = (1.7, 5.7).

In addition, G is not regular as degree of membership and nonmembership values of the vertices are not equal.

Definition 5. Let G be a PFMG such that B = {(rs, µB(rs)j, νB(rs)j), j = 1, 2, . . . , n | rs ∈ V × V }. Then,

1. The degree of an edge rs ∈ V × V is represented by DG (rs) and defined as
DG ((rs)) = ((degµ)G (r) + (degµ)G (s)− 2µB(rs)j, (degν)G (r) + (degν)G (s)− 2νB(rs)j).
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2. The total degree of an edge rs ∈ V × V is represented by DG (rs) and defined as
tDG ((rs)) = ((degµ)G (r) + (degµ)G (s)− µB(rs)j, (degν)G (r) + (degν)G (s)− νB(rs)j),

where (rs)j is the jth edge between r and s.

Definition 6. A Pythagorean fuzzy multigraph G is known as edge regular, if the degree of membership and
nonmembership values of all edges in G are equal.

Example 3. In Example 1, the degree of edges are
DG (r1r2) = (0.95, 3.8), DG (r2r3) = (1.1, 4.25), DG (r3r4) = (1.55, 5.3), DG (r3r4) = (1.55, 5.4),
DG (r2r4) = (1.85, 6.25), DG (r2r4) = (1.65, 6.25), DG (r1r4) = (0.95, 4.1), DG (r1r4) = (0.75, 4.1),

whereas the total degree of edges are
tDG (r1r2) = (1.15, 4.7), tDG (r2r3) = (1.25, 4.7), tDG (r3r4) = (1.85, 6.1), tDG (r3r4) = (1.85, 6.15),
tDG (r2r4) = (1.95, 7.15), tDG (r2r4) = (1.85, 7.15), tDG (r1r4) = (1.15, 4.8), tDG (r1r4) = (1.05, 4.85).

In addition, G is not an edge regular Pythagorean multigraph as degree of the membership and nonmembership
values are not the same.

Theorem 1. Let G = (A , B) be a Pythagorean fuzzy multigraph. If G is regular and edge regular Pythagorean
fuzzy multigraph, then the membership values µB(rs)j and nonmembership values νB(rs)j for each edge
rs ∈ V × V are constant.

Proof. Let G = (A , B) be a Pythagorean fuzzy multigraph. Assume that G is regular and edge regular
Pythagorean fuzzy multigraph, then there exist constants p1, p2 and q1, q2, respectively, such that, for
each vertex,

degG (r) = ((degµ)G (r), (degν)G (r)) = (p1, p2).

For each edge rs ∈ V × V ,

DG (rs) = ((Dµ)G (rs), (Dν)G (rs))

= ((degµ)G (r) + (degµ)G (s)− 2µB(rs)j, (degν)G (r) + (degν)G (s)− 2νB(rs)j)

= (q1, q2).

Hence, for the membership and nonmembership values,

p1 + p1 − 2µB(rs)j = 2q1,

2p1 − 2µB(rs)j = 2q1,

2p1 − 2q1 = 2µB(rs)j,

p1 − q1 = µB(rs)j,

p2 + p2 − 2µB(rs)j = 2q2,

2p2 − 2µB(rs)j = 2q2,

2p2 − 2q2 = 2µB(rs)j,

p2 − q2 = µB(rs)j.

Thus, we conclude that the membership and nonmembership values of a regular Pythagorean
fuzzy multigraph with edge regular are constant.
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Theorem 2. Let G = (A , B) be a Pythagorean fuzzy multigraph on a crisp graph G ∗ = (V , E ). If G ∗ is
p-regular multigraph, µB(rs)j and νB(rs)j are constant for each edge rs ∈ V × V , then G is regular and edge
regular Pythagorean fuzzy multigraph.

Proof. Assume that G ∗ = (V , E ) is a p - regular multigraph. Let µB(rs)j = q1 and νB(rs)j = q2. Then,
for each vertex r ∈ V ,

degG (r) = ((degµ)G (r), (degν)G (r))

= (∑
s 6=r

µB(rs)j, ∑
y 6=r

νB(rs)j)

= (p× q1, p× q2)

= (∑
r 6=y

µB(sr)j, ∑
r 6=s

νB(sr)j)

= ((degµ)G (s), (degν)G (s))

= degG (s).

For each edge rs ∈ V × V ,

DG (rs) = ((Dµ)G (rs), (Dν)G (rs))

= ((degµ)G (r) + (degµ)G (s)− 2µB(rs)j, (degν)G (r) + (degν)G (s)− 2νB(rs)j)

= ((p× q1) + (p× q1)− 2(q1), (p× q2) + (p× q2)− 2(q2))

= (2q1(p− 1), 2q2(p− 1)).

Hence, G is regular and edge regular Pythagorean fuzzy multigraph.

Definition 7. Let B = {(rs, µB(rs)j, νB(rs)j), j = 1, 2, . . . , n | rs ∈ V × V } be a PF multiedge set in PFMG
G . A multiedge rs of G is said to be strong if

µB(rs)j ≥
1
2
{µA (r)∧ µA (s)},

νB(rs)j ≤
1
2
{νA (r)∨ νA (s)},

∀j = 1, 2, . . . , n.

Example 4. In Example 1, (µB(r2r3), νB(r2r3)) is a strong edge as

0.15 >
1
2
{0.6∧ 0.2} and 0.45 =

1
2
{0.5∨ 0.9}.

Definition 8. Let B = {(rs, µB(rs)j, νB(rs)j), j = 1, 2, . . . , n | rs ∈ V × V } be a PF multiedge set in PFMG
G . A multiedge rs of G is said to be effective if

µB(rs)j = {µA (r)∧ µA (s)},

νB(rs)j = {νA (r)∨ νA (s)},

where j is fixed integer.

Example 5. In Example 1, (µB(r1r2), νB(r1r2)) is an effective edge as

0.2 = {0.4∧ 0.2} and 0.9 = {0.7∨ 0.9}.



Mathematics 2018, 6, 278 7 of 28

Definition 9. Let G = (A , B) be a Pythagorean fuzzy multigraph and B = {(rs, µB(rs)j, νB(rs)j),
j = 1, 2, . . . , n | rs ∈ V × V } be a Pythagorean fuzzy multiedge set. A PFMG G is said to be complete if

µB(rs)j = {µA (r)∧ µA (s)},

νB(rs)j = {νA (r)∨ νA (s)},

∀j = 1, 2, . . . , n and ∀r, s ∈ V .

Example 6. Consider a multigraph G ∗ = (V , E ) where V = {r1, r2, r3, r4} and E =
{r1r2, r1r4, r1r4, r1r3, r2r3, r2r4, r3r4}. Let A and B be Pythagorean fuzzy vertex set and Pythagorean fuzzy
multiedge set defined on V and V × V , respectively.

A =
〈(

r1

0.8
,

r2

0.55
,

r3

0.35
,

r4

0.55

)
,
(

r1

0.6
,

r2

0.6
,

r3

0.8
,

r4

0.7

)〉
and

B =
〈(

r1r2

0.55
,

r1r4

0.55
,

r1r4

0.55
,

r1r3

0.35
,

r2r3

0.35
,

r2r4

0.55
,

r3r4

0.35

)
,
(

r1r2

0.6
,

r1r4

0.7
,

r1r4

0.7
,

r1r3

0.8
,

r2r3

0.8
,

r2r4

0.7
,

r3r4

0.8

)〉
.

Directly, one can see from Figure 3 that it is a complete Pythagorean fuzzy multigraph.

Definition 2.7. Let B = {(rs, µB(rs)j, νB(rs)j), j = 1, 2, . . . , n | rs ∈ V × V } be a PF multiedge
set in PFMG G . A multiedge rs of G is said to be strong if

µB(rs)j ≥
1

2
{µA (r) ∧ µA (s)},

νB(rs)j ≤
1

2
{νA (r) ∨ νA (s)}

∀j = 1, 2, . . . , n.161

Example 2.4. In Example ??, (µB(r2r3), νB(r2r3)) is a strong edge as

0.15 >
1

2
{0.6 ∧ 0.2} and 0.45 =

1

2
{0.5 ∨ 0.9}.

Definition 2.8. Let B = {(rs, µB(rs)j, νB(rs)j), j = 1, 2, . . . , n | rs ∈ V × V } be a PF multiedge
set in PFMG G . A multiedge rs of G is said to be effective if

µB(rs)j = {µA (r) ∧ µA (s)},
νB(rs)j = {νA (r) ∨ νA (s)}

where j is fixed integer.162

Example 2.5. In Example ??, (µB(r1r2), νB(r1r2)) is a effective edge as

0.2 = {0.4 ∧ 0.2} and 0.9 = {0.7 ∨ 0.9}.
Definition 2.9. Let G = (A ,B) be a Pythagorean fuzzy multigraph and B = {(rs, µB(rs)j , νB(rs)j),
j = 1, 2, . . . , n | rs ∈ V ×V } be a Pythagorean fuzzy multiedge set. A PFMG G is said to be complete if

µB(rs)j = {µA (r) ∧ µA (s)},
νB(rs)j = {νA (r) ∨ νA (s)}

∀j = 1, 2, . . . , n and ∀r, s ∈ V .163

Example 2.6. Consider a multigraph G ∗ = (V ,E ) where V = {r1, r2, r3, r4} and E =164

{r1r2, r1r4, r1r4, r1r3, r2r3, r2r4, r3r4}. Let A and B be Pythagorean fuzzy vertex set and Pythagorean165

fuzzy multiedge set defined on V and V × V , respectively.166

A =

〈(
r1
0.8

,
r2
0.55

,
r3
0.35

,
r4
0.55

)
,

(
r1
0.6

,
r2
0.6

,
r3
0.8

,
r4
0.7

)〉
and167

B =

〈(
r1r2
0.55

,
r1r4
0.55

,
r1r4
0.55

,
r1r3
0.35

,
r2r3
0.35

,
r2r4
0.55

,
r3r4
0.35

)
,

(
r1r2
0.6

,
r1r4
0.7

,
r1r4
0.7

,
r1r3
0.8

,
r2r3
0.8

,
r2r4
0.7

,
r3r4
0.8

)〉
.168

b

b

b

b

r1
(0.8, 0.6)

r2
(0.55, 0.6)

r3
(0.35, 0.8)

r4
(0.55, 0.7)

(0
.3
5,
0.
8)

(0.35, 0.8)

(0.55, 0.6)

(0
.5
5,
0.
7)

(0
.5
5,
0.
7)

(0.35, 0.8)

(0.55,
0.7)

Figure 2.2: Complete Pythagorean fuzzy multigraph

7

Figure 3. Complete Pythagorean fuzzy multigraph.

3. Pythagorean Fuzzy Planar Graphs

In planar graph, the intersection between edges is not acceptable. However, in this section,
we determine a Pythagorean fuzzy planar graph in an interesting manner with a parameter
called ‘Pythagorean fuzzy Planarity’. Planarity is an amount that measures how much a graph
is planar. It is very useful in connecting different networking models, structuring websites containing
many pages, designing electronic chip, etc. Sometimes, crossing between edges can not be avoided so
for this purpose we only consider minimum number of crossing. Hence, Pythagorean fuzzy planar
graphs are important for these kinds of connections.

Some correlated terms are discussed below before going to the main definition.

Definition 10. The strength of the Pythagorean fuzzy edge rs is defined as

Srs = (Mrs, Nrs) =
(

µB(rs)j

µA (r)∧ µA (s)
,

νB(rs)j

νA (r)∨ νA (s)

)
.

An edge rs of PFMG is known as strong if Mrs ≥ 0.5 and Nrs ≤ 0.5 otherwise, known as weak.

Example 7. Consider a multigraph G ∗ = (V , E ), where V = {r1, r2, r3} and E = {r1r2, r1r2, r2r3, r2r3, r1r3}.
Let A and B be PF vertex set and PF multiedge set defined on V and V × V , respectively.

A =
〈(

r1

0.4
,

r2

0.7
,

r3

0.25

)
,
(

r1

0.65
,

r2

0.35
,

r3

0.8

)〉
and

B =
〈(

r1r2

0.4
,

r1r2

0.4
,

r2r3

0.15
,

r2r3

0.2
,

r1r3

0.2

)
,
(

r1r2

0.6
,

r1r2

0.3
,

r2r3

0.8
,

r2r3

0.75
,

r1r3

0.8

)〉
.
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The PFMG as shown in Figure 4 have edges (r1r3, 0.2, 0.8), (r1r2, 0.4, 0.6), (r1r2, 0.4, 0.3), (r2r3, 0.2, 0.75)
and (r2r3, 0.15, 0.8) with strength Sr1r3 = (0.8, 1), Sr1r2 = (1, 0.92), Sr1r2 = (1, 0.46), Sr2r3 = (0.8, 0.93) and
Sr2r3 = (0.6, 1), respectively. Since Sr1r2 = (1 > 0.5, 0.46 < 0.5), hence edge r1r2 is strong and the others
are weak.

Directly, one can see from Figure ?? that it is a complete Pythagorean fuzzy multigraph.169

3 Pythagorean Fuzzy Planar Graphs170

In planar graph, intersection between edges is not acceptable. But in this section, we determine171

Pythagorean fuzzy planar graph in an interesting manner with a parameter called ‘Pythagorean172

fuzzy Planarity’. Planarity is an amount that measure how much a graph is planar. It is very use-173

ful in connecting different networking models, structuring websites containing many pages, designing174

electronic chip etc. Sometimes, crossing between edges can not be avoided so for this purpose we only175

consider minimum number of crossing. Hence, Pythagorean fuzzy planar graphs are important for176

this kind of connections.177

178

Some correlated terms are discussed below before going to main definition.179

Definition 3.1. The strength of the Pythagorean fuzzy edge rs is defined as

Srs = (Mrs,Nrs) =

(
µB(rs)j

µA (r) ∧ µA (s)
,

νB(rs)j
νA (r) ∨ νA (s)

)
.

An edge rs of PFMG is known as strong if Mrs ≥ 0.5 and Nrs ≤ 0.5 otherwise, known as weak.180

Example 3.1. Consider a multigraph G ∗ = (V ,E ) where V = {r1, r2, r3} and E = {r1r2, r1r2, r2r3,181

r2r3, r1r3}. Let A and B be PF vertex set and PF multiedge set defined on V and V ×V , respectively.182

A =

〈(
r1
0.4

,
r2
0.7

,
r3
0.25

)
,

(
r1
0.65

,
r2
0.35

,
r3
0.8

)〉
and183

B =

〈(
r1r2
0.4

,
r1r2
0.4

,
r2r3
0.15

,
r2r3
0.2

,
r1r3
0.2

)
,

(
r1r2
0.6

,
r1r2
0.3

,
r2r3
0.8

,
r2r3
0.75

,
r1r3
0.8

)〉
.184

b

b

b
r3

(0.2
5, 0

.8)

r
1

(0.4, 0.65)

(0
.4,

0.3
)

(0.
4, 0

.6)

(0
.2
, 0

.7
5
)

(0
.1
5
, 0
.8
)

r2
(0.7, 0.35)

(0.2, 0.8)

Figure 3.1: Pythagorean fuzzy multigraph

The PFMG as shown in Figure ??, have edges (r1r3, 0.2, 0.8), (r1r2, 0.4, 0.6), (r1r2, 0.4, 0.3), (r2r3, 0.2,185

0.75) and (r2r3, 0.15, 0.8) with strength Sr1r3 = (0.8, 1), Sr1r2 = (1, 0.92), Sr1r2 = (1, 0.46), Sr2r3 =186

(0.8, 0.93) and Sr2r3 = (0.6, 1), respectively. Since Sr1r2 = (1 > 0.5, 0.46 < 0.5), hence edge r1r2 is187

strong and other are weak.188

Definition 3.2. Let G = (A ,B) be a Pythagorean fuzzy multigraph, where B contain two edges
(uv, µB(uv)j , νB(uv)j) and (rs, µB(rs)k, νB(rs)k) intersecting at a point C (j and k are fixed inte-
gers). The intersecting value at the point (or cut point) C can be obtained as

8

Figure 4. Pythagorean fuzzy multigraph.

Definition 11. Let G = (A , B) be a Pythagorean fuzzy multigraph, where B contain two edges
(uv, µB(uv)j, νB(uv)j) and (rs, µB(rs)k , νB(rs)k) intersecting at a point C (j and k are fixed integers).
The intersecting value at the point (or cut point) C can be obtained as

SC = (MC , NC ) =
(

Muv + Mrs

2
,
Nuv + Nrs

2

)
.

In Pythagorean fuzzy multigraph, SC is inversely proportional to planarity i.e., if the number of points of
intersections increases, planarity decreases.

Definition 12. Let G be a Pythagorean fuzzy multigraph. Let C1,C2,. . . ,Ck be the crossing points between the
edges for geometric insight. Then, G is known as Pythagorean fuzzy planar graph with Pythagorean fuzzy
planarity value F , defined as

F = (FM , FN ) =
(

1
1 + {MC1

+ MC2 + . . . + MCk
} ,

1
1 + {NC1

+ NC2 + . . . + NCk
}

)
.

It is clear that F = (FM , FN ) is bounded and 0 < FM ≤ 1, 0 < FN ≤ 1. If geometric representation of
a PFPG has no intersecting point, then its Pythagorean fuzzy planarity value is considered as (1, 1) with the
underlying crisp graph as a crisp planar graph.

Remark 1. Every Pythagorean fuzzy graph is a PFPG with some definite planarity value.

Example 8. Consider a multigraph G ∗ = (V , E ), where V = {r1, r2, r3, r4, r5, r6} and E =
{r1r2, r1r6, r1r4, r2r5, r2r5, r2r3, r3r4, r3r6, r4r5, r6r5}. Let A and B be the PF vertex set and PF multiedge set
defined on V and V × V , respectively.

A =
〈(

r1

0.75
,

r2

0.6
,

r3

0.85
,

r4

0.9
,

r5

0.45
,

r6

0.2

)
,
(

r1

0.45
,

r2

0.55
,

r3

0.3
,

r4

0.4
,

r5

0.69
,

r6

0.85

)〉
and

B =
〈(

r1r2

0.6
,

r1r6

0.2
,

r1r4

0.6
,

r2r5

0.45
,

r2r5

0.3
,

r2r3

0.5
,

r3r4

0.8
,

r5r6

0.1
,

r4r5

0.4
,

r3r6

0.2

)
,

(
r1r2

0.5
,

r1r6

0.7
,

r1r4

0.4
,

r2r5

0.3
,

r2r5

0.6
,

r2r3

0.5
,

r3r4

0.4
,

r5r6

0.7
,

r4r5

0.69
,

r3r6

0.6

)〉
.
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There are two crossings C1 and C2 in PFMG as shown in Figure 5. C1 is the crossing between the edges
(r2r5, 0.45, 0.3) and (r3r6, 0.2, 0.6) and C2 is the crossing between the edges (r2r5, 0.3, 0.6) and (r3r6, 0.2, 0.5).
For the edges (r2r5, 0.45, 0.3), (r3r6, 0.2, 0.6) and (r2r5, 0.3, 0.6), the strength is Sr2r5 = (1, 0.43),
Sr3r6 = (1, 0.71) and Sr2r5 = (0.67, 0.86), respectively.

The intersecting value of the first crossing is SC1
= (1, 0.57) and for the second crossing is SC2 = (0.83, 0.79).

Hence, the Pythagorean fuzzy planarity value for PFMG is F = (0.35, 0.42).

SC = (MC ,NC ) =

(
Muv + Mrs

2
,
Nuv + Nrs

2

)
.

189

In Pythagorean fuzzy multigraph, SC is inversely proportional to planarity i.e. if number of points of190

intersections increases, planarity decreases.191

Definition 3.3. Let G be a Pythagorean fuzzy multigraph. Let C1,C2,. . . ,Ck be the crossing points
between the edges for geometric insight. Then G is known as Pythagorean fuzzy planar graph with
Pythagorean fuzzy planarity value F , defined as

F = (FM ,FN ) =

(
1

1 + {MC1 + MC2 + . . .+ MCk
} ,

1

1 + {NC1 + NC2 + . . .+ NCk
}

)
.

It is clear, F = (FM ,FN ) is bounded and 0 < FM ≤ 1, 0 < FN ≤ 1. If geometric representation192

of a PFPG has no intersecting point then its Pythagorean fuzzy planarity value is consider as (1, 1)193

with the underlying crisp graph as crisp planar graph.194

Remark 3.1. Every Pythagorean fuzzy graph is a PFPG with some definite planarity value.195

Example 3.2. Consider a multigraph G ∗ = (V ,E ) where V = {r1, r2, r3, r4, r5, r6} and E =196

{r1r2, r1r6, r1r4, r2r5, r2r5, r2r3, r3r4, r3r6, r4r5, r6r5}. Let A and B be PF vertex set and PF multiedge197

set defined on V and V × V , respectively.198

A =

〈(
r1
0.75

,
r2
0.6

,
r3
0.85

,
r4
0.9

,
r5
0.45

,
r6
0.2

)
,

(
r1
0.45

,
r2
0.55

,
r3
0.3

,
r4
0.4

,
r5
0.69

,
r6
0.85

)〉
and199

B =

〈(
r1r2
0.6

,
r1r6
0.2

,
r1r4
0.6

,
r2r5
0.45

,
r2r5
0.3

,
r2r3
0.5

,
r3r4
0.8

,
r5r6
0.1

,
r4r5
0.4

,
r3r6
0.2

)
,

(
r1r2
0.5

,
r1r6
0.7

,
r1r4
0.4

,
r2r5
0.3

,
r2r5
0.6

,
r2r3
0.5

,
r3r4
0.4

,
r5r6
0.7

,
r4r5
0.69

,
r3r6
0.6

)〉
.

b b

b

b b

b

r1
(0.75, 0.45)

r2
(0.6, 0.55)(0.6, 0.5)

(0.5, 0.5)

r3
(0.85, 0.3)

r4
(0.9, 0.4)

(0.6, 0.4)

(0.4, 0.69)r5
(0.45, 0.69)

r6
(0.2, 0.85)

(0.1, 0.7)

(0.2, 0.6)

(0
.3
, 0
.6
)

(0
.4
5,
0.
3)

(0
.2
, 0
.7
)

C1 C2

(0
.8
, 0
.4
)

Figure 3.2: Pythagorean fuzzy planar graph

There are two crossings C1 and C2 in PFMG as shown in Figure ??. C1 is the crossing between200

the edges (r2r5, 0.45, 0.3) and (r3r6, 0.2, 0.6) and C2 is the crossing between the edges (r2r5, 0.3, 0.6)201

9

Figure 5. Pythagorean fuzzy planar graph.

Theorem 3. Let G be a Pythagorean fuzzy multigraph with an effective intersecting edge. Then, Pythagorean
fuzzy planarity value F = (FM , FN ) of G is stated as

F = (FM , FN ) =
(

1
1 + mC

,
1

1 + mC

)
,

where F 2
M + F 2

N ≤ 1 and mC is the quantity of crossing between the edges in G .

Proof. Assume that G is a PFMG with an effective intersecting edge that is

µB(rs)j = {µA (r)∧ µA (s)},

νB(rs)j = {νA (r)∨ νA (s)}.

Let C1,C2,. . . ,Ck be the crossings between the edges in G where k is an integer. For each crossing
edge rs in G ,

Srs = (Mrs, Nrs) =
(

µB(rs)j

µA (r)∧ µA (s)
,

νB(rs)j

νA (r)∨ νA (s)

)
= (1, 1).

Therefore, the point of intersection C1 between the edges uv and rs,

SC1
= (MC1

, NC1
) =
(

Muv + Mrs

2
,
Nuv + Nrs

2

)
= (

1 + 1
2

,
1 + 1

2
) = (1, 1).
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Hence, SCj
= (1, 1) for j = 1, 2, . . . , k. Now, Planarity value of PFMG is

F = (FM , FN ),

=
(

1
1 + {MC1

+ MC2 + . . . + MCk
} ,

1
1 + {NC1

+ NC2 + . . . + NCk
}

)
,

=
(

1
1 + {1 + 1 + . . . + 1} ,

1
1 + {1 + 1 + . . . + 1}

)
,

=
(

1
1 + mC

,
1

1 + mC

)

such that F 2
M + F 2

N ≤ 1 and mC is the quantity of crossings between the edges in G .

Definition 13. A Pythagorean fuzzy planar graph G is said to be strong if Pythagorean fuzzy planarity value
F = (FM , FN ) of the graph G is such that FM > 0.5 and FN < 0.86.

Example 9. In Example 8, the PFPG G has PF planarity value F = (FM , FN ) = (0.35, 0.42). Hence, G is
not strong.

Theorem 4. If G is a strong Pythagorean fuzzy planar graph, then there is at most one crossing between
strong edges.

Proof. Assume that G is a strong Pythagorean fuzzy planar graph. Suppose, on the contrary, G

contains at least two crossings C1 and C2 between the strong edges. Then, for any strong edge
(rs, µB(rs), νB(rs)),

µB(rs)j ≥
1
2
{µA (r)∧ µA (s)},

νB(rs)j ≤
1
2
{νA (r)∨ νA (s)}.

As G is strong PFPG, thus Mrs ≥ 0.5 and Nrs ≤ 0.5. Thus, if two strong edges (rs, µB(rs), νB(rs))
and (uv, µB(uv), νB(uv)) intersect, then

Muv+Mrs
2 ≥ 0.5 and Nuv+Nrs

2 ≤ 0.5.

That is, MC1
≥ 0.5 and NC1

≤ 0.5. Similarly, MC2 ≥ 0.5 and NC2 ≤ 0.5. This implies that
1 + MC1

+ MC2 ≥ 2 and 1 + NC1
+ NC2 ≤ 2. Therefore, FM = 1

1+MC1
+MC2

≤ 0.5 and FN =
1

1+NC1
+NC2

≥ 0.5.—a contradiction because G is strong PFPG such that FM > 0.5 and FN < 0.86.

Thus, the crossings between two strong edges can not be two. Likewise, if the number of crossings
between strong edges is one, then 1 + MC1

≥ 1.5 and 1 + NC1
≤ 1.5. Therefore, FM = 1

1+MC1
≤ 0.67

and FN = 1
1+NC1

≥ 0.67. Since G is strong, thus Pythagorean fuzzy planarity value for one point of

intersection ranges from 0.5 < FM ≤ 0.67 and 0.86 > FN ≥ 0.67. Hence, any PFPG without crossing
is a strong PFPG. Therefore, we deduce that the maximum number of crossings between strong edges
is one.

Furthermore, the validity of the above theorem is checked in the example given below.

Example 10. Consider two strong Pythagorean fuzzy planar graphs G1 = (A1, B1) and G2 = (A2, B2). Let A1

and B1 be PF vertex set and PF multiedge set defined on V and V × V , respectively, as shown in Figure 6

A1 =
〈(

r1

0.5
,

r2

0.8
,

r3

0.9
,

r4

0.6
,

r5

0.7
,

r6

0.6

)
,
(

r1

0.7
,

r2

0.4
,

r3

0.2
,

r4

0.6
,

r5

0.4
,

r6

0.5

)〉
and
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B1 =
〈(

r1r2

0.45
,

r1r5

0.45
,

r1r5

0.44
,

r3r6

0.5
,

r2r3

0.7
,

r1r6

0.5
,

r2r4

0.45
,

r3r5

0.65
,

r4r5

0.5

)
,

(
r1r2

0.2
,

r1r5

0.32
,

r1r5

0.33
,

r3r6

0.2
,

r2r3

0.19
,

r1r6

0.35
,

r2r4

0.25
,

r3r5

0.15
,

r4r5

0.15

)〉
.

In addition, let A2 and B2 be PF vertex set and PF multiedge set defined on V and V × V , respectively,
as shown in Figure 7

A1 =
〈(

r1

0.5
,

r2

0.8
,

r3

0.9
,

r4

0.6
,

r5

0.7
,

r6

0.6

)
,
(

r1

0.7
,

r2

0.4
,

r3

0.2
,

r4

0.6
,

r5

0.4
,

r6

0.5

)〉
and

B1 =
〈(

r1r2

0.45
,

r1r5

0.45
,

r1r5

0.44
,

r3r6

0.5
,

r2r3

0.7
,

r1r6

0.5
r2r4

0.45
,

r3r5

0.65
,

r4r5

0.5
,

r2r6

0.56

)
,

(
r1r2

0.2
,

r1r5

0.32
,

r1r5

0.33
,

r3r6

0.2
,

r2r3

0.19
,

r1r6

0.35
,

r2r4

0.25
,

r3r5

0.15
,

r4r5

0.15
,

r2r6

0.24

)〉
.

b b

b b

r1
(0.5, 0.7)

r2
(0.8, 0.4)

(0.45, 0.2)
(0.45, 0.32)

r3

r4
(0.6, 0.6)

(0
.6
5,
0.
15
)

(0
.5
, 0

.3
5
)

(0.6, 0.5) r5
(0.7, 0.4)

r6

(0.9, 0.2)

(0.
5,
0.2

)

(0
.4
4,
0.
33
)

b

b(0.5, 0.15)

(0.7, 0.19)

(0
.4
5
, 0
.2
5
)

C1

Figure 3.3: PFPG with one crossing

And let A2 and B2 be PF vertex set and PF multiedge set defined on V and V × V , respectively, as236

shown in Figure ??237

A1 =

〈(
r1
0.5

,
r2
0.8

,
r3
0.9

,
r4
0.6

,
r5
0.7

,
r6
0.6

)
,

(
r1
0.7

,
r2
0.4

,
r3
0.2

,
r4
0.6

,
r5
0.4

,
r6
0.5

)〉
and238

B1 =

〈(
r1r2
0.45

,
r1r5
0.45

,
r1r5
0.44

,
r3r6
0.5

,
r2r3
0.7

,
r1r6
0.5

r2r4
0.45

,
r3r5
0.65

,
r4r5
0.5

,
r2r6
0.56

)
,

(
r1r2
0.2

,
r1r5
0.32

,
r1r5
0.33

,
r3r6
0.2

,
r2r3
0.19

,
r1r6
0.35

,
r2r4
0.25

,
r3r5
0.15

,
r4r5
0.15

,
r2r6
0.24

)〉
.

b b

b b

r1
(0.5, 0.7)

r2
(0.8, 0.4)

(0.45, 0.2)

(0.45, 0.32)

r3

r4
(0.6, 0.6)

(0
.6
5,
0.
15
)

(0
.5
, 0

.3
5
)

(0.6, 0.5) r5
(0.7, 0.4)

r6

(0.9, 0.2)

(0.
5,
0.2

)

(0
.4
4,
0.
33
)

b

b(0.5, 0.15)

(0.7, 0.19)

(0
.4
5
, 0
.2
5
)

C1

C2
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Figure 7. PFPG with two crossings.

A Pythagorean fuzzy planar graph G1 and G2 with one and two crossing between strong edges
(r1r5, 0.45, 0.32), (r3r6, 0.5, 0.2) and (r1r5, 0.45, 0.32), (r2r6, 0.56, 0.24) have Pythagorean fuzzy planarity
value F1 = (0.53, 0.70) and F2 = (0.36, 0.53) that satisfies FM1

≤ 0.67, FN1
≥ 0.67 and FM2 ≤ 0.5,
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FN2 ≥ 0.5, respectively. Moreover, it is easy to see that, between strong edges, if there is no intersection, then
PF planarity value FM > 0.67 and FN < 0.74. Hence, this analysis and the two examples above justify the
statement of Theorem 4.

A fundamental theorem of PFPG is as follows.

Theorem 5. If G has Pythagorean fuzzy planarity value F = (FM , FN ) such that FM > 0.67 and
FN < 0.74, then, between the strong edges of PFPG G , there is no crossing.

Proof. Assume that G is a PFPG with PF planarity value FM > 0.67 and FN < 0.74. Suppose, on
the contrary, G has crossing C1 between two strong edges (uv, µB(uv), νB(uv)) and (rs, µB(rs), νB(rs)).
For any strong edge,

µB(rs)j ≥
1
2
{µA (r)∧ µA (s)},

νB(rs)j ≤
1
2
{νA (r)∨ νA (s)}.

That means, Mrs ≥ 0.5, Nrs ≤ 0.5. Likewise, Muv ≥ 0.5, Nuv ≤ 0.5. Furthermore, for the
minimum value of Mrs, Muv and maximum value of Nrs, Nuv,

SC1
=
(

Mrs + Muv

2
,
Nrs + Nuv

2

)
= (

0.5 + 0.5
2

,
0.5 + 0.5

2
) = (0.5, 0.5).

Therefore, FM = 1
1+MC1

≤ 0.67, FN = 1
1+NC1

≥ 0.67—a contradiction; thus, between the strong

edges of G , there is no crossing.

To design any type of networking model, the strength of a Pythagorean fuzzy edge plays a vital
role. For such networking designs, the edge with minimum strength is not as useful as the edge
with maximum strength. Hence, the edge with maximum strength is called the considerable edge.
The standard definition is stated below.

Definition 14. Let G be a Pythagorean fuzzy graph. An edge rs in G is known as considerable if

µB(rs)j
µA (r)∧µA (s) ≥ C and

νB(rs)j
νA (r)∨νA (s) ≤ C ,

whereas 0 < C < 0.5 is a rational number. If an edge is not considerable, then it is known as a nonconsiderable
edge. Furthermore, an edge rs in Pythagorean fuzzy multigraph is considerable if Mrs ≥ C and Nrs ≤ C, for
each edge rs in G .

Remark 2. The rational number 0 < C < 0.5 is a pre-assigned value that may not be unique, as, for a distinct
value of C , one can acquire distinct sets of considerable edges, but it is countable. This rational number C is
called a considerable number of a Pythagorean fuzzy graph.

Theorem 6. If G is a strong PFPG with considerable number C, then, between considerable edges in G , there is
at most [ 1

C ](or 1
C − 1) crossings.

Proof. Assume that G = (A , B) is a strong PFPG and B = {(rs, µB(rs)j, νB(rs)j), j = 1, 2, . . . , n | r
s ∈ V × V }. Let C be considerable number and F = (FM , FN ) be the PF planarity value. Then, for
any considerable edge (rs, µB(rs), νB(rs)),

µB(rs)j ≥ C × {µA (r)∧ µA (s)},

νB(rs)j ≤ C × {νA (r)∨ νA (s)}.
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That is, Mrs ≥ C and Nrs ≤ C . Let C1,C2,. . . ,Cn be crossings between considerable edges.
Therefore, if two considerable edges (uv, µB(uv), νB(uv)) and (rs, µB(rs), νB(rs)) intersect, then

Muv+Mrs
2 ≥ C and Nuv+Nrs

2 ≤ C .

Thus, ∑n
j=1 MCj

≥ n× C and ∑n
j=1 NCj

≤ n× C. Hence, FM ≤ 1
1+nC and FN ≥ 1

1+nC . As G is

strong PFPG, 0.5 < FM ≤ 1
1+nC and 0.86 > FN ≥ 1

1+nC . Therefore, 0.5 < 1
1+nC , which implies that

n < 1
C . This inequality will be justified for some integral values n, obtained from following expression:

n =

{
1
C − 1, if 1

C is an integer,
[ 1
C ], if 1

C is not an integer.

4. Kuratowski’s Graphs and Pythagorean Fuzzy Planar Graphs

Kuratowski presented ‘Kuratowski’s Theorem’ in 1930, by using the concept of graph
homomorphism to characterize planar graphs. According to this theorem, a graph is planar if and only
if it does not contain kuratowski graph as a subgraph. A kuratowski graph is basically, a subdivision
of either a complete bipartite graph K3,3 or a complete graph with five vertices K5 where K3,3 and K5

are nonplanar as they cannot be drawn without intersection between edges. However, in this section,
we will see that nonplanar Pythagorean fuzzy graphs are Pythagorean fuzzy planar graphs with some
definite Pythagorean fuzzy planarity value.

Theorem 7. A Pythagorean fuzzy complete graph K5 or K3,3 is not a strong Pythagorean fuzzy planar graph.

Proof. Assume that G = (V , A , B) is a Pythagorean fuzzy complete graph with five vertices V =
{r, s, t, u, v} and B = {(rs, µB(rs), νB(rs))|rs ∈ V × V }. Since G is complete, then, for all r, s ∈ V ,

µB(rs) = {µA (r)∧ µA (s)},

νB(rs) = {νA (r)∨ νA (s)}.

The Pythagorean fuzzy planarity value of Pythagorean fuzzy complete graph is F = (FM , FN ) =(
1

1+mC
, 1

1+mC

)
, where mC is the number of crossings between edges in G .

Since the geometric insight of an underlying crisp graph of G is non planar and, for any

representation, one crossing can not be excluded. Therefore, F = (FM , FN ) =
(

1
1+1 , 1

1+1

)
= (0.5, 0.5).

As FM = 0.5, so G is not a strong Pythagorean fuzzy planar graph. Likewise, K3,3 has only one
crossing that cannot be avoided, so it is not a strong Pythagorean fuzzy planar graph.

Remark 3. A Pythagorean fuzzy planar graph with five vertices and each pair of vertices connected by an edge
may or may not be a strong Pythagorean fuzzy planar graph.

Example 11. Considering a PFPG as displayed in Figure 8, there is one crossing between two edges
(r1r4, 0.4, 0.34) and (r5r3, 0.5, 0.4). Then, the Pythagorean fuzzy planarity value (0.54, 0.61). Hence, it is
a strong PFPG.

Remark 4. A Pythagorean fuzzy bipartite planar graph with six vertices, partitioned into two subsets containing
three vertices each, is a strong Pythagorean fuzzy planar graph.

Example 12. Considering a PFPG as displayed in Figure 9, there is one crossing between two edges
(r1r5, 0.55, 0.3) and (r246, 0.6, 0.19). Then, the Pythagorean fuzzy planarity value (0.53, 0.65). Hence, it
is a strong PFPG.
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Figure 4.1: Pythagorean fuzzy planar graph with PF planarity (0.54,0.61)
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From Theorem ??, Remark ?? and Remark ??, it is concluded that a complete PFG is not a strong303

Pythagorean fuzzy planar graph whereas a complete PFPG may or may not be a strong Pythagorean304

fuzzy planar graph as justified in Example ?? and Example ??.305

15

Figure 9. Pythagorean fuzzy planar graph with PF planarity (0.53,0.65).

From Theorem 7, Remarks 3 and 4, it is concluded that a complete PFG is not a strong Pythagorean
fuzzy planar graph, whereas a complete PFPG may or may not be a strong Pythagorean fuzzy planar
graph as justified in Examples 11 and 12.

5. Pythagorean Fuzzy Face and Pythagorean Fuzzy Dual Graphs

In Pythagorean fuzzy sense, the face of a PFPG has a significant role. It is a flat surface, enclosed by
Pythagorean fuzzy edges. If all the edges in the surrounding of a Pythagorean fuzzy face have degree
of membership and nonmembership (1, 0), then it is known as crisp face. The Pythagorean fuzzy face
does not exist, if one of such edge is removed with degree of membership and nonmembership (0, 1).
Hence, the occurrence of Pythagorean fuzzy face based on the minimum strength of Pythagorean
fuzzy edge.

We consider Pythagorean fuzzy planar graph that do not carry any pair of intersecting edge.
That is, its planarity value is (1, 1) to define Pythagorean fuzzy face.

Definition 15. Let G = (A , B) be a PFPG with planarity (1, 1) and B =
{(rs, µB(rs)j, νB(rs)j), j = 1, 2, . . . , n | rs ∈ V × V }. A region enclosed by the Pythagorean fuzzy
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edge set E ′ ⊂ E of the geometrical representation of G is known as Pythagorean fuzzy face of G . The membership
and nonmembership value of Pythagorean fuzzy face are defined as

min
{

µB(rs)j

µA (r)∧ µA (s)
, j = 1, 2, . . . , n | rs ∈ E ′

}
,

max
{

νB(rs)j

νA (r)∨ νA (s)
, j = 1, 2, . . . , n | rs ∈ E ′

}
.

Definition 16. A Pythagorean fuzzy face is called strong if its membership value is greater than or equal to 0.5
and nonmembership is less than or equal to 0.5, otherwise weak. Moreover, an infinite region of PFPG is known
as outer Pythagorean fuzzy face, while others are known as inner Pythagorean fuzzy face.

Remark 5. Every Pythagorean strong fuzzy face has a membership value greater than or equal to 0.5 and
nonmembership less than or equal to 0.5. Thus, a strong Pythagorean fuzzy face has a strong Pythagorean
fuzzy edge.

Example 13. Consider a PFPG G as displayed in Figure 10. Let F1, F2, F3 and F4 be the Pythagorean
fuzzy faces:

• Pythagorean fuzzy inner face F1 is enclosed by the edges (r1r3, 0.4, 0.6), (r1r4, 0.4, 0.33), (r3r4, 0.52, 0.3).
• Pythagorean fuzzy inner face F2 is bounded by the strong edges (r1r4, 0.40, 0.33), (r1r2, 0.38, 0.38),

(r2r4, 0.49, 0.38).
• Pythagorean fuzzy inner face F3 is surrounded by the strong edges (r2r4, 0.49, 0.38), (r3r4, 0.52, 0.3),

(r2r3, 0.45, 0.31).
• Pythagorean fuzzy outer faceF4 is enclosed by the edges (r1r2, 0.38, 0.38),(r1r3, 0.4, 0.6),(r2r3, 0.45, 0.31).

The membership and nonmembership value of Pythagorean fuzzy faces F1, F2, F3 and F4 are (0.86, 0.85),
(1, 0.47), (0.86, 0.5) and (0.9, 0.85), respectively. Here, F1 and F4 are weak faces and F2 and F3 are strong
Pythagorean fuzzy faces.

5 Pythagorean Fuzzy Face and Pythagorean Fuzzy Dual Graphs306

In Pythagorean fuzzy sense, face of a PFPG has significant role. It is a flat surface, enclosed by307

Pythagorean fuzzy edges. If all the edges in the surrounding of a Pythagorean fuzzy face have degree308

of membership and nonmembership (1, 0), then it is known as crisp face. The Pythagorean fuzzy face309

does not exist, if one of such edge is removed with degree of membership and nonmembership (0, 1).310

Hence, the occurrence of Pythagorean fuzzy face based on the minimum strength of Pythagorean fuzzy311

edge.312

313

We consider Pythagorean fuzzy planar graph that do not carry any pair of intersecting edge. That is,314

its planarity value is (1, 1) to define Pythagorean fuzzy face.315

Definition 5.1. Let G = (A ,B) be a PFPG with planarity (1, 1) and B = {(rs, µB(rs)j , νB(rs)j), j =
1, 2, . . . , n | rs ∈ V ×V }. A region enclosed by the Pythagorean fuzzy edge set E ′ ⊂ E of the geometri-
cal representation of G is known as Pythagorean fuzzy face of G . The membership and nonmembership
value of Pythagorean fuzzy face are defined as

min

{
µB(rs)j

µA (r) ∧ µA (s)
, j = 1, 2, . . . , n | rs ∈ E ′

}
,

max

{
νB(rs)j

νA (r) ∨ νA (s)
, j = 1, 2, . . . , n | rs ∈ E ′

}
.

Definition 5.2. A Pythagorean fuzzy face is called strong if its membership value is greater than or316

equal to 0.5 and nonmembership is less than or equal to 0.5, otherwise weak. Moreover, an infinite317

region of PFPG is known as outer Pythagorean fuzzy face. While, other are known as inner Pythagorean318

fuzzy face.319

Remark 5.1. Every Pythagorean strong fuzzy face have membership value greater than or equal to320

0.5 and nonmembership less than or equal to 0.5. So, a strong Pythagorean fuzzy face has a strong321

Pythagorean fuzzy edge.322

Example 5.1. Consider a PFPG G as displayed in Figure ??. Let F1, F2, F3 and F4 be the323

Pythagorean fuzzy faces.324
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Figure 5.1: Faces in Pythagorean fuzzy planar graph
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Figure 10. Faces in Pythagorean fuzzy planar graph.

In graph theory, duality is very helpful in explaining various structures like drainage system of
basins, etc. It has been widely applied in computational geometry, design of integrated circuits and
mesh generation. A mathematician Whitney described planarity in terms of occurrence of dual graph
i.e., a graph is planar if and only it has a dual graph. This concept is very effective in solving many
critical problems. Motivated from this concept, we introduce a Pythagorean fuzzy dual graph of a
Pythagorean fuzzy planar graph.
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Definition 17. Let G = (A , B) be a PFPG where

B = {(rt, µB(rt)j, νB(rt)j), j = 1, 2, . . . , n | rt ∈ V × V }.

Let F1,F2,. . . ,Fk be strong Pythagorean fuzzy faces of G . Then, the Pythagorean fuzzy dual graph of G

is a PFPG G ′ = (V ′, A ′, B′), where V ′ = {rj, j = 1, 2, . . . , k} and the vertex rj of G ′ is taken for Fj
of G . Furthermore, the membership grades and nonmembership grades of vertices are given by mapping
A ′ = (µA ′ , νA ′ ) : V ′ → [0, 1]× [0, 1] such that

µA ′ (rj) = max{µB′ (pu)j, j = 1, 2, . . . , m|pu is an edge in the surrounding of strong PF face Fj},

νA ′ (rj) = min{νB′ (pu)j, j = 1, 2, . . . , m|pu is an edge in the surrounding of strong PF face Fj}.

Meanwhile, between two faces Fi and Fj of G , there may occur more than one common edge. Thus, between two
vertices, there may exist more than one edge ri and rj in PFDG G ′. The membership and nonmembership values
of Pythagorean fuzzy edges of PFDG are µB′ (rirj)s = µs

B(pu)i , νB′ (rirj)s = νs
B(pu)i where (pu)s is an edge in

the surrounding between strong PF faces Fi and Fj and s = 1, 2, . . . , l, is the number of common edges in the
surrounding of Fi and Fj.

The Pythagorean fuzzy dual graph G ′ of PFPG G has no crossing between edges for some definite
geometric representation; thus, it is PFPG of PF planarity (1, 1).

Example 14. Consider a PFPG G = (V , A , B) as displayed in Figure 11 such that V = {s1, s2, s3, s4, s5}.
Let A and B be a PF vertex set and PF edge set defined on V and V × V , respectively.

A =
〈(

s1

0.70
,

s2
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,
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0.15
,

s2s3

0.15
,

s4s5

0.15
,

s3s4

0.15
,

s3s5

0.15

)〉
.

A =

〈(
s1
0.70

,
s2
0.69

,
s3
0.35

,
s4
0.76

,
s5
0.79

)
,

(
s1
0.69

,
s2
0.55

,
s3
0.85

,
s4
0.55

,
s5
0.33

)〉
and353

B =

〈(
s1s2
0.60

,
s1s4
0.48

,
s2s4
0.60

,
s2s5
0.60

,
s2s3
0.30

,
s4s5
0.65

,
s3s4
0.30

,
s3s5
0.25

)
,

(
s1s2
0.15

,
s1s4
0.15

,
s2s4
0.15

,
s2s5
0.15

,
s2s3
0.15

,
s4s5
0.15

,
s3s4
0.15

,
s3s5
0.15

)〉
.
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b b
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b
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F2

F3F4

F5

Figure 5.2: Pythagorean fuzzy dual graph

The Pythagorean fuzzy faces of Pythagorean fuzzy planar graph are given below.354

355

• Pythagorean fuzzy face F1 is enclosed by the edges (s1s2, 0.60, 0.15),(s1s4, 0.48, 0.15),(s2s4, 0.60,356

0.15).357

• Pythagorean fuzzy face F2 is bounded by the edges (s2s4, 0.60, 0.15),(s2s5, 0.60, 0.15),(s4s5, 0.65,358

0.15).359

• Pythagorean fuzzy face F3 is surrounded by the edges (s2s3, 0.30, 0.15),(s2s5, 0.60, 0.15),(s3s5, 0.2360

5, 0.15).361

• Pythagorean fuzzy face F4 is bounded by the edges (s4s5, 0.65, 0.15),(s3s5, 0.25, 0.15),(s3s4, 0.30,362

0.15).363

• Pythagorean fuzzy face F5 is enclosed by the edges (s1s2, 0.60, 0.15),(s2s3, 0.30, 0.15),(s3s4, 0.30,364

0.15), (s1s4, 0.48, 0.15).365

By direct calculation, one can see that these five faces are strong Pythagorean fuzzy faces. We rep-366

resent the vertices of Pythagorean fuzzy dual graph (PFDG) by small white circles and the edges367

by dashed lines. For each strong Pythagorean fuzzy face (SPFF), we take a vertex for the PFDG.368

Therefore, the vertex set V ′ = {r1, r2, r3, r4, r5}, where the vertex rj is extracted parallel to the SPFF369

Fj , j = 1, 2, .., 5. Hence,370

371

18

Figure 11. Pythagorean fuzzy dual graph.

The Pythagorean fuzzy faces of a Pythagorean fuzzy planar graph are given below:
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• Pythagorean fuzzy face F1 is enclosed by the edges (s1s2, 0.60, 0.15),(s1s4, 0.48, 0.15),(s2s4, 0.60, 0.15).
• Pythagorean fuzzy face F2 is bounded by the edges (s2s4, 0.60, 0.15),(s2s5, 0.60, 0.15),(s4s5, 0.65, 0.15).
• Pythagorean fuzzy faceF3 is surrounded by the edges (s2s3, 0.30, 0.15),(s2s5, 0.60, 0.15),(s3s5, 0.25, 0.15).
• Pythagorean fuzzy face F4 is bounded by the edges (s4s5, 0.65, 0.15),(s3s5, 0.25, 0.15),(s3s4, 0.30, 0.15).
• Pythagorean fuzzy face F5 is enclosed by the edges (s1s2, 0.60, 0.15),(s2s3, 0.30, 0.15),(s3s4, 0.30, 0.15),

(s1s4, 0.48, 0.15).

By direct calculation, one can see that these five faces are strong Pythagorean fuzzy faces. We represent the vertices
of Pythagorean fuzzy dual graph (PFDG) by small white circles and the edges by dashed lines. For each strong
Pythagorean fuzzy face (SPFF), we take a vertex for the PFDG. Therefore, the vertex set V ′ = {r1, r2, r3, r4, r5},
where the vertex rj is extracted parallel to the SPFF Fj, j = 1, 2, .., 5. Hence,

µA ′ (r1) = max{0.60, 0.48, 0.60} = 0.60, νA ′ (r1) = min{0.15, 0.15, 0.15} = 0.15.
µA ′ (r2) = max{0.60, 0.60, 0.65} = 0.65, νA ′ (r2) = min{0.15, 0.15, 0.15} = 0.15.

µA ′ (r3) = max{0.30, 0.60, 0.20} = 0.60, νA ′ (r3) = min{0.15, 0.15, 0.15} = 0.15.
µA ′ (r4) = max{0.65, 0.25, 0.30} = 0.65, νA ′ (r4) = min{0.15, 0.15, 0.15} = 0.15.

µA ′ (r5) = max{0.60, 0.30, 0.30, 0.48} = 0.60, νA ′ (r5) = min{0.15, 0.15, 0.15.0.15} = 0.15.

There is one common edge bd between the faces F1 and F2 in G . Hence, there exists one edge between the vertices
r1 and r2 in PFDG of G . The membership grade and nonmembership grade of the edges of PFDG are obtained as

µB′ (r1r2) = µB(s2s4) = 0.60, νB′ (r1r2) = νB(s2s4) = 0.15.
µB′ (r2r4) = µB(s4s5) = 0.65, νB′ (r2r4) = νB(s4s5) = 0.15.
µB′ (r2r3) = µB(s2s5) = 0.60, νB′ (r2r3) = νB(s2s5) = 0.15.
µB′ (r3r4) = µB(s5s3) = 0.25, νB′ (r3r4) = νB(s5s3) = 0.15.
µB′ (r1r5) = µB(s1s2) = 0.60, νB′ (r1r5) = νB(s1s2) = 0.15.
µB′ (r3r5) = µB(s2s3) = 0.30, νB′ (r3r5) = νB(s2s3) = 0.15.
µB′ (r4r5) = µB(s4s3) = 0.30, νB′ (r4r5) = νB(s4s3) = 0.15.
µB′ (r1r5) = µB(s1s4) = 0.48, νB′ (r1r5) = νB(s1s4) = 0.15.

Thus, the Pythagorean fuzzy dual graph edge set is

B′ =
〈(

r1r2

0.60
,

r2r4

0.65
,

r2r3

0.60
,

r3r4

0.25
,

r1r5

0.60
,

r3r5

0.30
,

r4r5

0.30
,

r1r5

0.48

)
,

(
r1r2

0.15
,

r2r4

0.15
,

r2r3

0.15
,

r3r4

0.15
,

r1r5

0.15
,

r3r5

0.15
,

r4r5

0.15
,

r1r5

0.15

)〉
.

Hence, G ′ = (V ′, A ′, B′) is a PFDG of G = (V , A , B).

In the Pythagorean fuzzy dual graph, we will not consider weak edges. The following theorems
are given below.

Theorem 8. Let G be a Pythagorean fuzzy planar graph without weak edges, r strong faces, q Pythagorean
fuzzy edges and p vertices. Let G ′ be a Pythagorean fuzzy dual graph of G with r′ faces, q′ Pythagorean fuzzy
edges and p′ vertices, then p′ = r, q′ = q and r′ = p.

Proof. The proof is easily perceived by the definition of the Pythagorean fuzzy dual graph.

Theorem 9. Let G ′ be a Pythagorean fuzzy dual graph of PFPG G . The number of strong PF faces in G ′ is less
than or equal to the number of vertices of G .

Proof. Assume that G ′ is a PFDG of PFPG G with r′ strong PF faces and G has p vertices. Since G has
both weak and strong PF edges, and, to develop PFDG, weak PF edges are eliminated. Hence, if G

has some weak PF edges, then some vertices may have all its adjoining PF edges as weak PF edges.
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Suppose that such vertices are in number l. These vertices are not enclosed by any strong PF faces.
By eliminating these vertices and adjoining edges, the number of vertices become p− l. Moreover,
from Theorem 8, r′ = p− l. Hence, r′ ≤ p. This concludes that the number of strong PF faces in G ′ is
less than or equal to the number of vertices of G .

Example 15. The above statement is justified from Example 14, as one can see that the number of strong PF
faces in G ′ is 4, which is less than 5 (number of vertices of G ).

Theorem 10. If G ′ be a Pythagorean fuzzy dual graph of a PFPG G without weak edges. Then, the membership
grade and nonmembership grade of Pythagorean fuzzy edge of G ′ are equivalent to the membership grade and
nonmembership grade of Pythagorean fuzzy edge of G .

Proof. Let G be a PFPG without weak edges. The PFDG of G is G ′ in which there is no crossing between
any edges. Let F1,F2,. . . ,Fm be SPFF of G . By the definition of PF dual graph, the membership grade
and nonmembership grade of Pythagorean fuzzy edges of Pythagorean fuzzy dual graph are

µB′ (rirj)s = µs
B(pu)i , νB′ (rirj)s = νs

B(pu)i ,

where (pu)s is an edge in the surrounding between strong PF faces Fi and Fj. The common edges in
the surrounding between Fi and Fj are s in number, where s = 1, 2, . . . , l. The number of PF edges of
two PFGs G and G ′ are similar as G has no weak edges. Hence, for every Pythagorean fuzzy edge of G ,
there is a Pythagorean fuzzy edge in G ′ with similar membership grade and nonmembership grade.

6. Isomorphism between Pythagorean Fuzzy Planar Graphs

Isomorphism is a formal mapping that propagates knowledge and better understanding between
different graphs. It can be defined between complex models where the two models have equal division.
If there is isomorphism between two models such that the property of one is known and the other
is unknown. Then, due to isomorphism, we are able to know the property of an unknown model.
By using this concept, we define isomorphism between two Pythagorean fuzzy planar graphs.

Definition 18. An isomorphism F : G1 → G2 of two Pythagorean fuzzy planar graphs G1 and G2 is a bijective
mapping F : V1 → V2 that satisfies

1. µA1
(r) = µA2 (F(r)), νA1

(r) = νA2 (F(r)),
2. µB1

(rs) = µB2 (F(r)F(s)), νB1
(rs) = νB2 (F(r)F(s)),

for all r ∈ V1, rs ∈ E1.

Example 16. Consider two Pythagorean fuzzy planar graph G1 = (A1, B1) and G2 = (A2, B2) as shown in
Figure 12 such that

A1 =
〈(

r1

0.40
,

r2

0.7
,

r3

0.6
,

r4

0.3

)
,
(

r1

0.7
,

r2

0.3
,

r3

0.5
,

r4

0.8

)〉
and

B1 =
〈(

r1r3

0.3
,

r3r2

0.55
,

r2r4

0.25
,

r1r4

0.25
,

r3r4

0.3

)
,
(

r1r3

0.6
,

r3r2

0.5
,

r2r4

0.75
,

r1r4

0.70
,

r3r4

0.8

)〉
.

A2 =
〈(

s1

0.7
,

s2

0.6
,

s3

0.40
,

s4

0.3

)
,
(

s1

0.3
,

s2

0.5
,

s3

0.7
,

s4

0.8

)〉
and

B2 =
〈(

s1s2

0.55
,

s2s3

0.3
,

s3s4

0.25
,

s1s4

0.25
,

s2s4

0.3

)
,
(

s1s2

0.55
,

s2s3

0.6
,

s3s4

0.70
,

s1s4

0.75
,

s2s4

0.8

)〉
.

Since a mapping F : V1 → V2 defined by F(r1) = s3, F(r2) = s1, F(r3) = s2, F(r4) = s4 satisfies
µA1

(ri) = µA2(F(ri)), νA1
(ri) = νA2(F(ri)), µB1

(rirj) = µB2(F(ri)F(rj)), νB1
(rirj) = νB2(F(ri)F(rj)), for all

ri ∈ V1, rirj ∈ E1, where i, j = 1, 2, 3, 4. Therefore, G1 is isomorphic to G2.
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r1

(0.3, 0.8)

r3

r4

b

b

b b
r2(0.3, 0.6)

(0
.2
5,
0.
75
)

(0.4, 0.7) (0.7, 0.3)(0.6, 0.5)

(0
.3
,0

.8
)

(0.25, 0.7)

(0.55, 0.5)

(a) G1

s1

(0.3, 0.8)
s3s4

s2

(0
.3
, 0
.6
)

(0
.2
5,
0.
75
)

(0.4, 0.7)

(0.7, 0.3) (0.6, 0.5)

(0.
3,
0.8

)

(0.25, 0.7)

(0.55, 0.5)b b

b b

(b) G2

Figure 6.1: Pythagorean fuzzy planar graphs

Since, a mapping F : V1 → V2 defined by F (r1) = s3, F (r2) = s1, F (r3) = s2, F (r4) = s4 satisfies437

µA1(ri) = µA2(F (ri)), νA1(ri) = νA2(F (ri)), µB1(rirj) = µB2(F (ri)F (rj)), νB1(rirj) = νB2(F (ri)F (rj)),438

for all ri ∈ V1, rirj ∈ E1, where i, j = 1, 2, 3, 4. Therefore, G1 is isomorphic to G2.439

Definition 6.2. A weak isomorphism F : G1 → G2 of two Pythagorean fuzzy planar graphs G1 and G2440

is a bijective mapping F : V1 → V2 that satisfies441

1. F is homomorphism,442

2. µA1
(r) = µA2

(F (r)), νA1
(r) = νA2

(F (r)),443

for all r ∈ V1.444

Example 6.2. Consider two Pythagorean fuzzy planar graph G1 = (A1,B1) and G2 = (A2,B2) as445

shown in Figure ?? such that446

A1 =

〈(
r1
0.8

,
r2
0.7

,
r3
0.4

,
r4
0.5

,
r5
0.7

)
,

(
r1
0.3

,
r2
0.4

,
r3
0.8

,
r4
0.6

,
r5
0.5

)〉
and447

B1 =

〈(
r1r2
0.6

,
r2r3
0.3

,
r2r4
0.4

,
r3r4
0.2

,
r3r5
0.35

,
r4r5
0.4

,
r1r5
0.4

)
,

(
r1r2
0.4

,
r2r3
0.7

,
r2r4
0.6

,
r3r4
0.7

,
r3r5
0.8

,
r4r5
0.55

,
r1r5
0.5

)〉
.448

A2 =

〈(
s1
0.7

,
s2
0.8

,
s3
0.7

,
s4
0.5

,
s5
0.4

)
,

(
s1
0.4

,
s2
0.3

,
s3
0.5

,
s4
0.6

,
s5
0.8

)〉
and449

B2 =

〈(
s1s2
0.7

,
s2s3
0.5

,
s1s4
0.5

,
s3s4
0.5

,
s4s5
0.3

,
s3s5
0.39

,
s1s5
0.4

)
,

(
s1s2
0.35

,
s2s3
0.4

,
s1s4
0.5

,
s3s4
0.5

,
s4s5
0.6

,
s3s5
0.7

,
s1s5
0.69

)〉
.450

21

Figure 12. Pythagorean fuzzy planar graphs.

Definition 19. A weak isomorphism F : G1 → G2 of two Pythagorean fuzzy planar graphs G1 and G2 is a
bijective mapping F : V1 → V2 that satisfies

1. F is homomorphism,
2. µA1

(r) = µA2 (F(r)), νA1
(r) = νA2 (F(r)),

for all r ∈ V1.

Example 17. Consider two Pythagorean fuzzy planar graph G1 = (A1, B1) and G2 = (A2, B2) as shown in
Figure 13 such that

A1 =
〈(

r1

0.8
,

r2

0.7
,

r3

0.4
,

r4

0.5
,

r5

0.7

)
,
(

r1

0.3
,

r2

0.4
,

r3

0.8
,

r4

0.6
,

r5

0.5

)〉
and

B1 =
〈(

r1r2

0.6
,

r2r3

0.3
,

r2r4

0.4
,

r3r4

0.2
,

r3r5

0.35
,

r4r5

0.4
,

r1r5

0.4

)
,
(

r1r2

0.4
,

r2r3

0.7
,

r2r4

0.6
,

r3r4

0.7
,

r3r5

0.8
,

r4r5

0.55
,

r1r5

0.5

)〉
.

A2 =
〈(

s1

0.7
,

s2

0.8
,

s3

0.7
,

s4

0.5
,

s5

0.4

)
,
(

s1

0.4
,

s2

0.3
,

s3

0.5
,

s4

0.6
,

s5

0.8

)〉
and

B2 =
〈(

s1s2

0.7
,

s2s3

0.5
,

s1s4

0.5
,

s3s4

0.5
,

s4s5

0.3
,

s3s5

0.39
,

s1s5

0.4

)
,
(

s1s2

0.35
,

s2s3

0.4
,

s1s4

0.5
,

s3s4

0.5
,

s4s5

0.6
,

s3s5

0.7
,

s1s5

0.69

)〉
.

Since a mapping F : V1 → V2 defined by F(r1) = s2, F(r2) = s1, F(r3) = s5, F(r4) = s4, F(r5) = s3

satisfies µA1
(ri) = µA2(F(ri)), νA1

(ri) = νA2(F(ri)) for all ri ∈ V1, where i, j = 1, 2, 3, 4 but µB1
(rirj) 6=

µB2 (F(ri)F(rj)), νB1
(rirj) 6= νB2 (F(ri)F(rj)). Therefore, G1 is a weak isomorphic to G2.

Definition 20. A co-weak isomorphism F : G1 → G2 of two Pythagorean fuzzy planar graphs G1 and G2 is a
bijective mapping F : V1 → V2 that satisfies

1. F is homomorphism,
2. µB1

(rs) = µB2 (F(r)F(s)), νB1
(rs) = νB2 (F(r)F(s)),

for all rs ∈ E1.

Example 18. Consider two Pythagorean fuzzy planar graph G1 = (A1, B1) and G2 = (A2, B2) as shown in
Figure 14 such that

A1 =
〈(

r1

0.3
,

r2

0.7
,

r3

0.4
,

r4

0.8
,

r5

0.7
,

r6

0.8

)
,
(

r1

0.85
,

r2

0.45
,

r3

0.69
,

r4

0.35
,

r5

0.73
,

r6

0.35

)〉
and
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B1 =
〈(

r1r2

0.2
,

r2r3

0.4
,

r3r4

0.3
,

r2r4

0.7
,

r2r6

0.6
,

r1r6

0.2
,

r4r6

0.7
,

r5r6

0.4
,

r4r5

0.4
,

r2r5

0.4

)
,

(
r1r2

0.7
,

r2r3

0.62
,

r3r4

0.54
,

r2r4

0.4
,

r2r6

0.35
,

r1r6

0.75
,

r4r6

0.3
,

r5r6

0.65
,

r4r5

0.6
,

r2r5

0.65

)〉
.

A2 =
〈(

s1

0.35
,

s2

0.75
,

s3

0.45
,

s4

0.85
,

s5

0.55
,

s6

0.85

)
,
(

s1

0.8
,

s2

0.4
,

s3

0.65
,

s4

0.32
,

s5

0.7
,

s6

0.3

)〉
and

B2 =
〈(

s1s2

0.2
,

s2s3

0.4
,

s3s4

0.3
,

s2s4

0.7
,

s2s6

0.6
,

s1s6

0.2
,

s4s6

0.7
,

s5s6

0.4
,

s4s5

0.4
,

s2s5

0.4

)
,

(
s1s2

0.7
,

s2s3

0.62
,

s3s4

0.54
,

s2s4

0.4
,

s2s6

0.35
,

s1s6

0.75
,

s4s6

0.3
,

s5s6

0.65
,

s4s5

0.6
,

s2s5

0.65

)〉
.
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.2
, 0
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(0.5, 0.5)
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)
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)
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b b

b b
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Figure 6.2: Pythagorean fuzzy planar graphs

Since, a mapping F : V1 → V2 defined by F (r1) = s2, F (r2) = s1, F (r3) = s5, F (r4) = s4, F (r5) =451

s3 satisfies µA1(ri) = µA2(F (ri)), νA1(ri) = νA2(F (ri)) for all ri ∈ V1, where i, j = 1, 2, 3, 4 but452

µB1(rirj) 6= µB2(F (ri)F (rj)), νB1(rirj) 6= νB2(F (ri)F (rj)). Therefore, G1 is a weak isomorphic to G2.453

Definition 6.3. A co-weak isomorphism F : G1 → G2 of two Pythagorean fuzzy planar graphs G1454

and G2 is a bijective mapping F : V1 → V2 that satisfies455

1. F is homomorphism,456

2. µB1
(rs) = µB2

(F (r)F (s)), νB1
(rs) = νB2

(F (r)F (s)),457

for all rs ∈ E1.458

Example 6.3. Consider two Pythagorean fuzzy planar graph G1 = (A1,B1) and G2 = (A2,B2) as459

shown in Figure ?? such that460

A1 =

〈(
r1
0.3

,
r2
0.7

,
r3
0.4

,
r4
0.8

,
r5
0.7

,
r6
0.8

)
,

(
r1
0.85

,
r2
0.45

,
r3
0.69

,
r4
0.35

,
r5
0.73

,
r6
0.35

)〉
and461

B1 =

〈(
r1r2
0.2

,
r2r3
0.4

,
r3r4
0.3

,
r2r4
0.7

,
r2r6
0.6

,
r1r6
0.2

,
r4r6
0.7

,
r5r6
0.4

,
r4r5
0.4

,
r2r5
0.4

)
,

(
r1r2
0.7

,
r2r3
0.62

,
r3r4
0.54

,
r2r4
0.4

,
r2r6
0.35

,
r1r6
0.75

,
r4r6
0.3

,
r5r6
0.65

,
r4r5
0.6

,
r2r5
0.65

)〉
.

A2 =

〈(
s1
0.35

,
s2
0.75

,
s3
0.45

,
s4
0.85

,
s5
0.55

,
s6
0.85

)
,

(
s1
0.8

,
s2
0.4

,
s3
0.65

,
s4
0.32

,
s5
0.7

,
s6
0.3

)〉
and462

B2 =

〈(
s1s2
0.2

,
s2s3
0.4

,
s3s4
0.3

,
s2s4
0.7

,
s2s6
0.6

,
s1s6
0.2

,
s4s6
0.7

,
s5s6
0.4

,
s4s5
0.4

,
s2s5
0.4

)
,

(
s1s2
0.7

,
s2s3
0.62

,
s3s4
0.54

,
s2s4
0.4

,
s2s6
0.35

,
s1s6
0.75

,
s4s6
0.3

,
s5s6
0.65

,
s4s5
0.6

,
s2s5
0.65

)〉
.
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Figure 6.3: Pythagorean fuzzy planar graphs

Since, a mapping F : V1 → V2 defined by F (r1) = s1, F (r2) = s2, F (r3) = s3, F (r4) = s4,F (r5) = s5,463

F (r6) = s6 satisfies µB1(rirj) = µB2(F (ri)F (rj)), νB1(rirj) = νB2(F (ri)F (rj)), for all rirj ∈ E1, where464

i, j = 1, 2, 3, 4 but µA1(ri) 6= µA2(F (ri)), νA1(ri) 6= νA2(F (ri)). Therefore, G1 is a co-weak isomorphic465

to G2.466

some correlated results have been discussed below.467

Theorem 6.1. If F : G → L is an isomorphism from PFPG G to Pythagorean fuzzy graph L . Then468

L can be considered as PFPG with equivalent PF planarity value of G .469

Proof. Suppose F : G → L is an isomorphism. As, an isomorphism retains the membership and470

nonmembership value of vertex and edge of Pythagorean fuzzy graphs. So, membership and nonmem-471

bership value of L will be equivalent to the membership and nonmembership value of G . Drawing and472

structure of L and G are similar. Hence, the crossings number between edges and Pythagorean fuzzy473

planarity value of L will be similar as G . Thus, L can be considered as PFPG G with equivalent474

Pythagorean fuzzy planarity value as that of Pythagorean fuzzy graph L .475

Theorem 6.2. Two isomorphism Pythagorean fuzzy graphs G1 and G2 have equivalent planarity value.476

Theorem 6.3. Let G1 and G2 be two Pythagorean fuzzy graphs with Pythagorean fuzzy planarity477

F1 = (FM1
,FN1

) and F2 = (FM2
,FN2

), respectively. If G1 is weak isomorphic to G2, then478

FM1 ≥ FM2 and FN1 ≤ FN2 .479

Proof. Let G1 is weak isomorphic to G2. Then for any edge xy ∈ E1, there exist F (x)F (y) ∈ E2. The
strength of an edge Srs = (Mrs,Nrs) is given as

Mrs =
µB1(rs)j

µA1(r) ∧ µA1(s)
≤ µB2(F (r)F (s))j

µA2(F (r)) ∧ µA2(F (s))
= MF (r)F (s),

Nrs =
νB1(rs)j

νA1(r) ∨ νA1(s)
≥ νB2(F (r)F (s))j

νA2(F (r)) ∨ νA2(F (s))
= NF (r)F (s).
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Figure 14. Pythagorean fuzzy planar graphs.

Since a mapping F : V1 → V2 defined by F(r1) = s1, F(r2) = s2, F(r3) = s3, F(r4) = s4,F(r5) = s5,
F(r6) = s6 satisfies µB1

(rirj) = µB2(F(ri)F(rj)), νB1
(rirj) = νB2(F(ri)F(rj)), for all rirj ∈ E1, where

i, j = 1, 2, 3, 4 but µA1
(ri) 6= µA2 (F(ri)), νA1

(ri) 6= νA2 (F(ri)). Therefore, G1 is a co-weak isomorphic to G2.
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Some correlated results have been discussed below.

Theorem 11. If F : G → L is an isomorphism from PFPG G to Pythagorean fuzzy graph L . Then, L can be
considered as PFPG with equivalent PF planarity value of G .

Proof. Suppose F : G → L is an isomorphism. As an isomorphism retains the membership and
nonmembership value of vertex and edge of Pythagorean fuzzy graphs. Thus, membership and
nonmembership value of L will be equivalent to the membership and nonmembership value of G .
Drawing and structure of L and G are similar. Hence, the crossings number between edges and
Pythagorean fuzzy planarity value of L will be similar to G . Thus, L can be considered as PFPG G

with equivalent Pythagorean fuzzy planarity value as that of the Pythagorean fuzzy graph L .

Theorem 12. Two isomorphism Pythagorean fuzzy graphs G1 and G2 have equivalent planarity value.

Theorem 13. Let G1 and G2 be two Pythagorean fuzzy graphs with Pythagorean fuzzy planarity F1 =
(FM1

, FN1
) and F2 = (FM2 , FN2), respectively. If G1 is weak isomorphic to G2, then FM1

≥ FM2

and FN1
≤ FN2 .

Proof. Let G1 is weak isomorphic to G2. Then, for any edge xy ∈ E1, there exists F(x)F(y) ∈ E2.
The strength of an edge Srs = (Mrs, Nrs) is given as

Mrs =
µB1(rs)j

µA1
(r)∧ µA1

(s)
≤ µB2(F(r)F(s))j

µA2 (F(r))∧ µA2 (F(s))
= MF(r)F(s),

Nrs =
νB1(rs)j

νA1
(r)∨ νA1

(s)
≥ νB2(F(r)F(s))j

νA2 (F(r))∨ νA2 (F(s))
= NF(r)F(s).

The intersecting value SC1
= (MC1

, NC1
) between two edges uv and rs is

MC1
=

Muv + Mrs

2
≤ MF(u)F(v) + MF(r)F(s)

2
= MC1F ,

NC1
=

Nuv + Nrs

2
≥ NF(u)F(v) + NF(r)F(s)

2
= NC1F ,

where C1F is the intersection point between two edges F(u)F(v) and F(r)F(s) in G2. Since G1 is weak
isomorphic to G2, the number of the intersecting points in the certain geometric representation in G1

and G2 are equal which are n. Hence,

FM1
=

1
1 + MC1

+ MC2 + . . . + MCn

≥ 1
1 + MC1F + MC2F + . . . + MCnF

= FM2 ,

FN1
=

1
1 + NC1

+ NC2 + . . . + NCn

≤ 1
1 + NC1F + NC2F + . . . + NCnF

= FN2 .

Thus, we conclude that, if G1 is weak isomorphic to G2, then FM1
≥ FM2 and FN1

≤ FN2 .

Theorem 14. Let G1 and G2 be two Pythagorean fuzzy graphs with Pythagorean fuzzy planarity F1 =
(FM1

, FN1
) and F2 = (FM2 , FN2), respectively. If G1 is co-weak isomorphic to G2, then FM1

≤ FM2

and FN1
≥ FN2 .

Proof. Assume that G1 is co-weak isomorphic to G2 satisfying the conditions

µA1
(r) ≤ µA2 (F(r)), νA1

(r) ≥ νA2 (F(r)),

µB1
(rs) = µB2 (F(r)F(s)) and νB1

(rs) = νB2 (F(r)F(s)),



Mathematics 2018, 6, 278 22 of 28

for all r, s ∈ V1 and F(r), F(s) ∈ V2. Then, the strength of an edge Srs = (Mrs, Nrs) is given as

Mrs =
µB1(rs)j

µA1
(r)∧ µA1

(s)
≥ µB2(F(r)F(s))j

µA2 (F(r))∧ µA2 (F(s))
= MF(r)F(s),

Nrs =
νB1(rs)j

νA1
(r)∨ νA1

(s)
≤ νB2(F(r)F(s))j

νA2 (F(r))∨ νA2 (F(s))
= NF(r)F(s).

The intersecting value SC1
= (MC1

, NC1
) between two edges uv and rs is

MC1
=

Muv + Mrs

2
≥ MF(u)F(v) + MF(r)F(s)

2
= MC1F ,

NC1
=

Nuv + Nrs

2
≤ NF(u)F(v) + NF(r)F(s)

2
= NC1F ,

where C1F is the intersection point between two edges F(u)F(v) and F(r)F(s) in G2. Since G1 is co-weak
isomorphic to G2, the number of the intersecting points in the certain geometric representation in G1

and G2 are equal, which are n. Hence,

FM1
=

1
1 + MC1

+ MC2 + . . . + MCn

≤ 1
1 + MC1F + MC2F + . . . + MCnF

= FM2 ,

FN1
=

1
1 + NC1

+ NC2 + . . . + NCn

≥ 1
1 + NC1F + NC2F + . . . + NCnF

= FN2 .

Thus, we conclude that, if G1 is co-weak isomorphic to G2, then FM1
≤ FM2 and FN1

≥ FN2 .

Theorem 15. Let G1 and G2 be two weak isomorphic PFGs with PF planarity values F1 = (FM1
, FN1

)
and F2 = (FM2 , FN2 ), respectively. If the edge membership and nonmembership grades of the parallel crossing
edges are equivalent, then (FM1

, FN1
) = (FM2 , FN2 ).

Proof. Let G1 and G2 be two weak isomorphic PFGs with PF planarity values F1 and F2,
respectively. Since two PFGs are weak isomorphic, µA1

(a) = µA2(u), νA1
(a) = νA2(u), for all a ∈ G1

and u ∈ G2. Let the Pythagorean fuzzy graphs have one crossing. Let two crossing edges in G1 and G2

are bc, de and vw, rs, respectively. Then, the cut point in G1 is defined by

( µB1
(bc)

µA1
(b)∧µA1

(c) +
µB1

(de)
µA1

(d)∧µA1
(e)

2
,

νB1
(bc)

νA1
(b)∨νA1

(c) +
νB1

(de)
νA1

(d)∨νA1
(e)

2

)
.

Likewise, the cut point in G2 is defined by

( µB2 (vw)
µA2 (v)∧µA2 (w) +

µB2 (vw)
µA2 (v)∧µA2 (w)

2
,

νB2 (rs)
νA2 (r)∨νA2 (s) +

νB2 (rs)
νA2 (r)∨νA2 (s)

2

)
.

Now, F1 = F2, if µB1
(bc) = µB2 (vw) and νB1

(bc) = νB2 (vw). The number of intersecting points
increases. However, if the sum of crossing values of G1 are equivalent to that of G2, then Pythagorean
fuzzy planarity values must be equal. Hence, for F1 = F2, the edge membership and nonmembership
grades of crossing edges of G1 are equivalent to the edge membership and nonmembership grades of
the parallel crossing edges in G2.

Theorem 16. Let G1 and G2 be two co-weak isomorphic PFGs with PF planarity values F1 = (FM1
, FN1

)
and F2 = (FM2 , FN2 ), respectively. If the minimum membership and maximum nonmembership grade of end
vertices of the parallel crossing edges are equivalent, then (FM1

, FN1
) = (FM2 , FN2 ).
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Proof. Let G1 and G2 be two co-weak isomorphic PFGs with PF planarity values F1 and F2,
respectively. Since two PFGs are co-weak isomorphic, so µB1

(ab) = µB2 (uv), νB1
(ab) = νB2 (uv), for all

ab ∈ G1 and uv ∈ G2. Let the Pythagorean fuzzy graphs have one crossing. Let two crossing edges in
G1 and G2 are cd, ef and wx, yz, respectively. Then, the cut point in G1 is defined by

( µB1
(cd)

µA1
(c)∧µA1

(d) +
µB1

(e f )
µA1

(e)∧µA1
( f )

2
,

νB1
(cd)

νA1
(c)∨νA1

(d) +
νB1

(e f )
νA1

(e)∨νA1
( f )

2

)
.

Likewise, the cut point in G2 is defined by

( µB2 (wx)
µA2 (w)∧µA2 (x) +

µB2 (yz)
µA2 (y)∧µA2 (z)

2
,

νB2 (wx)
νA2 (w)∨νA2 (x) +

νB1
(yz)

νA2 (y)∨νA2 (z)

2

)
.

Now, F1 = F2, if µA1
(c)∧ µA1

(d) = µA2 (w)∧ µA2 (x) and νA1
(c)∨ νA1

(d) = νA2 (w)∨ νA2 (x).
The number of intersecting points increase. However, if the sum of crossing value of G1 is equivalent to
that of G2, then Pythagorean fuzzy planarity values must be equal. Hence, for F1 = F2, the minimum
membership and maximum nonmembership grades of end vertices of an edge in G1 is equivalent to
the minimum membership and maximum nonmembership grades of parallel edge in G2.

In a crisp sense, we know that double dual of planar graph is also planar. We call it self-duality of
planar graph. However, this concept does not hold in a Pythagorean fuzzy planar graph as the vertex
membership and nonmembership grade of Pythagorean fuzzy planar graph are not preserved in its
dual graph. However, the edge membership and nonmembership grade of Pythagorean fuzzy planar
graph are preserved. The following theorem illustrates this fact.

Theorem 17. If G2 is the PFDG of PFDG G1 of a PFPG G without weak edges, then a co-weak isomorphism
occurs between G and G2.

Proof. Suppose that G is a PFPG without weak edges. Suppose that G1 is a PFDG of G and G2 is the
PFDG of G1. For establishing co-weak isomorphism between G and G2. We know that the number
of vertices of G2 is equivalent to the strong Pythagorean fuzzy faces of G1. Similarly, the number
of strong Pythagorean fuzzy faces of G1 is equivalent to the number of vertices of G . Hence, the
number of vertices of G2 and G are similar. Furthermore, by definition of PFDG, the membership and
nonmembership grade of an edge in PFDG is equivalent to the membership and nonmembership grade
of an edge in PFPG. Thus, it is concluded that a co-weak isomorphism occurs between G and G2.

The following example justifies the above theorem.

Example 19. Consider a PFPG G = (A , B) without weak edges, as displayed in Figure 15 such that

A =
〈(

r1

0.55
,

r2

0.4
,

r3

0.8
,

r4

0.9
,

r5

0.6
,

r6

0.7

)
,
(

r1

0.69
,

r2

0.7
,

r3

0.3
,

r4

0.2
,

r5

0.5
,

r6

0.5

)〉
and

B =
〈(

r1r2

0.25
,

r2r3

0.3
,

r3r4

0.75
,

r4r5

0.55
,

r5r6

0.55
,

r1r6

0.45
,

r3r6

0.56

)
,
(

r1r2

0.14
,

r2r3

0.14
,

r3r4

0.14
,

r4r5

0.14
,

r5r6

0.14
,

r1r6

0.14
,

r3r6

0.14

)〉
.

The Pythagorean fuzzy dual graph G1 of G is displayed in Figure 16,
where

A1 =
〈(

s1

0.7
,

s2

0.75
,

s3

0.75

)
,
(

s1

0.14
,

s2

0.14
,

s3

0.14

)〉
and

B1 =
〈(

s1s2

0.56
,

s1s3

0.25
,

s1s3

0.3
,

s1s3

0.45
,

s2s3

0.55
,

s2s3

0.55
,

s2s3

0.75

)
,
(

s1s2

0.14
,

s1s3

0.14
,

s1s3

0.14
,

s1s3

0.14
,

s2s3

0.14
,

s2s3

0.14
,

s2s3

0.14

)〉
.

Again, constructing the dual of G1 as displayed in Figure 17,
where
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A2 =
〈(

t1

0.7
,

t2

0.7
,

t3

0.75
,

t4

0.75
,

t5

0.65
,

t6

0.56

)
,
(

t1

0.14
,

t2

0.14
,

t3

0.14
,

t4

0.14
,

t5

0.14
,

t6

0.14

)〉
and

B2 =
〈(

t1t2

0.3
,

t2t3

0.25
,

t3t4

0.75
,

t4t5

0.55
,

t5t6

0.55
,

t3t6

0.56
,

t1t6

0.45

)
,
(

t1t2

0.14
,

t2t3

0.14
,

t3t4

0.14
,

t4t5

0.14
,

t5t6

0.14
,

t3t6

0.14
,

t1t6

0.14

)〉
.

It is easy to see that the edge membership and nonmembership grades of G2 are equal to the edge membership and
nonmembership grades of G , but the vertex membership and nonmembership grades of G2 are not equal to the
vertex membership and nonmembership grades of G , which shows that the self-duality of Pythagorean fuzzy
planar graph is not satisfied. Hence, we conclude that there is co-weak isomorphism between G2 and G .

Likewise, the cut point in G2 is defined by

( µB2
(wx)

µA2
(w)∧µA2

(x) +
µB2

(yz)

µA2
(y)∧µA2

(z)

2
,

νB2
(wx)

νA2
(w)∨νA2

(x) +
νB1

(yz)

νA2
(y)∨νA2

(z)

2

)
.

Now, F1 = F2, if µA1(c) ∧ µA1(d) = µA2(w) ∧ µA2(x) and νA1(c) ∨ νA1(d) = νA2(w) ∨ νA2(x). The499

number of intersecting points increase. However, if the sum of crossing value of G1 is equivalent to500

that of G2, then Pythagorean fuzzy planarity values must be equal. Hence, for F1 = F2, the minimum501

membership and maximum nonmembership grades of end vertices of an edge in G1 is equivalent to502

the minimum membership and maximum nonmembership grades of parallel edge in G2.503

In crisp sense, we know that double dual of planar graph is also planar, we call it, self-duality504

of planar graph. But, this concept does not hold in Pythagorean fuzzy planar graph as the vertex505

membership and nonmembership grade of Pythagorean fuzzy planar graph is not preserved in its dual506

graph. While, the edge membership and nonmembership grade of Pythagorean fuzzy planar graph is507

preserved. The following theorem illustrate this fact.508

Theorem 6.7. If G2 is the PFDG of PFDG G1 of a PFPG G without weak edges. Then there occur509

co-weak isomorphism between G and G2.510

Proof. Suppose that G is a PFPG without weak edges. Suppose that G1 is a PFDG of G and G2 is the511

PFDG of G1. For establishing co-weak isomorphism between G and G2. we know that the number512

of vertices of G2 is equivalent to the strong Pythagorean fuzzy faces of G1. Similarly, the number of513

strong Pythagorean fuzzy faces of G1 is equivalent to the number of vertices of G . Hence, the number of514

vertices of G2 and G are similar. Further, by definition of PFDG, the membership and nonmembership515

grade of an edge in PFDG is equivalent to the membership and nonmembership grade of an edge in516

PFPG. So, it is concluded that there occur co-weak isomorphism between G and G2.517

The following example justifies the above theorem.518

Example 6.4. Consider a PFPG G = (A ,B) without weak edges, as displayed in Figure ?? such519

that520

A =

〈(
r1
0.55

,
r2
0.4

,
r3
0.8

,
r4
0.9

,
r5
0.6

,
r6
0.7

)
,

(
r1
0.69

,
r2
0.7

,
r3
0.3

,
r4
0.2

,
r5
0.5

,
r6
0.5

)〉
and521

B =

〈(
r1r2
0.25

,
r2r3
0.3

,
r3r4
0.75

,
r4r5
0.55

,
r5r6
0.55

,
r1r6
0.45

,
r3r6
0.56

)
,

(
r1r2
0.14

,
r2r3
0.14

,
r3r4
0.14

,
r4r5
0.14

,
r5r6
0.14

,
r1r6
0.14

,
r3r6
0.14

)〉
.522

b b

b b

b b
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Figure 17. Pythagorean fuzzy dual graph.
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7. Application

From the power plants to our houses, the potent power lines that are zigzagging our countryside
or city streets carry numerously high voltage electricity. For reducing such high voltage electricity to
lower voltage, an equipment is used, called a transformer. A transformer works in a very simple way,
consisting of different units in which electric current flows through tiny wires. While connecting the
units with each other, crossing between tiny wires may occur. Sometimes, crossing between wires is
beneficial as it helps in utilizing less space and makes it inexpensive, but, on the other hand, due to
crossing, the transformer heats up and there is a chance of an explosion that is quite dangerous for
human life. To overcome this problem, a crossing between such wires needs to be minimized or good
quality wires are needed for installation. The practical approach of Pythagorean fuzzy planar graphs
can be utilized to structure this kind of situation for reducing the rate of destruction.

Consider an electric transformer in which units are connected as shown in Figure 18. Each unit
U1, U2, . . . , U7 is represented by a vertex and each electric connection between units through tiny
wire is represented by an edge. The membership grade of the vertex depicted the chances of electric
spark, whereas the nonmembership grade interpreted the chances of no electric spark in the unit.
The membership grade of the edge depicted the intensity of electrical hazard between two units,
whereas the nonmembership grade interpreted no intensity of electrical hazard.

7 Application536

From the power plants to our houses, the potent power lines that are zigzagging our countryside or537

city streets carry numerously high voltage electricity. For reducing such high voltage electricity to538

lower voltage, an equipment is used, called transformer. A transformer works in a very simple way,539

consisting of different units in which electric current flows through tiny wires. While connecting the540

units with each other, crossing between tiny wires may occur. Sometime crossing between wires is541

beneficial as it helps in utilizing less space and make it inexpensive but on the other hand, due to542

crossing, transformer gets heat up and there is a chance of explosion which is quite dangerous for543

human lives. To overcome this problem, crossing between such wires need to be minimized or good544

quality wires are needed for installation. The practical approach of Pythagorean fuzzy planar graphs545

can be utilized to structure this kind of situation for reducing the rate of destruction.546

547

Consider an electric transformer in which units are connected as shown in Figure ??. Each unit548

U1, U2, . . . , U7 is represented by a vertex and each electric connection between units through tiny wire549

is represented by an edge. The membership grade of the vertex depicted the chances of electric spark550

whereas the nonmembership grade interpreted the chances of no electric spark in the unit. The mem-551

bership grade of the edge depicted the intensity of electrical hazard between two units whereas the552

nonmembership grade interpreted no intensity of electrical hazard.553

U1

(0.7, 0.6)

(0.8, 0.4)

(0.3, 0.8)

U2

U3

b

b b

b

bb

bU7

U6

U5 U4

(0.2, 0.88)

(0.3, 0.9)

(0.5, 0.6)(0.4, 0.7)

(0.
65,

0.5
) (0.2, 0.81)

(0
.1
,0

.9
)

(0.2, 0.7)

(0.2, 0.82)

(0.26, 0.78) (0
.2
5,
0.
85
)

(0.27, 0.76)

(0
.2
9
, 0

.7
5
)

(0
.2
8,
0.
8)

(0
.1,

0.7
5)

(0.2,
0.8)

(0.27, 0.85)

C6

C1

C5

C3

C2

C4

Figure 7.1: Transformer units connection

As the number of crossings increase, the rate of destruction increases. Hence the measurement of554

the planarity value is necessary. There are six crossings C1, C2, C3, C4, C5 and C6 between the pair555

of wires (U4U6, U2U5), (U3U6, U2U5), (U2U5, U1U3), (U2U6, U1U3), (U2U7, U1U3) and (U2U7, U1U6),556

respectively. The strength of the wire U4U6 = (0.9, 0.95), U2U5 = (0.5, 0.85), U3U6 = (0.67, 0.78),557

U1U3 = (0.9, 0.94), U2U6 = (1, 0.91), U2U7 = (1, 0.93) and U1U6 = (0.93, 1). For crossings, the558

point of intersections are SC1 = (0.7, 0.9), SC2 = (0.59, 0.82), SC3 = (0.7, 0.9), SC4 = (0.95, 0.93),559

SC5 = (0.95, 0.94) and SC6 = (0.97, 0.97). Thus, Pythagorean fuzzy planarity value F = (0.17, 0.15).560

Since the planarity value is minimum so it indicates the possibility of high destruction. To reduce561

crossing, we can change the graphical representation as shown in Figure ??.562

28

Figure 18. Transformer units connection.

As the number of crossings increase, the rate of destruction increases. Hence, the measurement
of the planarity value is necessary. There are six crossings C1, C2, C3, C4, C5 and C6 between the pair
of wires (U4U6, U2U5), (U3U6, U2U5), (U2U5, U1U3), (U2U6, U1U3), (U2U7, U1U3) and (U2U7, U1U6),
respectively. The strength of the wire U4U6 = (0.9, 0.95), U2U5 = (0.5, 0.85), U3U6 = (0.67, 0.78),
U1U3 = (0.9, 0.94), U2U6 = (1, 0.91), U2U7 = (1, 0.93) and U1U6 = (0.93, 1). For crossings, the point
of intersections are SC1

= (0.7, 0.9), SC2 = (0.59, 0.82), SC3 = (0.7, 0.9), SC4
= (0.95, 0.93), SC5 =

(0.95, 0.94) and SC6 = (0.97, 0.97). Thus, Pythagorean fuzzy planarity value F = (0.17, 0.15). Since the
planarity value is at a minimum, it indicates the possibility of high destruction. To reduce crossing,
we can change the graphical representation as shown in Figure 19.

We know that the number of intersecting points is inversely proportional to planarity. Since
the number of intersecting points decrease, the Pythagorean fuzzy planarity value F = (0.63, 0.55)
increases and rate of destruction decreases. Moreover, from the representation shown in Figure 19,
it is noted that C1 is the only crossing left that can not be reduced, but the chance of electric hazard
and rate of destruction through it can be minimized by using good quality electrical wires between
U3 and U6, U2 and U5. Thus, this crossing will become less harmful. Hence, we conclude that the
Pythagorean fuzzy electric connection model can be used for tracking and detecting the rate of
destruction. By examining and taking extra special security measures, the percentage of destruction
can be reduced and many human lives can be saved.
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Figure 19. Pythagorean fuzzy electric connection model.

We present our proposed method for checking planarity and minimizing crossings between
electric connections in the following Algorithm 1.

Algorithm 1: Planarity and minimizing crossings between electric connections.

INPUT: A discrete set of units U = {U1, U2, . . . , Un}, a set of electric connections
E = {E1, E2, . . . , Em} between the units and a set of point of intersections C = {C1, C2, . . . , Cr}.

OUTPUT: Minimized crossing and increased planarity value.

1. begin
2. Compute the strength of the edge Ei, where i = 1, 2, . . . , m and Uj, Uk ∈ U by using

SEi = (MEi , NEi ) =
(

µB(Ei)
µA (Uj)∧ µA (Uk)

,
νB(Ei)

νA (Uj)∨ νA (Uk)

)
.

3. Calculate the value of intersecting points Cl between the edges Ej and Ek by using
the formula

SCl
= (MCl

, NCl
) =
(MEj + MEk

2
,
NEj + NEk

2

)
, where l = 1, 2, . . . , r and Ej, Ek ∈ E.

4. Determine the Pythagorean fuzzy planarity value defined as

F = (FM , FN ) =
(

1
1 + {MC1

+ MC2 + . . . + MCr}
,

1
1 + {NC1

+ NC2 + . . . + NCr}

)
.

5. Keep the graphical representation of the edges Ej and Ek , if FM > 0.5 and FN < 0.86
otherwise change the graphical representation.

6. While changing the graphical representation of the edges Ej and Ek , if no new crossing
occur in this representation then Change it otherwise keep the previous representation.

7. By changing the graphical representation of the edges Ej and Ek, the crossing and
planarity value will be minimized and increased, respectively.

8. end.

8. Conclusions

Graph theory has a vast range of applications in designing various networking problems
encountered in different fields such as image capturing, transportation and data mining. To model
uncertainties in graphical networking problems, numerous generalization of graph theoretical concepts
have established. Pythagorean fuzzy graphs, as an extension of fuzzy graphs and intuitionistic fuzzy
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graphs, have better ability due to the increment of spaces in membership and nonmembership grades,
for modeling the obscurity in practical world problems. This paper has utilized the idea of Pythagorean
fuzzy graphs and initiated the concept of Pythagorean fuzzy multigraphs and Pythagorean fuzzy
planar graphs. It has investigated the Pythagorean fuzzy planarity value by considering strong, weak
and considerable edges. Moreover, a critical analysis has been done on a nonplanar Pythagorean
fuzzy graph. A close association has been developed between Pythagorean fuzzy planar graphs
and Pythagorean fuzzy dual graphs. Furthermore, the concept of isomorphism, weak isomorphism
and co-weak isomorphism have been elaborated between Pythagorean fuzzy planar graphs and
some substantial results have been investigated. In the end, it has explored an important result that
there exists a co-weak isomorphism between the Pythagorean fuzzy planar graph and dual of a dual
Pythagorean fuzzy planar graph. The purpose of this research work is the applicability of Pythagorean
fuzzy planar graphs in the field of neural networks and geographical information systems. With the
help of these graphs, many problems related to crossing including designing golf holes in a golf club,
linking different houses with each other and structuring road or communication networks can be
easily solved. Further studies can focus on (1) Interval-valued Pythagorean fuzzy graphs; (2) Hesitant
Pythagorean fuzzy graphs and; (3) Simplified interval-valued Pythagorean fuzzy graphs.
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