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Abstract: The identification of a reduced dimensional representation of the data is among the main
issues of exploratory multidimensional data analysis and several solutions had been proposed
in the literature according to the method. Principal Component Analysis (PCA) is the method
that has received the largest attention thus far and several identification methods—the so-called
stopping rules—have been proposed, giving very different results in practice, and some comparative
study has been carried out. Some inconsistencies in the previous studies led us to try to fix the
distinction between signal from noise in PCA—and its limits—and propose a new testing method.
This consists in the production of simulated data according to a predefined eigenvalues structure,
including zero-eigenvalues. From random populations built according to several such structures,
reduced-size samples were extracted and to them different levels of random normal noise were
added. This controlled introduction of noise allows a clear distinction between expected signal and
noise, the latter relegated to the non-zero eigenvalues in the samples corresponding to zero ones in
the population. With this new method, we tested the performance of ten different stopping rules.
Of every method, for every structure and every noise, both power (the ability to correctly identify the
expected dimension) and type-I error (the detection of a dimension composed only by noise) have
been measured, by counting the relative frequencies in which the smallest non-zero eigenvalue in the
population was recognized as signal in the samples and that in which the largest zero-eigenvalue
was recognized as noise, respectively. This way, the behaviour of the examined methods is clear and
their comparison/evaluation is possible. The reported results show that both the generalization of
the Bartlett’s test by Rencher and the Bootstrap method by Pillar result much better than all others:
both are accounted for reasonable power, decreasing with noise, and very good type-I error. Thus,
more than the others, these methods deserve being adopted.

Keywords: Principal Component Analysis; stopping rules; simulated data; rules comparison

1. Introduction

The definition of methods able to identify a suitable dimension of the representation space to
consider for exploratory multidimensional analyses have been long investigated in the literature. In
exploratory analysis, the inertia of a cloud of points is interpreted as its amount of information and it
is usually split into additive components along orthogonal linear spaces, such as straights and planes.
Thus, most methods sort dimensions according to the amount of information each may carry, which is
the inertia along them, so that the first gather the most and very little usually results for the last ones.
In general, limiting attention to the first few directions corresponds to the current practice, although not
necessarily to the spirit of the exploratory analysis paradigm: indeed, the poor inertia attributed to an
axis may not alone justify its drop—Gnanadesikan and Kettenring [1] stated that the last components
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may carry relevant informative power—unless one may clearly prove that their content is only noise,
that is unstructured random variation. Thus, a stopping rule should mainly help in this crucial proof,
but its use, even the best possible, could be either limiting or misleading, unless the information it
provides is critically used in the study and not only to drop dimensions without care.

Dealing with Principal Component Analysis (PCA, [2–4]), several stopping rules have been
developed thus far, all aiming at identifying a suitable dimension to which limit the study, supposing
that they contain all the information relevant to the researcher. According to their rationale, they may
be roughly classified into four classes: (1) thumb rules, based on empirical results; (2) parametric
rules, based on statistical distributions; (3) distribution free rules, based on re-sampling; and
(4) cross-validation rules, based on the goodness of fit of the solution to the original data. The
first, such as Kaiser–Guttman [2,5,6] and scree-plot [7], have been severely criticized [2,8,9] for both
their theoretical inconsistency and their poor performance, but are currently the most used in practice.
Among the second, the Broken Stick method [10–12] and Bartlett’s [13] test are well appreciated. The
distribution free methods were proved to perform much better than all others by Peres-Neto et al. [9]:
for some of them confidence intervals or probabilities may be built via a Monte-Carlo simulation based
on bootstrap or permutation re-sampling. Methods of cross-validation are discussed by Jolliffe [2]. They
correspond to a modelling approach, which is the ability of a reduced-dimensional solution to rebuild
sufficiently well the original data table. The methods of Wold [14] and Eastment and Krzanowski [15]
are based on the improvement of an r-dimensional prediction in respect to an r− 1-dimensional one
for each entry of the data table, obtained by excluding the original entry in the estimation process.
Eventually, methods based on Bayesian statistics [16–18] have been developed in more recent years.
Unfortunately, for the latter and for cross-validation rules prediction seems very complicated to
implement, thus in our experimentation we considered only the method proposed by Pillar [19], which
approaches the cross-validation framework.

Several studies and comparisons may be found in the literature (see, among others, the discussion
in Jolliffe [2] and the experimentations carried out by both Jackson [8] and Peres-Neto et al. [9] with
simulated data of known correlation structure and, more recently, Vieira [20]). In particular, in [9],
computation-intensive re-sampling methods have been used among the many tested: these methods
behaved much better than the others. These comparisons were carried out on simulated datasets whose
known structure consisted in an a priori fixed correlation among the used variables: they defined a
block structure of the correlation matrices, and set constant correlations between variables—higher
within the same block and lower between different ones. This way, according to the correlation values,
the block structure could result differently sharp. Then, random datasets with this correlation structure
have been built, on which PCA was run and the stopping rules were applied. This method was adopted
also by Caron [12] to study the Broken Stick rule and by Camiz and Pillar [21] to study the performance
of methods to classify variables.

Both Jackson [8] and Peres-Neto et al. [9] considered the number of relevant principal components
coincident with the number of the defined blocks and with respect to this number evaluated the
stopping rules. Feoli and Zuccarello [22] discussed this relation in the extreme case of block
matrices—that is, with zero correlation between blocks—but this does not seem consistent in general,
because no theoretical relation a priori exists between factors and partially correlated blocks of
correlated variables. Indeed, a block may be described by more than one factor, in particular with
medium within blocks correlations, and the mix of low within blocks and high between blocks
correlations makes unpredictable the PCA results, since their effects on the eigenstructure may not be
known. Oppositely, as most methods deal with the eigenvalues, these are the most relevant elements
that must be controlled in a comparison concerning different methods. For this reason, we propose
here an alternative protocol, in which both the factorial structure and the introduced noise are clearly
fixed, so that the stopping rule qualities may be more reliably checked. The new simulation protocol
uses datasets of known eigenstructure and is applied in parallel to ten stopping rules, some of which
were studied by Peres-Neto et al. [9].
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We may consider two situations regarding finding the true dimension in principal component
analyses: the need of a full reconstruction of a data table through orthogonal factors, such as in
regression on principal components [23], that requires all the factors corresponding to non-zero
eigenvalues, and the long-lasting study where factors are considered one by one and studied
individually. In the latter case, starting from the factors that correspond to the largest eigenvalues, one
proceeds asymptotically to interpret them and derives progressively some provisional conclusions,
until no further interpretation may be found. This is achieved considering that the main factors
correspond either to groups of variables with relevant nearly linear relations [2] or to variables
independent from the others. Given the exploratory character of the analysis, in this recursive study,
all possible interpretation helps are useful: the share of information progressively explained, the
relations between the factors and both variables and units, the quality of partial reconstructions given
by a limited number of factors, are all elements that contribute to form a thorough description of
the data structure. In this context, the suggestion given by a stopping rule might corroborate the
lack of a possible interpretation of the last dimensions, preventing a fanciful reconstruction or, on the
opposite, encourage the search for a difficult interpretation that otherwise could be lost (see, e.g., [24]).
This could be crucial, should the defined dimensions be used to carry out further analyses, such as
confirmatory factor analysis or clustering on factor scores: in this case, one may risk to either introduce
noise (overestimation) or lose information (underestimation) in the analysis, also causing distortion
in the pattern of variation/covariation [25,26]. Nevertheless, since Karr and Martin [27] observed
that the percentage of inertia attributed to principal components derived from real data may not be
substantially greater than that derived from randomly generated ones, attention may not be limited
only to the eigenvalues pattern, but other elements need to be considered seriously.

Moreover, there are frameworks, e.g., plant and/or animal community studies, in which PCA
is mainly used to identify the main factors of variation. For these cases, it is claimed that 10–50% of
a typical community inertia is considered noise [28], which is variation not particularly interesting
for the study at hand. This is but one of the instrumental uses of PCA: in this case, the failure to
distinguish between relevant data and noise may lead to the rejection of useful information, therefore
limiting the understanding of ecological processes, or to attempt an interpretation of noise, driving to
erroneous conclusions biased by essentially ecologically meaningless patterns [29]. Thus, situations
exist in which a stopping rule may be important, especially when one deals with a sample. In this case,
a suitable decision method might inform on the stability of the identified pattern across samples, an
actually relevant issue when inference of results is forecast.

Unfortunately, in the quest for a stopping rule for PCA, we face terms such as “summarize most”
of information, rebuild “at the best” the original table, “relevant” vs. “non-relevant” information, and
“drop without damage”, i.e., terms whose consistency is poor. Indeed, even terms such as “signal”
and “noise” or “error” may be misleading. In the following, we adopt two terms, signal and noise, to
distinguish between what the researcher expects to identify and wishes to communicate as results of
his/her work, and what does not add anything but individual random variation to what was found.
In our experimentation, we define a data structure (the signal), we add noise to it and we check to
what extent the methods under test are able to correctly distinguish between them.

2. Materials and Methods

2.1. Definition of Signal and Noise

The identification of the non-considered components—usually called residuals—with noise is
far from the exploratory framework of PCA, in which the evaluation of the inertia explained by the
chosen reduced dimensional solution is an indication of its relative relevance within the dataset but no
more. Indeed, PCA transforms the original data matrix into another with the same rank—i.e., the same
number of linearly independent characters—in which the columns are orthogonal to each other—thus,
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non-correlated—and ordered according to their relative importance—expressed as the share of inertia
they are accounted for.

Consider a data table T with n units and p characters. The PCA of T may be fully described
by the eigendecomposition of its associated correlation matrix. Given the real n × p matrix X of
the standardized characters of T, we derive U and V , the unit matrices of eigenvectors of 1/n XX ′

and 1/n X ′X (the correlation matrix of T), respectively, and Λ the diagonal matrix of the common
eigenvalues. The new characters are valued on the units according to the columns of the matrix U

√
Λ

(the units’ coordinates) and their correlations with the old ones are given by the matrix
√

ΛV . Indeed,
as PCA is based on the Singular Value Decomposition (SVD, [30]), which states that X = UΛV ′, both
its reconstruction formula

xij =
p

∑
k=1

√
λkuikvjk, i = 1, . . . , n, j = 1, . . . , p (1)

and the Eckart and Young [31] theorem ensure that the partial reconstruction X̃r, given by

x̃ij,r =
r

∑
k=1

√
λkuikvjk, i = 1, . . . , n, j = 1, . . . , r ∀r < p (2)

is the best in the least-squares sense, on condition that the eigenvalues have been sorted in descending
order. For this reason, it is current practice to limit attention to the first few dimensions, considering
that the weight of each member of the sum in Equation (1) depends upon

√
λk, supposed decreasing

with increasing k. Thus, we may write

xij =
r

∑
k=1

√
λkuikvjk + εij,r, i = 1, . . . , n, j = 1, . . . , r ∀r < p (3)

with Ẽr, given by

εij,r =
p

∑
k=r+1

√
λkuikvjk, i = 1, . . . , n, j = 1, . . . , p, (4)

a residual part not considered by the partial r-dimensional reconstruction of Equation (2). This led
Peres-Neto et al. [9] to define as “non-trivial” the factors that carry relevant information and “trivial” the
residuals, which are considered degenerate, thus carrying only noise. This is an erroneous consequence,
since residuals in Equation (4) are not necessarily noise: the theorems simply state that their inertia
is minimum and that the εij,r are centred and vary orthogonally with respect to the corresponding
partial solution X̃r in Equation (2). It could be considered noise only if it would meet the ordinary
assumptions, that is to be random variations around a theoretical model, independent, with zero
expectation, equal variance and normally distributed: all issues that might be specifically ascertained.

We may better understand this issue if we compare these formulas with those of
Factor Analysis [2,32]: in factor analysis the estimation of the xij is performed through a prefixed
reduced number q < p of factors y1, y2, . . . , yq, usually but not always orthogonal, so that the
model holds

xij =
q

∑
k=1

sikljk + εij, i = 1, . . . , n, j = 1, . . . , p (5)

with sik, ljk unit scores and factor loadings to be estimated and εij an error term that also accounts
for specific variable’s variation [2], for which the ordinary assumptions (centered, independent,
uncorrelated, and identically—hopefully normally—distributed) are expected. Unlike these, the εij,r
are issued by Equation (4) and as such are in principle structured, so that they might be inspected in
detail. Indeed, for this reason, the algorithm of factor analysis is different from that of PCA.

A tentative solution could be sought comparing the eigenvalues with those issued from a Wishart
matrix, something analogous to either Malinvaud [33] or Ben Ammou and Saporta [34] tests for
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significance for single and multiple correspondence analysis, respectively. The Wishart’s is the
covariance matrix of a set of independent normal random variables [35]. Regrettably, its use to
identify a random component in the data, relegated to the least non-significant eigenvalues, seems in
practice impossible (see the discussion in [6] Section 3.6).

In the case of PCA, the structure of the data table is investigated through either the covariance
or the correlation matrices between the variables: in this paper, we limit our attention to correlation
only, although the inference studies for PCA based on the covariance matrix do not apply to
correlation [2,36,37]. This may be a limit for our study, but it corresponds to the most adopted
way of using PCA.

An interesting alternative was found in the recent years, in which the data distribution
requirements for the application of a specific statistics have been overcome by re-sampling techniques
that allow simulating the distribution of the sought parameters based on the observed data [38,39]. The
re-sampling techniques have been found useful in all situations in which either no known distribution
would fit the data or a non-parametric test would be necessary. This is particularly relevant for PCA
eigenvalues, whose distribution is not known. Efron and Tibshirani [40] studied the use of bootstrap in
PCA context. Pillar [19] incorporated permutations into his Bootstrap method (see also Lebart et al. [4]
for a discussion). We adopt it to check the significance of the results provided by the tested rules.

2.2. Stopping Rules

As already discussed, there are various types of stopping rules for PCA. Our choice among them
depended either from their large use, their best performance according to previous tests, or because
apparently they had never been compared to the others and could be easily implemented. The methods
submitted to our test are described in the following. They are identified by acronyms (indicated within
parentheses) to be used in the discussion of the results and in the graphics.

2.2.1. Kaiser–Guttman

The Kaiser-Guttman test (Guttman1 and Guttman07; [2]) is the most known thumb rule, based on
the idea that, in PCAs based on a correlation matrix, only the principal components whose inertia is
larger than the mean (that equals 1) should be considered, since they summarize more inertia than
one original (standardized) variable. The assumptions are that a significant eigenvalue should be
larger than a random one (= 1) and that principal components should be a synthesis of more than one
variable, a point of view more related to factor analysis, where factors common to all variables are
sought, than to PCA. Jolliffe [2,6] criticized this idea, stating that a principal component not too much
smaller than 1 may be very strongly correlated with one variable very different from the others, and
thus it might not be ignored in an exploratory framework. Thus, he suggested paying attention even
to eigenvalues larger than 0.7. We included this rule because it is largely adopted and we chose both
1.0 and 0.7 as thresholds to identify the data dimension according to this rule.

2.2.2. Broken Stick

The Broken Stick statistical test (BrokenStick; [41]) is based on the expected distribution of the
lengths (in decreasing order) of p subintervals obtained by a random choice of p− 1 cut-points of the
real interval [0, 1] [41]. Frontier [10], see also [11] argued that the total inertia of a data table, should
the eigenvalues be random, would be distributed according to these lengths in the same way, that
is “broken down” into principal components similar to how a stick is randomly broken into p pieces.
Thus, the absolute length of each piece relative to the whole (supposed to equal p, the number of
eigenvalues), sorted in decreasing order, is expected to be

lk =
1
p

p

∑
i=k

1
i

(6)
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The rule establishes that every eigenvalue λk > lk that is larger than the corresponding expected
“broken” piece is non-random and thus the corresponding dimension a true piece of information.
Indeed, this formula only depends upon the number of variables. In our test, each non-random
eigenvalue was counted as signal.

2.2.3. Information Dimension

The Information Dimension method (Entropy; [42]) is based on information theory, i.e., on the
measure of entropy of a set of real values, with the introduction of the (empirical) concept of information
dimension. Entropy is commonly considered a distribution statistics for qualitative characters, for

which the variance does not make sense. It is based on the relative frequencies pi

(
with

s
∑

i=1
pi = 1

)
of the supposed s levels of the character, giving H = −

s
∑

i=1
pilog2 pi. The entropy H ranges from 0,

when only one level is present, thus p = p1 = 1 (maximum order), to log2s when the observations
are equally distributed within the s levels

(
with pi =

1
s , for every i

)
(maximum disorder). As the

eigenvalues sum up to the total inertia of the data table, the quantity pi =
λi

traceΛ may be taken as a
relative frequency of inertia “units” along a PCA axis. Thus, the entropy is a measure of their scattering.
As Cangelosi and Goriely [42] empirically found that the information dimension

dimI = 2H =
s

∏
i=1

p−pi
i (7)

approaches the geometrical dimension in some known cases, they suggested considering the highest
integer smaller than dimI as the number of informative dimensions. In fact, dimI is the equivalent
number of identical eigenvalues for the same value of H [43].

2.2.4. Rencher Bartlett-Kind Test

The Rencher Bartlett-Kind Test (Gen–Bartlett; [3]) is based on Bartlett [13] test for spherical
distribution, which checks for significance the first eigenvalue only, thus ensuring that the data
table at hand is non-random and worthy of consideration. Rencher [3] generalized this test, aiming at
checking whether each sequential eigenvalue is significantly different from the remaining ones. The
resulting test is based on the statistics for the kth eigenvalue, k = 1, . . . , p:

χk =

(
n− 2p + 11

6

)(
klogeλ̄−

p

∑
i=k

logeλi

)
, with λ̄ =

p
∑

i=k
λi

(p− k + 1)
, (8)

chi-square distributed with
(p− k) (p− k + 3)

2
degrees of freedom. Thus, the dimension k is

considered signal on condition that the chi-square test on the corresponding eigenvalue is significant
at a specified α probability threshold level.

2.2.5. Eigenvalues p-Value

This Eigenvalues p-Value test (Rnd-Lambda; [44]), together with the following three, may be
considered distribution free. Apart from RVDim discussed in Section 2.2.7, no particular rationale was
found in the literature, unless the choice to compare the found value with the empirical distribution
obtained by parallel/randomization/permutation methods.

In this test, each eigenvalue λk is compared to the corresponding λ◦k obtained from the data
after random permutation of the values within each variable. If the p-value is significant, then its
corresponding dimension is considered signal.
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2.2.6. Pseudo-F Ratio

For each eigenvalue, the Pseudo-F Ratio test (Rnd-F; [45]) considers the ratio between the variance
carried out in descending order by each dimension k and the residual attributed to the following s− k:

PFk =
λk
s
∑

j=k+1
λj

, (9)

hence its name. This pseudo-F is compared to the corresponding PF◦k obtained through permutation.
If the p-value is significant, then its corresponding dimension is considered signal. The high
resemblance of this test with Dray’s test [26] described in the following must be noted.

2.2.7. RV Coefficient

As shown below, the RV Coefficient method (RVDim; [26]) is similar to the previous, but its
building and its rationale deserve some attention for their meaning. Its understatement is that a
relevant correlation between a matrix layer and the whole one could mean a major importance of the
factor generating this layer with respect to the others.

The method checks step-by-step whether the kth one-dimensional layer in the SVD adds
non-random information to the already built (k− 1)-dimensional reconstruction: this is assumed by
checking the ability of the kth layer to represent the residual of the said reconstruction. As a measure
of reconstruction the RV index is used: first introduced by Escoufier [46] as a measure of (unsigned)
correlation among vectors, it was later extended by Robert and Escoufier [47] to the case of matrices
representing configuration or clouds of points in multidimensional spaces. The RV coefficient is based
on the concept of sum of squares: given two matrices of coordinates of the same n units, Xn×p and
Yn×q, both XX ′ and YY ′ are symmetrical n× n matrices of scalar products between rows. As such,
they summarized the relations existing among the units in each cloud in the space of representation.
Thus, the coefficient

COVV(X, Y) = tr(XX ′YY ′) (10)

is a scalar product between X and Y , that gives an overall measure of the relations existing between
the two clouds of points analogous to covariance. Thus, the standardized coefficient

RV(X, Y) =
COVV(X, Y)√

COVV(X, X)COVV(Y , Y)
(11)

ranges [0, 1] and may be taken as unsigned correlation between X and Y .
Dray [26] used RV and random permutations to check whether or not the contribution of every

dimension to the reconstruction of the original data table, based on Eckart–Young singular value
decomposition, may be considered relevant. For this task, he considered at each step k = 2, . . . , p
the residual matrix in Equation (4) Ẽk−1 and computes through RV its correlation with its first layer
Xk = (λ1/2

k ui,kvj,k), to check if this may represent it significantly. What is noteworthy is that Dray
proves that

RV(Ẽk−1, Xk) =
λk√
p
∑

j=k
λ2

j

(12)

with λ1/2
k the singular values of X. Thus, no important extra computation is needed to get it, and it

results very similar to Rnd-F (Section 2.2.6). In addition, Josse et al. [48] proposed three approximations
of the RV distribution that may be used to estimate its quantiles and thus avoid the time-consuming
randomization. As we were using permutations for the other methods, we did not take advantage of
this feature. If the p-value is significant, then its corresponding dimension is considered signal.
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2.2.8. Random Average under Permutation

The Random Average under Permutation test (Avg-Rnd; [9]) consists on comparing each eigenvalue
to the average of the corresponding ones generated under the permutation procedure described for
Rnd-Lambda and Rnd-F, considering signal its dimension if it is larger than the average.

2.2.9. Bootstrap and Parallel Permutation

The Bootstrap and Parallel Permutation method (Bootstrap, [19]) aims at identifying the probability
associated to the eigenvalues through the cross-correlation between the units’ coordinates issued by
the PCA of the original data table and those issued from the bootstrapped samples. The algorithm
steps are the following, once an α probability threshold level is fixed for significance:

1. Apply PCA to the original matrix Xn×p, saving the resulting units’ coordinates in a matrix Y .
2. Extract from the units set (the pseudo sampling universe in bootstrap re-sampling) a bootstrap

sample of size s > p, e.g., a data table XB, and submit it to PCA, obtaining a matrix of
coordinates YB.

3. Due to the nature of the bootstrap sampling (extraction of units with replacement, and thus
possible repetition), the units in XB are a subset of X. Thus, from Y , a matrix YR must be extracted,
with the same units and in the same order of YB.

4. For each dimension k of PCA, after a Procrustes adjustment [49] and using the first k principal
components, compute the Pearson correlation θk = r(yRk, yBk) between the coordinates of the kth
principal components of YR and YB, respectively; the higher is this correlation, the better is the
agreement between bootstrap and reference ordination and the more stable is its representation
through the k-dimensional sample.

5. Generate a matrix X◦ by randomly permuting the data within each variable of X and repeat
Steps 1–4 for this new matrix.

6. Compare the correlation θk with the correlation θ◦k obtained at Step 5.
7. Repeat Steps 1–6 B times to get a p-value as the proportion of permutations for which resulted

θ◦k ≥ θk.
8. Starting with the least ordination axis, and iterating towards the first one, a p-value ≤ α suggests

that this dimension is significantly more stable than the one found for the same dimension in the
PCA of a random dataset. Thus, it is interpreted as signal.

9. Once the kth dimension is deemed to carry signal, the test may stop and all k− 1 larger dimensions
are also taken into account, irrespective of their corresponding probabilities. Otherwise, the kth
ordination dimension is considered noise, because it is both unstable and indistinguishable from
an ordination of random data, and the probability of the next (k− 1)th axis is examined. See
Pillar [19] for further details.

Two interesting features of Pillar’s method deserve being highlighted:

1. As the comparison between real and bootstrapped data is performed considering the correlation
among units’ coordinates, the method works with any kind of multidimensional scaling (including
non-metric one) applied to any kind of data and resemblance measure. In addition, other measures
of agreement, such as rank correlation, may be used instead.

2. The bootstrap procedure to build the empirical probability of the obtained correlation may be
repeated for the increasing size s of the bootstrapped sample, up to the table size n. This way
the method is able to evaluate the sufficiency of the sample size, as it results by the stability of
probabilities across increasing bootstrap sample sizes (as in [50]). Indeed, while increasing the
sample size, should the probabilities P(θ◦k > θk) associated to the kth dimension keep stable and
larger than α, this ordination axis is truly noise. Should they be decreasing, but still larger than
α even with a bootstrap sample of size n, this may be interpreted as the need of an even larger
sample size to ensure that the ordination axis under examination is confirmed as either signal
or noise.
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In this work, due to our interest to compare PCA stopping rules by applying them to simulated
data, we do not consider here these specific features, that are discussed in Pillar [19].

2.3. The Simulation

As our aim was to check to what extent a stopping rule is able to distinguish signal from noise,
simulated data were generated by considering a deterministic structure, with known eigenvalues and
eigenvectors, to which noise was added.

2.3.1. Data Generation

To generate data with a known eigenstructure, we applied the following iterative procedure:

1. The eigenvalues of the simulated data are specified and normalized to sum up to their number.
2. A data table is built with random numbers extracted from a specified distribution, representing a

large number of units in rows and a specified number of variables in columns.
3. The PCA of the data table is computed.
4. The data table is reconstructed through Equation (1), substituting the eigenvalues issued by the

PCA with the predefined ones.
5. Steps 3 and 4 are iterated. This way the data table’s eigenvalues converge to the predefined ones,

ensuring that the sum of the absolute differences between specified and resulting eigenvalues
through iteration converges to zero. The procedure stops when the sum results less than a
threshold, here fixed at 10−5.

6. A random sample with the specified number of units is extracted.
7. Noise is added to the sample. It is a normally distributed random variable with zero mean

and specified variance. The larger is the variance, the larger is the noise added to the defined
eigenstructure. This way, to population zero-eigenvalues may correspond non-zero ones in
the samples.

In our tests, we started from the idea that, in a PCA performed on a population, all non-zero
eigenvalues are signal. In particular, zero eigenvalues appear when linear dependence exists among
variables: in this case, the true dimension of the space in which the population cloud is embedded
corresponds to the number of non-zero eigenvalues. Indeed, taking a non-noisy sample, its non-zero
eigenvalues may differ from those of the population (they may also be zero), but none is an estimate of
a zero eigenvalue of the population. On the other side, if we introduce artificially some noise, the noisy
sample’s PCA would give the expected non-zero eigenvalues slightly modified and some random
non-zero ones that are estimates of the zero-eigenvalues of the population. This means that the signal
contained in the sample may be different but keep its dimension, whereas the noise could be identified
by the non-zero estimates of the zero-eigenvalues. This is a new paradigm that we are using to check
the performance of stopping rules. Indeed, they are correctly identifying this distinction between
signal and noise, when they point the true population dimension.

2.3.2. The Experiment

We tested the stopping rules using simulated datasets composed of 9 variables with 11 pre-defined
eigenstructures. Their relative proportions are shown in Table 1: their real values are obtained by
multiplying them by 9, but this way it is easier to appreciate the different structures. Note that the
true population dimension varies from 1 to 7, according to the non-zero eigenvalues, so that zero
eigenvalues are expected to fill the gap to 9. The simulated data were prepared as follows:

1. A population with 1000 units and 9 variables was generated with the procedure described in
Section 2.3.1 with the specified eigenvalues.

2. A sample with 30 units was randomly extracted from the population.
3. To each simulated observation noise was added, extracted by a normally distributed random

variable with zero mean and fixed variance.
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4. PCA was computed on the sample and the eigenvalues were sorted according to decreasing size.
5. The ten methods were applied. For the distribution-free rules, each obtained statistics θ was

compared to a number B of statistics θ◦ obtained by applying the same method with the
observations randomly permuted within each original variable. Then, a p-value for θ was
calculated by the proportion of permutations for which resulted θ◦ ≥ θ. If the p-value was
smaller or equal than α = 0.05, it was considered significant and its corresponding dimension
accounted for signal. Since α = 0.05 and 1000 tests were applied in the following step, we set
B = 20 permutations, considering that in each distribution-free test this was enough to know
whether p− value ≤ 1/20 = 0.05.

6. Steps (1)–(5) were repeated 1000 times for each of the 11 eigenstructures and each of nine fixed
noise variances, ranging from 0 (no-noise) to 0.08 with step 0.01. For each repetition, a check was
done whether the method correctly identified the expected dimension of the signal and treated
the following as noise. This gave the proportion of correct answer for both power and type-I
error, respectively.

7. For each method, mean power and type-I error resulted for 99 combinations of 11 eigenstructures
and 9 noise levels.

The procedures for data generation and testing of the stopping rules we describe here were
implemented in the package MULTIV, coded in C++, with compiled versions available for download
at http://ecoqua.ecologia.ufrgs.br/MULTIV.html. A script with the options chosen in MULTIV to
carry out our experimentation is available as supplementary material S1 online.

Table 1. Relative proportions of eigenvalues of the 11 simulated data structures used for testing the
stopping rules prior the introduction of noise. In the last columns, the true dimension of the data
and the ratio between the first and the last non-zero eigenvalues are shown. The eigenvalues of the
noise-free data structures correspond to these proportions multiplied by 9.

Eigen Specified Eigenvalues (Proportions) TrueDim Ratio

#1 1 0 0 0 0 0 0 0 0 1 1.0

#2 0.810 0.140 0.050 0.000 0.000 0.000 0.000 0.000 0.000 3 16.1

#3 0.545 0.273 0.182 0.000 0.000 0.000 0.000 0.000 0.000 3 3.0

#4 0.416 0.315 0.268 0.000 0.000 0.000 0.000 0.000 0.000 3 1.6

#5 0.568 0.201 0.109 0.071 0.051 0.000 0.000 0.000 0.000 5 11.2

#6 0.359 0.221 0.167 0.136 0.117 0.000 0.000 0.000 0.000 5 3.1

#7 0.251 0.211 0.191 0.178 0.168 0.000 0.000 0.000 0.000 5 1.5

#8 0.386 0.193 0.129 0.096 0.077 0.064 0.055 0.000 0.000 7 7.0

#9 0.225 0.170 0.145 0.129 0.118 0.110 0.103 0.000 0.000 7 2.2

#10 0.181 0.157 0.145 0.137 0.131 0.126 0.122 0.000 0.000 7 1.5

#11 0.143 0.143 0.143 0.143 0.143 0.143 0.143 0.000 0.000 7 1.0

3. Results

To report the results of the experiment, we consider of high interest the detailed study of the
variation of both power and type-I error according to the different data tables’ eigenstructures and
the increasing noise. They are all reported as supplementary material S2 online. For all methods at
hand, we report in Figure 1, in Columns 1 and 3, the variation of power and, in Columns 2 and 4, the
type-I error with respect to the increasing noise added to the simulated data for the different data
structures. Actually, the reported power refers to the detection of the last dimension identified as signal
and the type-I error refers to the first detection of noise. Here, we consider noise all the dimensions

http://ecoqua.ecologia.ufrgs.br/MULTIV.html
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whose non-zero eigenvalues correspond to the zero-eigenvalues of the population, since they result
essentially from the introduced noise. Thus, type-I error is a good measure of the methods’ quality
with respect to the noise variation.

Figure 1. Experiment results. The graphics represent the power and type-I error of the ten stopping
rules for PCA in defining both signal and noise dimensions under increasing levels of added noise
(horizontal axis), considering nine variables with normal distribution and sample size of 30 units. The
coloured lines correspond to the eigenstructures of the simulated datasets defined in Table 1. Columns 1
and 3: Graphs for power, referring to the last signal dimension. Columns 2 and 4: Graphs for type-I
error, referring to the first noise one.

Looking at the power graphics (Figure 1, Columns 1 and 3), we identify five methods, BrokenStick,
Gen–Bartlett, Rnd-Lambda, RVDim, and Bootstrap, whose power in general decreases regularly with the
increase of noise: however, for some data structures, all these methods but Gen–Bartlett and Bootstrap
show low power even with the least noise. Unlike these, Rnd-F presents a low power under zero noise,
but then behaves similarly to the other methods. The behaviour of the remaining methods is strange:
Guttman1, Guttman07, and Entropy increase their power with increasing noise, but this is limited to
some eigenstructures only. Avg-Rnd shows a distinct behaviour compared to the other methods.
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Looking at the type-I error graphics (Figure 1, Columns 2 and 4) we find two methods, BrokenStick
and Rnd-Lambda, whose type-I error is in practice null in every case; then Gen–Bartlett, Bootstrap, RVDim,
and Rnd-F show a uni-modal pattern, with a peak corresponding to the first level of non-zero noise.
The peak is increasing from Gen–Bartlett to Rnd-F in this same order. Regarding the other methods,
with increasing noise the type-I error sharply increases, but less with Avg-Rnd.

To summarize the results of the ten methods under examination, we applied Principal Coordinates
Analysis (PCOA, [11]) to the results of the simulations for the 10 stopping rules, using 198 descriptors
corresponding to both power for the last signal dimensions and type-I error for the first noise ones, in
cross-reference to all levels of noise. In Figure 2, the ten methods are represented on its first principal
plane: their reciprocal positions describe both their power and type-I error. Here, the pattern shows
(from right to left on the first axis, but with an arch-effect involving the second one) Entropy, Guttman07,
Guttman1, and Avg-Rnd are indeed the worst performing methods, especially in view of their increasing
type-I error with increasing noise, followed by Rnd-Lambda, BrokenStick, RVDim, and Rnd-F, with good
performance in terms of power and type-I error, and, on the higher end of the second axis, Bootstrap
and Gen–Bartlett are the best performing in terms of both power and type-I error.

Figure 2. Ordination of the 10 stopping rules based on their performance. Each method was described
by a total of 198 descriptors, which corresponded to the power and type-I error using different options
for simulated data generation: sample size of 30 units, 11 eigenstructures (see Table 1) and 9 increasing
levels of introduced noise (starting from zero). Power was the proportion of simulated data in which
the last informative dimension in the specified eigenstructure was detected as relevant by the stopping
rule. Type-I error is the proportion in which the first residual dimension was (wrongly) detected as
information by the stopping rule. For this graphic, Principal Coordinates Analysis based on Euclidean
distances between methods was used. Axes 1 and 2 are accounted for 68.0% and 13.8% of total inertia,
respectively. See main text for the description of the stopping rules.

4. Discussion

The approach we adopted aimed at discriminating principal components with signal from
those reflecting only noise. On one side, we examined known stopping rules for detecting the true
dimensionality of a PCA and on the other we proposed an alternative way to test the methods at hand.
In our opinion, the simulation of data with defined correlation structure as done in Peres-Neto, Jackson,
and Somers [9] is not suitable for this kind of tests, since the number of identified components may
result different from the number of correlation groups, in particular when the predefined differences
of within and between groups correlations are low. This prevents a clear interpretation of the results,
whose only conclusion may be that the ability to identify correctly supposedly non-random components
and the proportion of erroneous detections of supposedly random ones are connected: the highest
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the power, the largest the type-I error, and vice-versa. Our method for data simulation, namely the a
priori definition of the complete eigenstructure of the data and an explicit addition of noise, allows a
much clearer definition of the true dimensionality given by the number of non-zero eigenvalues in
the simulated population, and of the random components resulting from the added noise. This let us
to compare the methods in a more suitable way, since the variation of the introduced noise could be
considered consistently. Indeed, the behaviour of the methods at hand may be clearly checked and
compared, in particular concerning the different basic data structures we used. Note also that these
results could be graphically organized, with a better impact for the comprehension.

Our results allow identifying three groups of methods according to their general performance.
In one group, formed by Entropy, Guttman07, Guttman1, and Avg-Rnd, the methods tend to
monotonically increase both power and type-I error with increasing noise, for some data structures,
which is a bad performance. Indeed, with increasing random noise, new dimensions are added, but
since they are independent from each other and from the original non-zero dimensions, the new added
dimensions should not become significant with increasing noise: on the opposite, this is not what these
methods put in evidence. In a second group, formed by Rnd-lambda, BrokenStick, RVDim, and Rnd-F,
better performances result, in particular, for type-I error. Indeed, the power reduces significantly with
the raise of the noise in the data, but also very low (zero) power results for some data structures in
the absence of noise, which is counter-intuitive. It must be pointed out that, unlike the others, two of
these methods, Rnd-lambda and BrokenStick, show very low type-I error. In a third group, formed by
Bootstrap, and Gen–Bartlett, the methods behave more predictably, with increasing noise while keeping
reasonable the type-I error. Under low noise levels, these are the only methods that show consistently
high power for all eigenstructure types; all other methods may show lower power depending on the
eigenstructure type. In particular, as already pointed out, Rnd-F shows zero power under absence
of noise. Further, no methods except Bootstrap and Gen–Bartlett are capable of detecting significant
dimensions for eigenstructure type #10 with seven identical eigenvalues higher than zero and two
zero ones. Except BrokenStick and Rnd-Lambda, which consistently show low type-I error, all methods
show unimodal or sigmoidal response to increasing noise levels.

5. Conclusions

Applying the stopping rules based on the eigenvalues to routine data analysis may not prevent
some possible misinterpretation, that might be avoided by carefully inspecting the results of a PCA.
In particular, the inspection of the correlations between the original variables with the last dimensions
and their quality of representation on them may help avoid the loss of some relevant information,
such as some parts of variables explained mainly by small-inertia components. Another warning may
concern the identification of outliers in the data: some of them may be found in the main dimensions
and largely influence the principal axes formation. Conversely, others may be identified due to their
good representation on the last axes while badly represented on the first ones. Both may be identified
through their contribution to the components, something similar to the leverage in regression [30,51],
and their quality of representation, usually concentrated in some dimension.

The reported results show that both Gen–Bartlett and Bootstrap perform much better than all
others and, more than them, deserve being adopted. Note in particular the easiest implementation of
Gen–Bartlett. Indeed, the tests prove only the quality of the examined methods to distinguish between
signal and noise. In fact, no method based only on eigenvalues may do more. On the opposite, the
Bootstrap may be preferred, because its check for stability, including the sample dimension, involves the
eigenvalues but also the structure of the units’ coordinates on the principal components. In addition, it
is likely that the presence of outliers may be detected in some way by Bootstrap, since they may cause
instability in the results, depending on the reduced size subsampling.

The definition of simulated data based on a priori defined eigenstructure allows a true controlled
introduction of noise and then a very clear distinction between expected signal and noise. In this
case, the latter is relegated to the non-zero eigenvalues in the samples, which correspond to zero
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eigenvalues in the population. With this kind of experimentation, the behaviour of the examined
methods may be made very clear and their evaluation is possible. Thus, our study may be followed
by the examination of the methods based on cross-validation or on Bayesian statistics which, for the
difficulty of their implementation, have been excluded from this survey: we refer in particular to the
methods recently proposed by Auer and Gervini [17] and [52,53]. In addition, with a suitable choice
of the eigenstructures of the simulated data, a study might be forecast to identify the gap between
significant and non-significant eigenvalues necessary for a method to distinguish between them, a
feature intrinsic in our study but not explicitly taken into account.

Supplementary Materials: The following are available online: S1 at http://www.mdpi.com/2227-7390/6/11/
269/s1: script with the options chosen in MULTIV for generating simulated data and testing them stopping rules.
S2 at http://www.mdpi.com/2227-7390/6/11/269/s2: Detailed results of the data simulation experiment.
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