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Abstract: We use Newton’s method to solve previously unsolved problems, expanding the
applicability of the method. To achieve this, we used the idea of restricted domains which allows for
tighter Lipschitz constants than previously seen, this in turn led to a tighter convergence analysis.
The new developments were obtained using special cases of functions which had been used in
earlier works. Numerical examples are used to illustrate the superiority of the new results.
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1. Introduction

Let F : Ω ⊂ E1 → E2 be a differentiable operator in the sense of Fréchet, where E1 and E2 are
Banach spaces and Ω is a nonempty and open set. A plethora of problems from many diverse
disciplines are formulated using modeling which looks like

F(x) = 0. (1)

Hence, the problem of locating a solution x∗ for Equation (1) is very important. Most people
develop iterative algorithms approximating x∗ under some conditions, since a closed form solution
cannot easily be obtained in general. The most widely used iterative method is Newton’s method
defined for an initial point x0 ∈ Ω by x0 ∈ Ω,

xn+1 = xn − F′(xn)−1F(xn) for all n = 0, 1, 2 . . .
(2)

Numerous convergence results appear in the literature based on which limn→+∞ xn = x∗.
In this article, we introduce new semilocal convergence results based on our idea of restricted

convergence region through which we locate a more precise set containing xn. This way, the majorizing
constants and scalar functions are tighter leading to a finer convergence analysis.

To provide the semilocal convergence analysis Kantorovich used the condition [1]

‖F′′(x)‖ ≤ k, x ∈ Ω. (3)

Let function ψ : R+ ∪ {0} → R be non-decreasing and continuous. A weaker condition is [2–6]

‖F′′(x)‖ ≤ ψ(‖x‖), x ∈ Ω. (4)
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We shall find a tighter domain than Ω, where Equation (4) is satisfied. This way the new
convergence analysis shall be at least as precise.

The layout of the rest of the article involves the semilocal convergence of Newton’s method
(Equation (2)) given in Section 2. Some numerical examples are also given in Section 2, whereas
Section 3 contains the work on Bratu’s equation.

2. Semilocal Convergence

Theorem 1 (Kantorovich’s theorem [1]). Let E1 and E2 be Banach spaces. Let also F : Ω ⊆ E1 → E2 be
a twice continuously differentiable operator in the sense of Fréchet where Ω is a non-empty open and convex
region. Assume:

(i) x0 ∈ Ω and there exists Γ0 = [F′(x0)]
−1 with ‖Γ0‖ ≤ γ,

(ii) ‖Γ0F(x0)‖ ≤ η,
(iii) ‖F′′(x)‖ ≤ k, x ∈ Ω,

(iv) kγη ≤ 1
2

,

(v) B(x0, s∗ − s0) ⊆ Ω, where s∗ = s0 +
1−

√
1− 2kγη

kγ
.

Then, Newton’s sequence defined in Equation (2) converges to a solution x∗ of the equation F(x) = 0.
Moreover, xn, x∗ ∈ B(x0, s∗ − s0), for all n = 0, 1, 2, . . . Furthermore, the solution x∗ is unique in B(x0, s∗∗− s0),

where s∗∗ = s0 +
1 +

√
1− 2kγη

kγ
, if kγη <

1
2

, and in B(x0, s∗∗ − s0), if kγη =
1
2

, for some s0 ≥ 0.

Furthermore, the following error bounds hold

‖xn+1 − xn‖ ≤ |sn+1 − sn|

and
‖xn∗ − xn‖ ≤ |s∗ − sn|,

where 
s0 is given,

sn+1 = sn −
f (sn)

f ′(sn)
, n ≥ 0,

and
f (t) =

k
2
(t− s0)

2 − t− s0

γ
+

η

γ
.

The Kantorovich theorem can be improved as follows:

Theorem 2. Let E1 and E2 be Banach spaces. Let F : Ω ⊆ E1 → E2 be a twice continuously differentiable
operator in the sense of Fréchet. Assume:

(i) x0 ∈ Ω and there exists Γ0 = [F′(x0)]
−1 with ‖Γ0‖ ≤ γ,

(ii) ‖Γ0F(x0)‖ ≤ η,
(iii) ‖F′(x)− F′(x0)‖ ≤ k0‖x− x0‖, x ∈ Ω,

(iv) ‖F′′(x)‖ ≤ k, x ∈ Ω0 := Ω ∩ B
(

x0,
1

γk0
+ s0

)
,

(v) k̃γη ≤ 1
2

, where k̃ = max{k0, k},

(vi) B(x0, s∗ − s0) ⊆ Ω, where s∗ = s0 +
1−

√
1− 2k̃γη

k̃γ
.
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Then, sequence {xn} generated by Method (2) converges to x∗. Moreover, xn, x∗ ∈ B(x0, s∗ − s0), n ≥ 0.
Furthermore, the solution x∗ is unique in B(x0, s∗∗ − s0), where

s∗∗ = s0 +
1 +

√
1− 2k̃γη

k̃γ
, if k̃γη <

1
2

and in
B(x0, s∗∗ − s0), if k̃γη =

1
2

,

for some s0 ≥ 0. Furthermore, the following error bounds hold

‖xn+1 − xn‖ ≤ |sn+1 − sn|

and
‖xn∗ − xn‖ ≤ |s∗ − sn|,

where 
s0 is given,

sn+1 = sn −
f (sn)

f
′
(sn)

, n ≥ 0,

and

f (t) =
k̃
2
(t− s0)

2 − t− s0

γ
+

η

γ
·

Proof. The iterates xn stay in Ω0 by the proof of the Kantorovich theorem, which is a more precise
location for the solution than Ω, since Ω0 ⊆ Ω.

Remark 1. If k0 = k = k, Theorem 1 reduces to the Kantorovich theorem, where k is the Lipschitz constant for
x ∈ Ω used in [1]. We get k0 ≤ k and k ≤ k so k̃ ≤ k holds in general.

Notice that
kγη ≤ 1

2
implies k̃γη ≤ 1

2
,

so the Newton–Kantorovich sufficient convergence condition kγη ≤ 1
2

has been improved and under the same

effort, because the computation of k requires the computation of k0 or k as special cases.

Moreover, notice that if Ω1 = Ω ∩ B
(

x0,
1

γk0
+ s0 − ‖Γ0F(x0)‖

)
provided that k0γ‖Γ0F(x0)‖ ≤ 1

and (iv) of Theorem 2 holds on Ω1 with k replacing k, then Theorem 2 can be extended even further with Ω1,
˜̃k = max{k0, k}, replacing Ω0 and k̃, respectively, since Ω1 ⊆ Ω0, so ˜̃k ≤ k̃.

Concerning majorizing sequences, define
r0 = 0, r1 = η,

rn+2 = rn+1 +
k(rn+1 − rn)2

2(1− k0rn+1)
,


s0 given,

sn+1 = sn −
f (sn)

f ′(sn)
,
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r0 = 0, r1 = η,

rn+2 = rn+1 +
k(rn+1 − rn)2

2(1− k0rn+1)
,

where

f (t) =
˜̃k
2
(t− s0)

2 − t− s0

γ
+

η

γ
.

According to the proofs, {rn} and {rn} are majorizing sequences tighter than {sn} and {sn},
respectively, and as such, they converge under the same convergence criteria. Notice also that
r∗ = lim

n→+∞
rn ≤ s∗ and r∗ = lim

n→+∞
rn ≤ s∗.

Example 1. Let F(x) = x3 − p, p ∈ [0, 1
2 ], Ω = B(x0, 1− p), s0 = s0 = s0 = r0 = r0 = 0 and x0 = 1.

Case 1. Ω := B(x0, 1− p). Then, we have that

|Γ0| =
1
3
= γ, |Γ0F(x0)| =

1
3
(1− p) = η,

|F′′(x)| ≤ 6|x| ≤ 6(|x0 − x|+ |x0|) ≤ 6(1 + 1− p) = 6(2− p) = k

and
|F′(x0)− F′(x)| ≤ 3|(x0 + x)(x0 − x)| ≤ 3(|x0 − x|+ 2|x0|)|x0 − x| ≤ k0|x0 − x|,

so
k0 = 3(3− p).

We see that Kantorovich’s result [4] (see Theorem 1) cannot be applied, since

kγη >
1
2

for all p ∈
[

0,
1
2

)
.

Case 2. Ω0 := Ω ∩ B
(

x0,
1

γk0

)
. Then, we get

|F′(y)− F′(x)| = 3|(y + x)(y− x)| ≤ 3(|x0 − x|+ |x0 − y|+ 2|x0|)|y− x|

≤ 6
[

1
γk0

+ 1
]
|x− y| = k|x− y|

where

k = 6
(

4− p
3− p

)
,

so by Theorem 2, Newton’s method converges for

k̃ =

{
k, p ≥ 2−

√
3,

k0, 0 < p ≤ 2−
√

3,

since

k̃γη =
2
3
(4− p)(1− p)

3− p
<

1
2

for all p ∈
[

0.46198316 . . . ,
1
2

)
.
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Case 3. Ω1 := Ω ∩ B
(

x1,
1

γk0
− |Γ0F(x0)|

)
provided that k0γη ≤ 1. In this case, we obtain from

|F′(x)− F′(y)| ≤ 3[|x− x1|+ |y− x1|+ 2|x1|]|x− y|

≤ 6
[(

1
γk0
− η

)
+

2 + p
3

]
|x− y| ≤ k|x− y|

so

k = −2(2p2 − 5p− 6)
3− p

·

Therefore, we must have that
˜̃kγη ≤ 1

2
and

k0γη < 1

which are true for p ∈
[

0.42973177 . . . ,
1
2

)
since k0 < k, so ˜̃k = k. Hence, we have extended the convergence

interval of the previous cases.

The sufficient convergence criterion for the modified Newton’s method{
x0 given in Ω,

xn+1 = xn − [F′(x0)]
−1F(xn), n ≥ 0

is the same as the Kantorovich condition (iv). In [7], though we proved that this condition can be
replaced by k0γη ≤ 1

2 which is weaker if k0 < k. In the case of the example at hand, we have that this
condition is satisfied as in the previous case interval. Therefore, by restricting the convergence domain,
sufficient convergence criteria can be obtained for Newton’s method identical to the ones required for
the convergence of the modified Newton’s method. The same advantages are obtained if the preceding
Lipschitz constants are replaced by the ψ functions that follow.

It is worth noting that the center-Lipschitz condition (not introduced in earlier studies) makes it
possible to restrict the domain from Ω to Ω0 (or Ω1), where the iterates actually lie and where

‖F′(x)−1‖ ≤ γ

1− γk0‖x− x0‖

can be used instead of the less tight estimate

‖F′(x)−1‖ ≤ γ

1− γk‖x− x0‖

used in Theorem 1 and in other related earlier studies using only condition (iv) in Theorem 1.
Next, the condition

‖F′′(x)‖ ≤ k, x ∈ Ω

is replaced by
‖F′′(x)‖ ≤ ψ(‖x‖), x ∈ Ω. (5)

Next, we show how to improve these results by relaxing Equation (5) using even weaker conditions

‖F′(x)− F′(x0)‖ ≤ v(‖x− x0‖), x ∈ Ω, (6)

where v : [t0,+∞)∪ {0} → R is a non-decreasing continuous function satisfying v(t0) ≥ 0. Suppose that
equation γv(t− t0) = 1 has at least one positive solution. Denote by ρ1 the smallest such solution.
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Moreover, suppose that

‖F′′(x)‖ ≤ ψ1(‖x‖), x ∈ Ω0 = Ω ∩ B(x0, ρ1 − t0) (7)

or Equation (6) and

‖F′′(x)‖ ≤ ψ2(‖x‖), x ∈ Ω1 = Ω ∩ B(x1, ρ1 − t0 − ‖Γ0F(x0)‖), if ‖Γ0F(x0)‖ ≤ ρ1 − t0, (8)

where ψ1, ψ2 : [ρ1 − t0,+∞) ∪ {0} → R are non-decreasing functions.
If function v is strictly increasing, then we can choose ρ1 = v−1

(
1
γ

)
+ t0.

Notice that Equation (5) implies Equations (6) and (7) or Equations (6) and (8) but not necessarily
vice versa. Moreover, we have that

v(t) ≤ ψ(t), (9)

ψ1(t) ≤ ψ(t) (10)

and
ψ2(t) ≤ ψ(t). (11)

Next, we show that ψ1 or ψ2 can replace ψ in the results obtained in Reference [4]. Then, in view of
Equations (9)–(11), the new results are finer and are provided without additional cost, since ψ requires
the computation functions v, ψ1 and ψ2 as special cases. Notice that function v is needed to determine
ρ1 (i. e., Ω0 and Ω1) and that Ω0 ⊆ Ω and Ω1 ⊆ Ω0.

3. Bratu’s Equation

Bratu’s equation is defined by the following nonlinear integral equation

x(t1) = µ
∫ β

α
T(t1, t2)ex(t2) dt2, t1 ∈ [α, β], (12)

where −∞ < α < β < ∞, µ ∈ R+ and the kernel T is the Green’s function

T(t1, t2) =


(β− t1)(t2 − α)

β− α
, t2 ≤ t1,

(t1 − α)(β− t2)

β− α
, t1 ≤ t2.

Observe that Equation (12) can also be seen as the following boundary value problem [8]:
d2x(t2)

dt2
2

+ µ ex(t2) = 0,

x(α) = x(β) = 0.

Let µ > 0 and α = 0. It follows from [8] that Equation (12) has two solutions such that
x1(t2) 6= x2(t2), provided that for for each µ ∈ (0, µ1), where µ1 = 3.51375...

β2 . Next, we show a sketch of
both solutions in Figure 1.
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βα = 0

Figure 1. The two real solutions of Bratu’s Equation (12).

Bratu’s equation appears in connection to many problems: combustion, heat transfer, chemical
reactions, and nanotechnology [9].

Using Newton’s method, we approximate the solutions of Bratu’s equation.
Let F : Ω ⊆ C([α, β])→ C([α, β]) be defined by

[F(x)](t1) = x(t1)− µ
∫ β

α
T(t1, t2)ex(t2) dt2. (13)

But condition (3) does not hold if operator (13) is defined by Equation (13), since

[F′(x)y](t1) = y(t1)− µ
∫ β

α
T(t1, t2)ex(t2)y(t2) dt2,

[F′′(x)yz](t1) = −µ
∫ β

α
T(t1, t2)ex(t2)z(t2)y(t2) dt2,

Therefore, it is clear that ‖F′′(x)‖ is not bounded in a general domain Ω. However, it is hard to
find a region containing a solution of F(x) = 0 and such that ‖F′′(x)‖ is bounded there.

Our aim is to solve F(x) = 0 using Newton’s method{
x0 given in Ω,

xn+1 = xn − [F′(xn)]−1F(xn) for all n = 0, 1, 2, . . .
(14)

Then, we solve
F′(xn)(xn+1 − xn) = −F(xn). (15)

Using m nodes in the Gauss-Legendre quadrature formula

∫ β

α
f (t) dt '

m

∑
i=1

βi f (ti),

where the nodes ti and the weights βi are known. We can write

xi = µ
m

∑
j=1

aije
xj , i = 1, 2, . . . , m, where aij =


β j

(β− ti)(tj − α)

β− α
if j ≤ i,

β j
(β− tj)(ti − α)

β− α
if j > i,

or
F(x) ≡ x− µAu(x) = 0, (16)
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where
x = (x1, . . . , xm)

T , A = (aij)
m
i,j=1 and u(x) = (ex1 , . . . , exm)T .

We shall relate sequence {xn} with its majorizing sequence
s0 given,

sn+1 = sn −
f (sn)

f ′(sn)
for all n = 0, 1, 2, . . . .

To achieve this using Equation (16), we compute F′, F′′ and

F′(x)y = (I − µAD(x))y, D(x) = diag{ex1 , ex2 , . . . , exn},

where y ∈ Rm,
F′′(x)y z = −µA(ex1 y1z1, ex2 y2z2, . . . , exm ymzm)

T ,

y = (y1, y2, . . . , ym), and z = (z1, z2, . . . , zm). Let B(x, ρ) = {y ∈ Rm; ‖y− x‖ ≤ ρ} and let B(x, ρ) be
its closure.

Clearly, Theorems 1 and 2 hold if operator F is defined by Equation (16) and Newton’s method in
the form of Equation (14) is used.

We shall verify the hypotheses of these theorems, so we can solve our problem. To achieve this,
µ‖A‖‖D(x0)‖ < 1 sets

‖Γ0‖ =
1

1− µ‖A‖‖D(x0)‖
= γ, (17)

and

‖Γ0F(x0)‖ =
‖x0 − µAu(x0)‖

1− µ‖A‖‖D(x0)‖
= η, (18)

where u(x0) = (ex̂1 , ex̂2 , . . . , ex̂m)T and x0 = (x̂1, x̂2, . . . , x̂m)T . Moreover, we have

‖F′′(x)y z‖ ≤ µ‖A‖
∥∥∥(ex1 y1z1, ex2 y2z2, . . . , exm ymzm)

T
∥∥∥

and ‖F′′(x)‖∞ ≤ µ‖A‖∞e‖x‖∞ , where we used the infinity norm. Notice that ‖F′′(x)‖∞ is not bounded,
since e‖x‖∞ is increasing as a function of ‖x‖∞. Hence, Theorem 1 or Theorem 2 cannot be used.

Remark 2. Notice that Kantorovich’s Theorem 1 cannot apply, although F′ is Lipschitz continuous.

We look for a bound for ‖F′′(x)‖∞ in such domain ([6]). If x∗ solves Equation (16), we
have ‖x∗‖∞ ∈ [0, r1] ∪ [r2,+∞], where r1 and r2 (0 < r1 < r2) are roots of the scalar equation
t− µ‖A‖∞et = 0. (See Figure 2). We choose x0 such that x0 ∈ B(0, ρ) with ρ ∈ (r1, r2).
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ρ

r1 r2

Figure 2. ‖x∗‖∞ ∈ [0, r1] ∪ [r2,+∞).

Example 2. Let us consider Bratu’s Equation (12) with µ = 1, α = 0 and β = 1 to obtain r1 = 0.14247951 . . .
and r2 = 3.27838858 . . . By choosing ρ = 3, m = 8, x0 = 0 = (0, 0, . . . , 0)T , we see that with s0 = 0

‖F′′(x)‖∞ ≤ (0.12355899 . . .) e3 = 2.48174869 . . . = k,

k = 0.31123266 . . . , k = 0.35736407 . . . , k0 = 0.82724956 . . .

k < k < k0 < k

γ = 1.13821435 . . . , η = 0.13821435 . . .

so k̃ = ˜̃k = k0,

kγη = 0.39042265 . . . <
1
2

, k0γη = 0.13014088 . . . <
1
2

,

B(x0, s∗) ⊆ Ω = B(0, ρ), where s∗ = 0.18828503 . . .

B(x0, s∗) ⊆ Ω0, where s∗ = 0.14861209 . . .

B(x0, s∗) ⊆ Ω1, where s∗ = 0.14861209 . . .

The conditions of Theorem 2 hold.
Consequently, we obtain the solution x∗ = (x∗1, . . . , x∗8)T after three iterations (see Table 1).

Table 1. The solution x∗ of Equation (12) for µ = 1, α = 0 and β = 1.

n x∗n

1 0.0109342501 . . .
2 0.0518018395 . . .
3 0.1036467688 . . .
4 0.1393014227 . . .
5 0.1393014227 . . .
6 0.1036467688 . . .
7 0.0518018395 . . .
8 0.0109342501 . . .

Concerning Theorem 1, we define

f (t) =
k
2
(t− s0)

2 − t− s0

γ
+

η

γ
, with γ = − 1

f ′(s0)
and η = − f (s0)

f ′(s0)
, (19)
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as an auxiliary function to construct majorazing sequence {sn}. We also use the sequence
s0 = 0,

sn+1 = sn −
f (sn)

f ′(sn)
, n ≥ 0.

(20)

Note then that lim
n→+∞

sn = s∗ =
1−

√
1− 2kγη

kγ
, lim

n→+∞
sn = s∗ =

1−
√

1− 2k̃γη

k̃γ
,

lim
n→+∞

rn = r∗ = 0.1420714278 . . . and lim
n→+∞

rn = r∗ = 0.1415728924 . . .. We also obtain the a priori error

estimates shown in Table 2, which shows that the error bounds are improved under our new approach.

Table 2. Absolute error and a priori error estimates.

n ‖x∗− xn‖ |r∗− rn| |r∗− rn| |s∗− sn| |s∗− sn| |s∗− sn|
0 0.1393014227 . . . 0.1415728924 . . . 0.1420714278 . . . 0.1486120940 . . . 0.1486120940 . . . 0.1882850304 . . .
1 0.0010870679 . . . 0.0033585375 . . . 0.0038570729 . . . 0.0103977391 . . . 0.0103977391 . . . 0.0500706756 . . .
2 0.0000000702 . . . 0.0000019858 . . . 0.0000030075 . . . 0.0000585139 . . . 0.0000585139 . . . 0.0058088471 . . .
3 2.775557× 10−17 1.389915× 10−12 1.831368× 10−12 1.874082× 10−9 1.874082× 10−9 0.0000983546 . . .

In this section, we consider the alternative to Equation (4) condition

‖F′′(x)‖ ≤ ψ1(‖x‖) ≤ ψ(t− t0 + ‖x0‖) for ‖x− x0‖ ≤ t− t0.

since ψ1 is non-decreasing. Then, we look for a function f1

− 1
f ′1(t0)

= γ, − f1(t0)

f ′1(t0)
= η and f ′′1 (t) = ψ1(t− t0 + ‖x0‖). (21)

The solution of Equation (21) is given by

f1(t) =
∫ t

t0

∫ θ

t0

ψ1(ξ − t0 + ‖x0‖) dξdθ − t− t0

γ
+

η

γ
. (22)

Define also

f0(t) =
∫ t

t0

∫ θ

t0

v(ξ − t0 + ‖x0‖) dξ dθ − t− t0

γ
+

η

γ
·

We suppose in what follows that
f0(t) ≤ f (t).

Otherwise, i.e., if f (t) ≤ f0(t), then the following results hold with f0 replacing f1.
Notice that f1 is the function obtained by Kantorovich if t0 = s0 and ψ1(t− t0 + ‖x0‖) = k̃, k̃ ∈ R.
For Bratu’s equation, we have ψ1(t− t0 + ‖x0‖) = µ‖A‖et−t0+‖x0‖ and function (22) is reduced to

f1(t) = µ‖A‖e‖x0‖−t0
(
et + et0(t0 − 1− t)

)
− t− t0

γ
+

η

γ
, (23)

with γ and η defined in Equations (17) and (18), respectively. Next, we need the auxiliary results for
function f1.

Lemma 1. Let f1 be the function defined in Equation (23) and

α1 = ln

(
et0 +

et0−‖x0‖

γµ‖A‖

)
. (24)
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Then:

(a) α1 is the unique minimum of f1 in [t0,+∞).
(b) f1 is non-increasing in (t0, α1).

(c) If α1 ≥
1 + t0 + η + t0γµ‖A‖e‖x0‖

1 + γµ‖A‖e‖x0‖
, the equation f1(t) = 0 has at least one root in (t0,+∞). If t∗ is the

smallest positive root of f1(t) = 0, we have t0 < t∗ ≤ α1.

Next, we define the scalar sequence

t0 given, tn+1 = tn −
f1(tn)

f ′1(tn)
for all n = 0, 1, 2 . . . (25)

Lemma 2. If

α1 ≥
1 + t0 + η + t0γµ‖A‖e‖x0‖

1 + γµ‖A‖e‖x0‖
, (26)

where f1, α1 are given in Equations (23) and (24), respectively, then sequence (25) is increasingly convergent to
the smallest positive root t∗ of f1(t) = 0.

We need an auxiliary result relating sequence {xn} to {tn}.

Lemma 3. Let F : Ω ⊆ Rm → Rm. Let f1 be the function defined in Equation (23) and α1 in Equation
(24). If condition (26) is satisfied, then xn ∈ B(x0, t∗ − t0), for n ≥ 1, where t∗ is the smallest positive root of
f1(t) = 0. Then, sequence (25) is majorizing for the sequence {xn}:

‖xn+1 − xn‖ ≤ tn+1 − tn, n ≥ 0.

Proof. Observe that
‖x1 − x0‖ ≤ η = t1 − t0 < t∗ − t0.

We prove the following four items for all n ≥ 1:

(i) There exists Γn = [F′(xn)]−1 such that ‖Γn‖ ≤ − f ′1(tn)−1,
(ii) ‖F(xn)‖ ≤ f1(tn),
(iii) ‖xn+1 − xn‖ ≤ tn+1 − tn,
(iv) ‖xn+1 − x0‖ ≤ t∗ − t0.

Firstly, from

‖I − Γ0F′(x1)‖ ≤ ‖Γ0‖
∫ 1

0

∥∥∥F′′
(

x0 + θ(x1 − x0)
)∥∥∥ dθ‖x1 − x0‖

≤ γµ‖A‖e‖x0‖(et1−t0 − 1)

≤ 1−
f ′1(t1)

f ′1(t0)
< 1,

Γ1 exists and

‖Γ1‖ ≤
‖Γ0‖

1− ‖I − Γ0F′(x1)‖
≤ − f ′1(t1)

−1.

Secondly, from Taylor’s series and Equation (14),

F(x1) =
∫ 1

0
F′′
(

x0 + θ(x1 − x0)
)
(1 + θ) dθ(x1 − x0)

2,
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it follows that

‖F(x1)‖ ≤
∫ 1

0
µ‖A‖et0+θ(t1−t0)−t0+‖x0‖(1 + θ) dθ(t1 − t0)

2

= µ‖A‖e‖x0‖−t0
(

et1 − (1 + t1 − t0)et0
)

= f1(t1),

since ‖x0 + θ(x1 − x0)− x0‖ ≤ θ‖x1 − x0‖ ≤ θ(t1 − t0) = t0 + θ(t1 − t0)− t0.
Thirdly,

‖x2 − x1‖ = ‖Γ1F(x1)‖ ≤ −
f1(t1)

f ′1(t1)
= t2 − t1.

Fourthly,

‖x2 − x0‖ ≤ ‖x2 − x1‖+ ‖x1 − x0‖ ≤ t2 − t1 + t1 − t0 = t2 − t0 ≤ t∗ − t0.

Then, if (i)–(iv) hold for all n = 0, 1, 2, . . . , k, we show in an analogous way that these items hold
for n = k + 1 too.

The (C) conditions shall be used:

(C1) x0 ∈ Ω and there exists Γ0 = [F′(x0)]
−1 such that ‖Γ0‖ ≤ γ,

(C2) ‖Γ0F(x0)‖ ≤ η,
(C3) ‖F′′(x)‖ ≤ ψ1(t− t0 + ‖x0‖) for ‖x− x0‖ ≤ t− t0,
(C4) B(x0, t∗ − t0) ⊆ Ω, where t∗ is the smallest root of the equation f1(t) = 0 in [t0,+∞).

Notice that f ′1 is increasing and f ′1(t) > 0 in (α1,+∞), since ψ1(0) > 0, so that f1 is strictly
increasing in (α1,+∞). Hence, f1(t∗) = f2(t∗∗) with t∗ ≤ t∗∗.

Theorem 3. Assume conditions (C1)–(C4) are satisfied. If condition (26) is also satisfied, Newton’s sequence
given by Equation (14) converges to a solution x∗ of Equation (16). Moreover, xn, x∗ ∈ B(x0, t∗ − t0) and
‖x∗ − xn‖ ≤ t∗ − tn, for all n ≥ 0, where {tn} is defined in Equation (25). Furthermore, if t∗∗ > t∗, the
solution x∗ is unique in B(x0, t∗∗ − t0) ∩Ω.

Proof. Sequence {xn} converges, since {tn} is its majorizing sequence. Then, if x∗ = limn→+∞ xn,
‖x∗ − xn‖ ≤ t∗ − tn, for all n ≥ 0. Moreover, the sequence {‖F′(xn)‖} is bounded. By the
continuity of F, we have F(x∗) = 0, since ‖F(xn)‖ = ‖F′(xn)(xn+1 − xn)‖ ≤ ‖F′(xn)‖‖xn+1 − xn‖
and limn→+∞ ‖xn+1 − xn‖ = 0.

To show the uniqueness of x∗, let y∗ be another solution of Equation (16) in B(x0, t∗∗ − t0) ∩Ω.
Notice that y∗ = x∗. From

0 = F(y∗)− F(x∗) =
∫ y∗

x∗
F′(x)dx =

∫ 1

0
F′(x∗ + θ(y∗ − x∗)) dθ(y∗ − x∗),

it follows that x∗ = y∗, provided that the operator Q =
∫ 1

0 F′(x∗ + t(y∗ − x∗)) dt is invertible.
To prove that Q is invertible, we prove equivalently that there exists the operator P−1,
where P = Γ0

∫ 1
0 F′(x∗ + θ(y∗ − x∗)) dθ. Indeed, as∥∥∥∥I − Γ0

∫ 1

0
F′(x∗ + θ(y∗ − x∗)) dθ

∥∥∥∥ ≤ ‖Γ0‖
∥∥∥∥∫ 1

0

∫ x∗+θ(y∗−x∗)

x0

F′′(z) dz dθ

∥∥∥∥
≤ γ

∫ 1

0

∫ 1

0

∥∥F′′(x0 + s((x∗ − x0) + θ(y∗ − x∗)))
∥∥ ‖x∗ − x0 + θ(y∗ − x∗)‖ ds dθ
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< γ
∫ 1

0

(
((1− θ)‖x∗ − x0‖+ θ‖y∗ − x0‖)

∫ 1

0
µ‖A‖e‖x0‖+s(t∗−t0+θ(t∗∗−t∗)) ds

)
dθ

= γµ‖A‖e‖x0‖
(

et∗∗−t0 − et∗−t0

t∗∗ − t∗
− 1

)
= 1,

so P−1 exists.

Remark 3. We have by Equation (22) that f1(t + t0) = g(t), where

g(t) =
∫ t

0

∫ θ

0
ψ1(ξ + ‖x0‖) dξ dθ − t

γ
+

η

γ
·

Remark 4.
(a) If v = ψ = ψ1, the results in this study coincide with the ones in [4]. Moreover, if inequality in Equations

(9)–(11) is strict, then, the new results have the following advantages: weaker sufficient convergence
conditions, tighter error estimates on ‖xn+1 − xn‖, ‖xn − x∗‖ and at least as precise information on the
location of the solution x∗.

(b) These results can be improved even further, if we simply use the condition

‖F′′(x)‖ ≤ ψ2(t− t1 + ‖x1‖), ‖x− x1‖ ≤ t− t1,

and majorizing function f2 (as in f1 with ψ1 = ψ2, t0 = t1) (also see the numerical section).

Remark 5.
(a) It is worth noting that there are alternative approaches to the root-finding other than Newton’s method

[10,11], where the latter one has cubic order of convergence, whereas Newton’s is only quadratic.
(b) If the solution is sufficiently smooth, then one can use generalized Gauss quadrature rules for splines.

This way, instead of projecting f into a space of higher-degree polynomials as is done in our article, one
can project it to a spline space (see [12–14]). These quadratures in general do not affect the convergence
order, but they do make the computation more efficient, since fewer quadrature points are required to reach
a certain error tolerance.

4. Specialized Bratu’s Equation

Consider the equation

x(t1) =
∫ 1

0
T(t1, t2) ex(t2) dt2, t1 ∈ [0, 1]. (27)

We transform Equation (27) into a finite dimensional problem, as we have done above, with m = 8,
so that Equation (27) is equivalent to Equation (16) with µ = 1, α = 0, β = 1. For this case, we have

F′(x)y = (I8 − A diag{ex1 , ex2 , . . . , ex8})y

where y ∈ Rm, and
F′′(x)y z = −A(ex1 y1z1, ex2 y2z2, . . . , ex8 y8z8)

T ,

where y = (y1, y2, . . . , ym) and z = (z1, z2, . . . , zm).
In Section 2, we have seen that ‖F′′(x)‖∞ ≤ ‖A‖∞e‖x‖∞ , so that ‖F′′(x)‖∞ is not bounded.

Then, any solution x∗ of the particular system given by Equation (16) should satisfy ‖x∗‖∞ ≤
‖A‖∞e‖x∗‖∞ . We can take the region B(0, ρ), with ρ ∈ (r1, r2) and r1 = 0.14247951 . . . and
r2 = 3.27838858 . . ., where ‖F′′(x)‖∞ is bounded and contains the solution x∗ (see Figure 2).
The convergence of Newton’s method to x∗ follows Kantorovich’s Theorem 1.
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In Theorem 3, set t0 = 0 and ρ = 3 (according to Remark 3), we have

‖F′′(x)‖∞ ≤ ‖A‖ et+‖x0‖∞ ≤ ‖A‖e3,

so, we can choose ψ(t) = ‖A‖e3 and

f (t) = ‖A‖
∫ 3

0

∫ θ

0
e3 dξ dθ − t

γ
+

η

γ
·

Then, function f (t) is defined by

f (t) =
9
2
‖A‖e3 − t

γ
+

η

γ
·

Using conditions (6) and (7), we have

v(t) = µ‖A‖et,

ρ1 = 1.961575 . . .

and
ψ1(t) = ‖A‖eρ1 .

Then, we define

f1(t) = ‖A‖
∫ ρ1

0

∫ θ

0
eρ1 dξ dθ − t

γ
+

η

γ

so

f1(t) =
ρ2

1
2
‖A‖eρ1 − t

γ
+

η

γ
·

Next, we find the solutions t∗ and t∗1 of the equations f (t) = 0 and f1(t) = 0 to be, respectively:

t∗ =
9
2

γ‖A‖e3 + η = 12.849643 . . .

and
t∗1 =

9
2

γ‖A‖eρ1 + η = 2.062104 . . . .

We see that t∗1 ∈ (r1, r2) but t∗ /∈ (r1, r2). Then, the results in [4] cannot assure convergence to x∗
but our results guarantee convergence.

Moreover, we have that

t0 < t∗ = 2.062104 . . . < α1 = 2.0931624 . . . .

5. Conclusions

In this article, we first introduce new Kantorovich-type results for the semilocal convergence
on Newton’s method for Banach space valued operators using our idea of convergence regions.
Hence, we expand the applicability of Newton’s method. Then, we focus our results on solving
Bratu’s equation.
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