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Abstract: In 1978, the domain of the Nörlund matrix on the classical sequence spaces lp and l∞ was
introduced by Wang, where 1 ≤ p < ∞. Tuğ and Başar studied the matrix domain of Nörlund mean
on the sequence spaces f 0 and f in 2016. Additionally, Tuğ defined and investigated a new sequence
space as the domain of the Nörlund matrix on the space of bounded variation sequences in 2017.
In this article, we defined new space bs(Nt) and cs(Nt) and examined the domain of the Nörlund
mean on the bs and cs, which are bounded and convergent series, respectively. We also examined
their inclusion relations. We defined the norms over them and investigated whether these new spaces
provide conditions of Banach space. Finally, we determined their α-, β-, γ-duals, and characterized
their matrix transformations on this space and into this space.

Keywords: nörlund mean; nörlund transforms; difference matrix; α-, β-, γ-duals; matrix
transformations

1. Introduction

1.1. Background

In the studies on the sequence space, creating a new sequence space and research on its properties
have been important. Some researchers examined the algebraic properties of the sequence space while
others investigated its place among other known spaces and its duals, and characterized the matrix
transformations on this space.

One way to create a new sequence space in addition to standard sequence space is to use the
domain of infinite matrices. In 1978, Ng-Lee [1] studied the domain of an infinite matrix. In the same
year, Wang [2] constructed a new sequence space using an infinite matrix, unlike the infinite matrix
used by Ng-Lee. These studies have been followed by many researchers such as Malkovsky [3], Altay,
and Başar [4]. This topic was first studied in the 1970s but rather intensively after 2000.

1.2. Problem of Interest

The theory of infinite matrices was formulated by the book “Infinite Matrices and Sequence
Spaces” written by Cooke [5]. After the publication of this book in 1950, many researchers have used
infinite matrices over the years. In some of these studies, the domain of infinite matrices on a sequence
space was investigated. One problem is that we do not know the properties of the domain of the
Nörlund matrix, which is a trianglular infinite matrix on bs and cs. The domain of the Nörlund matrix
is a new sequence space. We intend to address algebraic properties of this new space, to determine its
place among other known spaces, to determine its duals, and to characterize the matrix transformations
on this space and into this space. Our aim is to provide solutions to these problems.

One difficulty of this study is to determine whether the new space created by the infinite matrix is
the contraction or the expansion or overlap of the original space. Also, we have a matrix mapping
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problem where we must determine the collection of infinite matrices for which the map is a sequence
space into another sequence space. We intend to address the first problem by giving a few inclusion
theorems, similar to previous studies. For the second problem, we provide two theorems and use the
matrix transformation between the standard sequences spaces.

1.3. Literature Survey

Many authors have used infinite matrices for the calculation of any matrix domain up to now.
For more information, see [6–26]. Ng and Lee [1] built sequence spaces using the domain of the Cesaro
matrix of order one on the classical sequences lp and l∞ in 1978, where 1 ≤ p < ∞. In the same year,
the spaces l∞(Nt) and lp(Nt) which are the domain of the Nörlund matrix on the sequence space lp

and l∞ were studied by Wang [2], with 1 ≤ p < ∞. Malkovsky [3] constructed the domain of the Riesiz
matrix on sequence spaces c, c0, and l∞ in 1997. Altay and Başar [27] worked on the domain of Riesiz
matrix on l∞ in 2002. Malkovsky and Savaş [28] built some sequence spaces derived from the concept
of weighted means. Aydın and Başar [29] introduced sequence spaces, ar

0 and ar
c, that are derived from

the domain of the Ar matrix which are stronger than the Cesaro method, C1. Aydın and Başar [30]
studied the forms ar

0(u, p) and ar
c(u, p). Aydın and Başar [31] introduced the spaces ar

0(∆) and ar
c(∆) of

difference sequences. Aydın and Başar [32] also introduced the sequence space ar
p of a non-absolute

type of Ar matrix. Altay and Başar [33] investigated and introduced the domain of the Euler matrix
on c and c0. Sengönül and Başar [34] introduced and investigated the domain of the Cesaro matrix of
order one on sequence spaces c and c0. Also, f0(Nt) and f (Nt) were defined by Tuğ and Başar [35],
where f 0 and f were almost null and almost convergent sequence spaces, respectively. Yeşilkayagil and
Başar [36] investigated the paranormed Nörlund sequence space of the non-absolute type. Yeşilkayagil
and Başar [37] worked on the domain of the Nörlund matrix in some Maddox’s spaces. Yaşar and
Kayaduman [38] introduced and investigated sequence spaces bs(F̂(r, s)) and cs(F̂(r, s)) using the
domain of the Generalized Fibonacci matrix on bs and cs. Furthermore, Mears [39,40] introduced some
theorems and the inverse of the Nörlund matrix for the Nörlund mean.

1.4. Scope and Contribution

In this paper, we conduct studies on the sequence space such as topological properties, inclusion
relations, base, duals, and matrix transformation. We provide certain tools to researchers by using the
concept of sequence spaces directly or indirectly.

We will use a method similar to the ones used in previous studies to solve these problems. We see
in the previous studies that the new sequence space produced from original space is a linear space.
The same is true for the spaces we produced. At the same time, spaces produced are normed spaces
and Banach spaces. In general, the spaces produced and original spaces were found to be isomorphic.
The spaces produced in some studies were the expansion of the original space while the others involved
some overlap. For example, the space produced in the study of Yaşar and Kayaduman [38] is an
expansion, while in this study, the space is a contraction. In this study, alpha, beta, and gamma duals
of the spaces produced are available. However, the spaces produced in some previous studies do not
have all the duals.

In addition, we try to close the existing deficits in the field the domain of the Nörlund matrix on
classical sequence spaces.

1.5. Organization of the Paper

This article consists of eight sections. In Section 1, general information about the working problem
is given and the history and importance of the problem is emphasized. A literature survey and the
scope and contribution of the study are also presented. In Section 2, a mathematical background of this
study is given. In Section 3, two new sequence spaces are constructed using the domain of the Nörlund
matrix on the bs and cs sequence spaces. These spaces are bs(Nt) and cs(Nt), where Nt is the Nörlund
matrix according to t = (tk). The formulation of the Nt-transform function of any sequence space is
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obtained, and it is shown that they are linear spaces. Also, their norms are defined. We find that
bs(Nt) ∼= bs and cs(Nt) ∼= cs. In Section 4, bs(Nt) and cs(Nt) are proven to be Banach spaces. Their
inclusion relations are given and they are compared to other spaces. It is found that the cs(Nt) space
has a Schauder base. The α-, β-, and γ-duals of these two spaces are calculated. Finally, the necessary
conditions for matrix transformations on and into these spaces are provided. They are in the form
of (bs(Nt), λ), (cs(Nt), λ), (µ, bs(Nt)), and (µ, cs(Nt)), where we denote the class of infinite matrices
moved from sequences of µ space to sequences of λ space with (µ,λ). In Sections 5 and 6, results and
discussion of the study are given, respectively. In Section 7, simple numerical examples were given in
order to illustrate the findings of the paper. In the last section, a summary and the conclusions of the
paper were reported.

2. Mathematical Background

The set of all real-valued sequences is indicated by w. By a sequence space, we understand that
it is a linear subspace of w. The symbols l∞, c, c0, lp, bs, cs, cs0, bv, bv0, and l1 are called sequence
spaces bounded, convergent to zero, convergent, absolutely p-summable, bounded series, convergent
series, series converging to zero, bounded variation, and absolutely convergent series, respectively.

Now let’s give descriptions of some sequence spaces.

l∞ =

{
x = (xk) ∈ w : sup

k∈N
|xk| < ∞

}
,

c =
{

x = (xk) ∈ w : lim
k→∞
|xk − l| = 0for some l ∈ C

}
,

c0 =

{
x = (xk) ∈ w : lim

k→∞
|xk| = 0

}
,

lp =

{
x = (xk) ∈ w : ∑

k
|xk|

p
< ∞

}
, (0 < p < ∞),

bs =

{
x = (xk) ∈ w : sup

n∈N

∣∣∣∣∣ n

∑
k=0

xk

∣∣∣∣∣ < ∞

}
,

cs =

{
x = (xk) ∈ w : lim

n→∞

∣∣∣∣∣ n

∑
k=0

xk − l

∣∣∣∣∣ = 0 for some l ∈ C
}

,

cs0 =

{
x = (xk) ∈ w : lim

n→∞

∣∣∣∣∣ n

∑
k=0

xk

∣∣∣∣∣ = 0

}
,

bv =

{
x = (xk) ∈ w : ∑

k
|xk − xk−1| < ∞

}
,

bv0 = bv ∩ c0

l1 =

{
x = (xk) ∈ w : ∑

k
|xk| < ∞

}
, (0 < p < ∞),

We indicate the set of natural numbers including 0 by N. The class of the non-empty and finite
subsets of N is denoted by F .
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We will transfer the matrix transformation between sequence spaces. Let A = (ank) be an infinite
matrix for every n,k ∈ N, where ank is a real number. A is defined as a matrix transformation from X to
Y if, for every x = (xk) ∈ X, sequence Ax = {An(x)} is an A-transform of x and in Y; where

An(x) = ∑
k

ankxk for each n ∈ N. (1)

Here, the series converges for every n ∈ N in Equation (1).
In Equation (1), although the limit of the summation is are not written, it is from 0 to ∞, and we

will use it for the rest of the article. The family of all the matrix transformations from X to Y is denoted
by (X,Y).

Let λ and K be an infinite matrix and a sequence space, respectively. Then, the matrix domain, λK,
which is a sequence space is defined by:

λK = {t = (tk) ∈ w : Kt ∈ λ} (2)

Let A and B be linear spaces over the same scalar field. A map f : A→B is called linear if:

f (ax1 + bx2) = af (x1) + bf (x2)

for all scalars a,b and all x1, x2 ∈ A. An isomorphism f : A→B is a bijective linear map. We say that A
and B are isomorphic if there is an isomorphism f : A→B.

A normed space is (A, ‖.‖) consisting of a linear space A and a norm ‖.‖:A→R such that ‖a‖ = 0;
‖µa‖ = |µ|‖a‖ for each scalar µ and each a ∈ A; ‖a + b‖ ≤ ‖a‖ + ‖b‖ for each a,b ∈ A.

A Banach space is (A, ‖.‖), a complete normed linear space, where completeness means that for
every sequence (an) in A with ‖am − an‖→0 (m,n→∞), there exists a ∈ A such that ‖an − a‖→0 (n→∞).

Let us define the Schauder basis of A normed space. Let a sequence (ak) ∈ A. There exists only

one sequence of scalars (vk) such that y = ∑k νkak and lim
n→∞
‖y−

n
∑

k=0
νkak‖ = 0. Then, (ak) is called a

Schauder basis for A.
Let R be a sequence space. α-, β-, and γ-duals Rα, Rβ, and Rγ of R are defined respectively, as:

Rα = {a = (ak) ∈ w : ar = (akrk) ∈ l1 for all r ∈ R},

Rβ = {a = (ak) ∈ w : ar = (akrk) ∈ cs for all r ∈ R},

Rγ = {a = (ak) ∈ w : ar = (akrk) ∈ bs for all r ∈ R}.

Let us give almost-convergent sequences space. This was first defined by Lorentz [41].

Let a = (ak) ∈ l∞. Sequence a is almost convergent to limit α if and only if lim
m→∞

m
∑

k=0

an+k
m+1 = α uniformly

in n. By f -lim a = α, we indicate sequence a is almost convergent to limit α. The sequence spaces f and
f 0 are:

f0 =

{
a = (ak) ∈ l∞ : lim

m→∞

m
∑

k=0

an+k
m+1 = 0 uni f ormly in n

}
,

f =

{
a = (ak) ∈ l∞ : ∃α ∈ C lim

m→∞

m
∑

k=0

an+k
m+1 = α uni f ormly in n

}
.

Lemma 1. [35] Let δ and µ be a subspace of w. Then, S = (snk) ∈ (δ(Nt), µ) if, and only if, P = (pnk) ∈
(δ, µ), where:

pnk =
∞

∑
j=k

(−1)j−kDj−kTksnj for all k, n ∈ N. (3)
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Lemma 2. [35] Let δ and µ be a subspace of w and let the infinite matrices be S = (snk) and V = (vnk). If S
and V are connected with the relation:

vnk =
n

∑
j=0

tn−j

Tn
snk for all k, n ∈ N, (4)

then, S ∈ (δ, µ(Nt)) if, and only if, V ∈ (δ, µ).

Lemma 3. [42] Let S = (snk) and r = (rk) ∈ w and the inverse matrix F = (fnk) of the triangle matrix G = (gnk)
by,

snk =


n
∑

j=k
rj f jk, 0 ≤ k ≤ n

0, k > n

for all k,n ∈ N. In that case,
δ

γ
G = { r = (rk) ∈ w : S ∈ (µ, l∞)},

δ
β
G = { r = (rk) ∈ w : S ∈ (µ, c)}

such that µ is any sequence space.

Now, we take a non-negative real sequence (tk) with tk > 0 and Tn =
n
∑

k=0
tk for all n ∈ N.

The Nörlund mean according to t = (tk) is defined by the matrix Nt = (at
nk) as:

at
nk =

{
tn−k
Tn

, 0 ≤ k ≤ n
0, k > n

for all k, n ∈ N. (5)

The inverse matrix Ut = (ut
nk) of Nt = (at

nk) is defined as:

ut
nk =

{
(−1)n−kDn−kTk, 0 ≤ k ≤ n
0, k > n

(6)

for all n,k ∈ N, t0 = D0 = 1 and Dn for n ∈ {1,2,3, . . . } and,

Dn =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

t1 1 0 0 . . 0
t2 t1 1 0 . . 0
t3 t2 t1 1 . . 0
. . . . . .
. . . . . .

tn−1 tn−2 tn−3 tn−4 1
tn tn−1 tn−2 tn−3 t1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

3. Auxiliary Results

In this section, spaces bs(Nt) and cs(Nt) are defined. Also, some of their properties are found.
Let us define the sets bs(Nt) and cs(Nt), whose Nt = (at

nk) transforms are in bs and cs.

bs(Nt) =

{
x = (xk) ∈ w : sup

n∈N

∣∣∣∣∣ n

∑
j=0

j

∑
k=0

tj−k

Tj
xk

∣∣∣∣∣ < ∞

}
,

cs(Nt) =

x = (xk) ∈ w :

(
n

∑
j=0

j

∑
k=0

tj−k

Tj
xk

)
n

∈ c

.
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Here, it can be seen from Equation (2) that bs(Nt) = (bs)Nt and cs(Nt) = (cs)Nt .
If x = (xn) ∈ w and y = Ntx, such that y = (yn), then the equality,

yn = (Ntx)n =
n

∑
k=0

tn−k
Tn

xk for all n ∈ N (7)

is satisfied. In this situation, we can see that xn = (Uty)n, that is,

xn =
n

∑
k=0

(−1)n−kDn−kTkyk for all n ∈ N. (8)

Now, let us detail one of the basic theorems of our article.

Theorem 1. The set of bs(Nt) is a linear space.

Proof. The proof is left to the reader because it is easy to see that it provides the linear space conditions.
�

Theorem 2. The set of cs(Nt) is a linear space.

Proof. The proof is left to the reader because it is easy to see that it provides the linear space conditions.
�

Theorem 3. bs(Nt) is a normed space with:

‖x‖bs(Nt) = sup
n∈N

∣∣∣∣∣ n

∑
j=0

j

∑
k=0

tj−k

Tj
xk

∣∣∣∣∣. (9)

Proof. The proof is left to the reader because it is easy to see that it provides the normed space
conditions. �

Theorem 4. cs(Nt) is a normed space with the norm in Equation (9).

Proof. The proof is left to the reader because it is easy to see that it provides the normed space
conditions. �

Theorem 5. bs(Nt) and bs spaces are isomorphic as normed spaces.

Proof. Let us take the transformation:

T : bs(Nt)

x
→ bs
→ y = Tx = Ntx.

It is clear that T is both injective and linear.



Mathematics 2018, 6, 268 7 of 19

Let y = (yn) ∈ bs. By using Equations (6) and (7), we find,

‖x‖bs(Nt) = sup
n∈N

∣∣∣∣∣ n
∑

j=0

j
∑

k=0

tj−k
Tj

xk

∣∣∣∣∣
= sup

n∈N

∣∣∣∣∣ n
∑

j=0

j
∑

k=0

tj−k
Tj

n
∑

i=0
(−1)k−iDk−iTiyi

∣∣∣∣∣
= sup

n∈N

∣∣∣∣∣ n
∑

j=0
yj

∣∣∣∣∣ = ‖y‖bs.

Hence, x is an element of bs(Nt) and T is surjective. We see that T preserves the norm. Here,
bs(Nt) and bs are isometric. That is, bs(Nt) ∼= bs. �

Theorem 6. cs(Nt) and cs spaces are isomorphic as normed spaces.

Proof. The proof can be made similar to Theorem 5. �

Now, let S = (snk) be an infinite matrix and give the equations below:

lim
k

snk = 0 for each n ∈ N, (10)

sup
m

∑
k

∣∣∣∣∣ m

∑
n=0

(snk − sn,k+1)

∣∣∣∣∣ < ∞, (11)

∑
n

snkconvergent for each k ∈ N (12)

sup
n

∑
k

∣∣snk − sn,k+1
∣∣ < ∞, (13)

lim
n

snk = αk for each k ∈ N, αk ∈ C, (14)

sup
N,K∈F

∣∣∣∣∣∑n∈N ∑
k∈N

(snk − sn,k+1)

∣∣∣∣∣ < ∞, (15)

sup
N,K∈F

∣∣∣∣∣∑n∈N ∑
k∈N

(snk − sn,k−1)

∣∣∣∣∣ < ∞, (16)

lim
n
(snk − sn,k+1) = α for each k ∈ N, α ∈ C, (17)

lim
n ∑

k

∣∣snk − sn,k+1
∣∣ = ∑

k

∣∣∣lim
n
(snk − sn,k+1)

∣∣∣, (18)

sup
n

∣∣∣∣limk snk

∣∣∣∣ < ∞, (19)

lim
n ∑

k

∣∣snk − sn,k+1
∣∣ = 0 uniformly in n, (20)

lim
m ∑

k

∣∣∣∣∣ m

∑
n=0

(snk − sn,k+1)

∣∣∣∣∣ = 0, (21)

lim
m ∑

k

∣∣∣∣∣ m

∑
n=0

(snk − sn,k+1)

∣∣∣∣∣ = ∑
k

∣∣∣∣∣∑n
(snk − sn,k+1)

∣∣∣∣∣ = 0, (22)

sup
N,K∈F

∣∣∣∣∣∑n∈N ∑
k∈N

[(snk − sn,k+1)− (sn−1,k − sn−1,k+1)]

∣∣∣∣∣ < ∞, (23)
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sup
m∈N

∣∣∣∣∣limk m

∑
n=0

snk

∣∣∣∣∣ < ∞, (24)

∃αk ∈ C∑
n

snk = αk for each k ∈ N, (25)

sup
N,K∈F

∣∣∣∣∣∑n∈N ∑
k∈N

[(snk − sn−1,k)− (sn,k−1 − sn−1,k−1)]

∣∣∣∣∣ < ∞. (26)

∃mk ∈ C f − limsnk = mk for each k ∈ N, (27)

∃mk ∈ Clim
q ∑

k

1
q + 1

∣∣∣∣∣ q

∑
i=0

∆

[
n+i

∑
j=0

(sjk −mk)

]∣∣∣∣∣ = 0 uniformly in n, (28)

sup
n∈N

∑
k

∣∣∣∣∣∆
[

n

∑
j=0

sjk

]∣∣∣∣∣ < ∞, (29)

∃mk ∈ C f − lim
n

∑
j=0

sjk = mk for each k ∈ N, (30)

sup
n∈N

∑
k

∣∣∣∣∣ n

∑
j=0

sjk

∣∣∣∣∣ < ∞, (31)

∃mk ∈ C lim
n→∞∑

n
∑
k

snk = mk for each k ∈ N, (32)

lim
n ∑

k

∣∣∣∣∣∆
[

n

∑
j=0

(sjk −mk)

]∣∣∣∣∣ = 0, (33)

sup
n∈N

∑
k

∣∣∣∣∣ n

∑
j=0

sjk

∣∣∣∣∣
p

< ∞, q =
p

p− 1
, (34)

sup
m,n∈N

∣∣∣∣∣ m

∑
n=0

snk

∣∣∣∣∣ < ∞, (35)

sup
m,l∈N

∣∣∣∣∣ m

∑
n=0

∞

∑
k=l

snk

∣∣∣∣∣ < ∞, (36)

sup
m,l∈N

∣∣∣∣∣ m

∑
n=0

l

∑
k=0

snk

∣∣∣∣∣ < ∞, (37)

lim
m ∑

k

∣∣∣∣∣ ∞

∑
n=m

snk

∣∣∣∣∣ = 0, (38)

∑
n

∑
k

snk, convergent for each k ∈ N (39)

lim
m→∞

m

∑
n=0

(snk − sn,k+1) = α for each k ∈ N, α ∈ C. (40)

sup
m

∑
k

∣∣∣∣∣ m

∑
n=0

(snk − sn,k−1)

∣∣∣∣∣ < ∞, (41)

Now, we provide some matrix transformations which are taken from Stieglitz and Tietz [43] to
use in the inclusion theorems.

Lemma 4. Let S = (snk) be an infinite matrix. Then, the following statements hold.
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(1) S = (snk) ∈ (bs, l∞) if, and only if, Equations (10) and (13) hold.
(2) S = (snk) ∈ (cs.c) if, and only if, Equations (13) and (14) hold.
(5) S = (snk) ∈ (bs, l1) if, and only if, Equations (10) and (15) hold.
(6) S = (snk) ∈ (cs, l1) if, and only if, Equation (16) holds.
(7) S = (snk) ∈ (bs, c) if, and only if, Equations (10), (17), and (18) hold.
(8) S = (snk) ∈ (cs, l∞) if, and only if, Equations (13) and (19) hold.
(9) S = (snk) ∈ (bs, c0) if, and only if, Equations (10) and (20) hold.
(10) S = (snk) ∈ (bs, cs0) if, and only if, Equations (10) and (21) hold.
(11) S = (snk) ∈ (bs, cs) if, and only if, Equations (10) and (22) hold.
(12) S = (snk) ∈ (bs, bv) if, and only if, Equations (10) and (23) hold.
(13) S = (snk) ∈ (bs, bs) if, and only if, Equations (10) and (11) hold.
(14) S = (snk) ∈ (cs, cs) if, and only if, Equations (10) and (41) hold.
(15) S = (snk) ∈ (bs, bv0) if, and only if, Equations (13), (20), and (23) hold.
(16) S = (snk) ∈ (cs, c0) if, and only if, Equation (13) holds and Equation (14) also holds with αk = 0 for all

k ∈ N.
(17) S = (snk) ∈ (cs, bs) if, and only if, Equations (11) and (24) hold.
(18) S = (snk) ∈ (cs, cs0) if, and only if, Equation (11) holds and Equation (25) also holds with αk = 0 for all

k ∈ N.
(19) S = (snk) ∈ (cs, bv) if, and only if, Equation (26) holds.
(20) S = (snk) ∈ (cs, bv0) if, and only if, Equation (26) holds and Equation (14) also holds with αk = 0 for all

k ∈ N.
(21) S = (snk) ∈ (l∞, bs) = (c, bs) = (c0, bs) if, and only if, Equation (31) holds.
(22) S = (snk) ∈ (lp, bs) if, and only if, Equation (34) holds.
(23) S = (snk) ∈ (l1, bs) if, and only if, Equation (35) holds.
(24) S = (snk) ∈ (bv, bs) if, and only if, Equation (36) holds.
(25) S = (snk) ∈ (bv0, bs) if, and only if, Equation (37) holds.
(26) S = (snk) ∈ (l∞, cs) if, and only if, Equation (38) holds.
(27) S = (snk) ∈ (c, cs) if, and only if, Equations (31), (32), and (39) hold.
(28) S = (snk) ∈ (cs0, cs) if, and only if, Equations (11) and (40) hold.
(29) S = (snk) ∈ (lp, cs) if, and only if, Equations (12) and (34) hold.
(30) S = (snk) ∈ (l1, cs) if, and only if, Equations (12) and (35) hold.
(31) S = (snk) ∈ (bv, cs) if, and only if, Equations (12), (35) and (37) hold.
(32) S = (snk) ∈ (bv0, cs) if, and only if, Equations (12) and (37) hold.

Lemma 5. Let S = (snk) be an infinite matrix for all k,n ∈ N.

(1) S = (snk) ∈ ( f , cs) if, and only if, Equations (25) and (31)–(33) hold (Başar [44]).
(2) S = (snk) ∈ (cs, f ) if, and only if, Equations (13) and (27) hold (Başar and Çolak [45]).
(3) S = (snk) ∈ (bs, f ) if, and only if, Equations (10), (13), (27) and (28) hold (Başar and Solak [46]).
(4) S = (snk) ∈ (bs, f ) if, and only if, Equations (10) and (28)–(30) hold (Başar and Solak [46]).
(5) S = (snk) ∈ (cs, f s) if, and only if, Equations (29) and (30) hold (Başar and Çolak [45]).

4. Main Results

Theorem 7. bs(Nt) is a Banach space, according to Equation (9).



Mathematics 2018, 6, 268 10 of 19

Proof. Clearly, the norm conditions are satisfied. Let us take the sequence xi = (xi)n as a Cauchy
sequence in bs(Nt) for all i,n ∈ N. We find,

yi
n =

n

∑
k=0

tn−k
Tn

xi
k for all i, k ∈ N

by using Equation (7). Since the sequence xi = (xi)n is a Cauchy sequence, ∀ε > 0 and there exists
n0 ∈ N, such that:

‖xi − xm‖bs(Nt) = sup
n∈N

∣∣∣∣∣ n
∑

j=0

j
∑

k=0

tj−k
Tj

(xi
k − xm

k )

∣∣∣∣∣
= sup

n∈N

∣∣∣∣ n
∑

k=0
(yi

k − ym
k )

∣∣∣∣ = ‖yi − ym‖ < ε

for all i,m > n0. yi→y (i→∞) such that y ∈ bs exists because bs is complete. bs(Nt) is also complete
because bs(Nt) and bs are isomorphic. Hence, bs(Nt) is a Banach space. �

Theorem 8. cs(Nt) is a Banach space, according to Equation (9).

Proof. Clearly, the norm conditions are satisfied. Let us take the sequence xi = (xi)n is a Cauchy
sequence in cs(Nt) for all i,n ∈ N. We find:

yi
n =

n

∑
k=0

tn−k
Tn

xi
k for all i, k ∈ N

by using Equation (7). Since the sequence xi = (xi)n is a Cauchy sequence, ∀ε > 0 and there exists
n0 ∈ N, such that:

‖xi − xm‖cs(Nt) = sup
n∈N

∣∣∣∣∣ n
∑

j=0

j
∑

k=0

tj−k
Tj

(xi
k − xm

k )

∣∣∣∣∣
= sup

n∈N

∣∣∣∣ n
∑

k=0
(yi

k − ym
k )

∣∣∣∣ = ‖yi − ym‖ < ε

for all i,m > n0. yi→y (i→∞) such that y ∈ cs exists because cs is complete. cs(Nt) is also complete
because the cs(Nt) and cs are isomorphic. Hence, cs(Nt) is a Banach space. �

Theorem 9. cs(Nt) ⊂ bs(Nt) is valid.

Proof. Let x ∈ cs(Nt). If y = Ntx ∈ cs, then ∑k Ntx ∈ c. Since cs ⊂ l∞, ∑k Ntx ∈ l∞. Hence,
y = Ntx ∈ bs. Therefore, x ∈ bs(Nt). We obtain that cs(Nt) ⊂ bs(Nt). �

Theorem 10. bs and bs(Nt) have an overlap, but neither of them contains the other.

Proof. We prove that bs and bs(Nt) are not disjointed.

(i) Let x = (xk) = (1, 0, 0, . . .) and t = (tk) = (1, 0, 0, . . .). It is clear that x ∈ bs. If we do the
necessary calculations, we find x ∈ bs(Nt). Thus, x ∈ bs ∩ bs(Nt).

(ii) Now, let us take x = (xk) and,

xk =
k

∑
j=0

(−1)kDk−jTj (42)
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for all k ∈ N. Then, we obtain:

(Ntx)n =
n

∑
k=0

tn−k
Tn

k

∑
j=0

(−1)kDk−jTj = (−1)n

for all n ∈ N. Thus (Ntx)n ∈ bs. That is, x ∈ bs(Nt). However, x /∈ bs(Nt). Therefore, bs(Nt)\bs
is not empty.

(iii) Let x = (xk) = (1, 0, 0, . . .) and t = (tk) = (1, 1, 1, . . .). It is clear that x ∈ bs. If we do the
necessary calculations, we find that x /∈ bs(Nt). Hence, x ∈ bs\bs(Nt). �

Theorem 11. bs(Nt) and l∞ have an overlap, but neither of them contains the other.

Proof. We prove that bs(Nt) and l∞ are not disjointed.

(i) Let x = (xk) =
{
(−1)k

}
for all k ∈ N. It is clear that

{
(−1)k

}
∈ l∞. If we do the necessary

calculations, we find x = (xk) =
{
(−1)k

}
∈ bs(Nt). Thus, x ∈ bs(Nt) ∩ l∞.

(ii) Now, we take x = (xk) = (1, 1, 1, . . .). Ntx = x /∈ bs. Thus, x /∈ bs(Nt), but x ∈ l∞. Then,
x ∈ l∞\bs(Nt).

(iii) On the other hand, if we take Equation (42), then Ntx ∈ bs. So, x ∈ bs(Nt), but x /∈ l∞. Thus,
x ∈ bs(Nt)\l∞.

This is the desired result. �

Theorem 12. cs and cs(Nt) have an overlap, but neither of them contains the other.

Proof. We prove that cs and cs(Nt) are not disjointed.

(i) If we use the example in the (i) of the proof of Theorem 10, then we find x ∈ cs ∩ cs(Nt).

(ii) Now, let x = (xk) = (1,−
√

2,
√

3, . . . (−1)k√k + 1, . . .) and t = (tk) = (1, 1, 1, . . .) for all k ∈ N.
Then, we obtain that x ∈ cs(Nt). However, x /∈ cs. Therefore, cs(Nt)\cs is not empty.

(iii) If we use the example in the (iii) of the proof of Theorem 10, then we find x ∈ cs\cs(Nt). �

Theorem 13. cs(Nt) and c have an overlap, but neither of them contains the other.

Proof. Let us prove that cs(Nt) and c are not disjointed.

(i) If we use the example in the (i) of the proof of Theorem 10, then we find that there exists at least
one point belonging to both cs(Nt) and c.

(ii) If we use the example in the (ii) of the proof of Theorem 11, then we find x ∈ c\cs(Nt).
(iii) Let x = (xk) = (1,−1, 1,−1, . . .) and t = (tk) = (1, 1, 0, 0, . . .). Then, Ntx = (1, 0, 0, . . .) ∈ cs.

Therefore, x ∈ cs(Nt), but x /∈ c. Thus, x ∈ cs(Nt)\c.

This is the desired result. �

Lemma 6. Let r = (rn) ∈ w and let Ut = (ut
nk) be the inverse matrix of Nt Nörlund matrix. The infinite

matrix C = (cnk) is defined by:

cnk =

{
rnut

nk, 0 ≤ k ≤ n
0, k > n

for all k,n ∈N, µ ∈ {cs, bs}. In that case r ∈
{

µ(Nt)
α
}

if, and only if, C ∈ (µ, l1).



Mathematics 2018, 6, 268 12 of 19

Proof. Let r = (rn) and x = (xn) be an element of w for all n ∈ N. Let y = (yn) be such that y = Ntx is
defined by Equation (7). In that case,

rx = rnxn = rn(Uty)n = (Cy)n = Cy

for all n ∈ N. Therefore, we find using Equation (7) that rx = (rnxn) ∈ l1 with x = (xn) ∈ µ(Nt) if,
and only if, Cy ∈ l1 with y ∈ µ. That is, C ∈ (µ, l1). �

Let us give the Schauder basis of cs(Nt).

Corollary 1. Let us define sequences b(k) =
{

b(k)n

}
n∈N

in the cs(Nt), such that:

b(k)n =

{
(−1)n−kDn−kTk, n ≥ k
0, n < k.

Then
{

b(k)n

}
n∈N

is called a basis for cs(Nt) and every x ∈ cs(Nt) has only one representation x =

∑k ykb(k), such that yk = (Ntx)k.
In this section, we give the α-, β-, and γ-duals of the spaces bs(Nt) and cs(Nt) and the matrix

transformations related to these spaces.
If we use Lemmas 3, 4, and 6 together, the following corollary is found.

Corollary 2. Let us B = (bnk) and C = (cnk) such that:

bnk =

{
rnut

nk, 0 ≤ k ≤ n
0, k > n

and cnk =
n

∑
j=k

(−1)j−kDj−kTkrj.

If we take m1, m2, m3, m4, m5, m6, m7, and m8 as follows:

m1 =

{
r = rk ∈ w : sup

N,K∈F

∣∣∣∣ ∑
n∈N

∑
k∈N

(bnk − bn,k+1)

∣∣∣∣ < ∞

}
,

m2 =

{
r = rk ∈ w : sup

N,K∈F

∣∣∣∣ ∑
n∈N

∑
k∈N

(bnk − bn,k−1)

∣∣∣∣ < ∞

}
,

m3 =

{
r = rk ∈ w : lim

k
cnk = 0

}
,

m4 =
{

r = rk ∈ w : ∃α ∈ Clim
n
(cnk − cn,k+1) = α

}
,

m5 =

{
r = rk ∈ w : lim

n
∑
k

∣∣cnk − cn,k+1
∣∣ = ∑

k

∣∣∣lim
n
(cnk − cn,k+1)

∣∣∣},

m6 =
{

r = rk ∈ w : ∃α ∈ Clim
n

cnk = α for all k ∈ N
}

,

m7 =

{
r = rk ∈ w : sup

n∈N
∑
k

∣∣cnk − cn,k+1
∣∣ < ∞

}
,

m8 =

{
r = rk ∈ w : sup

n∈N

∣∣∣∣limk cnk

∣∣∣∣ < ∞

}
.

Then, the following statements hold:

(1) bs(Nt)
α
= m1

(2) cs(Nt)
α
= m2

(5) bs(Nt)
β
= m3 ∩m4 ∩m5

(6) cs(Nt)
β
= m6 ∩m7
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(7) bs(Nt)
γ
= m3 ∩m7

(8) cs(Nt)
γ
= m7 ∩m8

Now, let us list the following conditions, where pnk is taken from Equation (3);

lim
k

pnk = 0 for each n ∈ N, (43)

sup
n

∑
k

∣∣pnk − pn,k+1
∣∣ < ∞, (44)

∃mk ∈ C lim
n→∞

(pnk − pn,k+1) = mk for all k, n ∈ N, (45)

lim
n ∑

k

∣∣pnk − pn,k+1
∣∣ = ∑

k

∣∣∣lim
n
(pnk − pn,k+1)

∣∣∣, (46)

sup
m∈N

∑
k

∣∣∣∣∣ m

∑
n=0

(pnk − pn,k+1)

∣∣∣∣∣ < ∞, (47)

lim
m ∑

k

∣∣∣∣∣ m

∑
n=0

(pnk − pn,k+1)

∣∣∣∣∣ = ∑
k

∣∣∣∣∣∑n
(pnk − pn,k+1)

∣∣∣∣∣ = 0, (48)

lim
m ∑

k

∣∣∣∣∣ m

∑
n=0

(pnk − pn,k+1)

∣∣∣∣∣ = 0, (49)

sup
N,K∈F

∣∣∣∣∣∑n∈N ∑
k∈N

(pnk − pn,k+1)

∣∣∣∣∣ < ∞. (50)

sup
N,K∈F

∣∣∣∣∣∑n∈N ∑
k∈N

[(pnk − pn,k+1)− (pn−1,k − pn−1,k+1)]

∣∣∣∣∣ < ∞, (51)

sup
n

∣∣∣∣limk pnk

∣∣∣∣ < ∞, (52)

∃mk ∈ C lim
n→∞

pnk = mk for all k ∈ N, (53)

sup
m∈N

∣∣∣∣∣limk m

∑
n=0

pnk

∣∣∣∣∣ < ∞, (54)

sup
m∈N

∑
k

∣∣∣∣∣ m

∑
n=0

(pnk − pn,k−1)

∣∣∣∣∣ < ∞, (55)

∃mk ∈ C∑
n

pnk = mk for each k ∈ N, (56)

sup
N,K∈F

∑
n∈N

∣∣∣∣∣∑k∈N (pnk − pn,k−1)

∣∣∣∣∣ < ∞, (57)

∃mk ∈ C f − limpnk = mk for each k ∈ N, (58)

sup
N,K∈F

∣∣∣∣∣∑n∈N ∑
k∈N

[(pnk − pn−1,k)− (pn,k−1 − pn−1,k−1)]

∣∣∣∣∣ < ∞, (59)

mk ∈ Clim
q ∑

k

1
q + 1

∣∣∣∣∣ q

∑
i=0

∆

[
n+i

∑
j=0

(pjk −mk)

]∣∣∣∣∣ = 0 uniformly in n, (60)
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sup
n∈N

∑
k

∣∣∣∣∣ n

∑
j=0

pjk

∣∣∣∣∣ < ∞, (61)

∃mk ∈ Clim
n ∑

n
∑
k

pnk = mk for each k ∈ N, (62)

mk ∈ Clim
n ∑

k

∣∣∣∣∣∆
[

n

∑
j=0

(pjk −mk)

]∣∣∣∣∣ = 0, (63)

sup
n∈N

∑
k

∣∣∣∣∣∆
[

n

∑
j=0

pjk

]∣∣∣∣∣ < ∞, (64)

∃mk ∈ C f − lim
n

∑
j=0

pjk = mk for each k ∈ N, (65)

lim
n ∑

k

∣∣pnk − pn,k+1
∣∣ = 0, (66)

∑
n

pnk convergent for each k ∈ N. (67)

Now we can give several conclusions of Lemmas 1,2,4, and 5.

Corollary 3. Let S = (snk) be an infinite matrix for all k,n ∈ N. Then,

(1) S = (snk) ∈ (bs(Nt), c0) if, and only if, Equations (43) and (66) hold.
(2) S = (snk) ∈ (bs(Nt), cs0) if, and only if, Equations (43) and (49) hold.
(5) S = (snk) ∈ (bs(Nt), c) if, and only if, Equations (43), (45), and (46) hold.
(6) S = (snk) ∈ (bs(Nt), cs) if, and only if, Equations (43) and (48) hold.
(7) S = (snk) ∈ (bs(Nt), l∞) if, and only if, Equations (43) and (44) hold.
(8) S = (snk) ∈ (bs(Nt), bs) if, and only if, Equations (43) and (47) hold.
(9) S = (snk) ∈ (bs(Nt), l1) if, and only if, Equations (43) and (50) hold.
(10) S = (snk) ∈ (bs(Nt), bv) if, and only if, Equations (43) and (51) hold.
(11) S = (snk) ∈ (bs(Nt), bv0) if, and only if, Equations (44), (51), and (65).

Corollary 4. Let S = (snk) be an infinite matrix for all k,n ∈ N. Then,

(1) S = (snk) ∈ (cs(Nt), c0) if, and only if, Equation (44) holds and Equation (53) also holds with mk = 0
for all k ∈ N.

(2) S = (snk) ∈ (cs(Nt), cs0) if, and only if, Equation (47) holds and Equation (56) also holds with mk = 0
for all k ∈ N.

(5) S = (snk) ∈ (cs(Nt), c) if, and only if, Equations (44) and (53) hold.
(6) S = (snk) ∈ (cs(Nt), cs) if, and only if, Equations (47) and (67) hold.
(7) S = (snk) ∈ (cs(Nt), l∞) if, and only if, Equations (44) and (52) hold.
(8) S = (snk) ∈ (cs(Nt), bs) if, and only if, Equations (47) and (54) hold.
(9) S = (snk) ∈ (cs(Nt), l1) if, and only if, Equation (57) holds.
(10) S = (snk) ∈ (cs(Nt), bv) if, and only if, Equation (59) holds.
(11) S = (snk) ∈ (cs(Nt), bv0) if, and only if, Equation (59) holds and Equation (53) also holds with mk = 0

for all k ∈ N.

Corollary 5. Let S = (snk) be an infinite matrix for all k,n ∈ N. Then,

(1) S = (snk) ∈ (bs(Nt), f ) if, and only if, Equations (43), (44), (58), and (60) hold.
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(2) S = (snk) ∈ (cs(Nt), f ) if, and only if, Equations (44) and (58) hold.
(5) S = (snk) ∈ ( f , cs(Nt)) if, and only if, Equations (56) and (61)–(63) hold with vnk instead of pnk, where

vnk is defined by Equation (4).
(6) S = (snk) ∈ (bs(Nt), f s) if, and only if, Equations (43), (58), (64), and (65) hold.
(7) S = (snk) ∈ (cs(Nt), f s) if, and only if, Equations (64) and (65) hold.

Corollary 6. Let S = (snk) be an infinite matrix for all k,n ∈ N. Then,

(1) S = (snk) ∈ (l∞, bs(Nt)) = (c, bs(Nt)) = (c0, bs(Nt)) if, and only if, Equation (31) holds with vnk
instead of snk, where vnk is defined by Equation (4).

(2) S = (snk) ∈ (lp, bs(Nt)) if, and only if, Equation (34) holds with vnk instead of snk where vnk, is defined
by Equation (4).

(5) S = (snk) ∈ (l1, bs(Nt)) if, and only if, Equation (35) holds with with vnk instead of snk, where vnk is
defined by Equation (4).

(6) S = (snk) ∈ (bv, bs(Nt)) if, and only if, Equation (36) holds with with vnk instead of snk, where vnk is
defined by Equation (4).

(7) S = (snk) ∈ (bv0, bs(Nt)) if, and only if, Equation (37) holds with vnk instead of snk, where vnk is
defined by Equation (4).

(8) S = (snk) ∈ (l∞, cs(Nt)) if, and only if, Equation (38) holds with vnk instead of snk, where vnk is defined
by Equation (4).

(9) S = (snk) ∈ (c, cs(Nt)) if, and only if, Equations (12), (31), and (39) hold with vnk instead of snk, where
vnk is defined by Equation (4).

(10) S = (snk) ∈ (cs0, cs(Nt)) if and only if Equations (11) and (40) hold with vnk instead of snk where vnk is
defined by Equation (4).

(11) S = (snk) ∈ (lp, cs(Nt)) if, and only if, Equations (12) and (34) hold with vnk instead of snk, where vnk
is defined by Equation (4).

(12) S = (snk) ∈ (l1, cs(Nt)) if, and only if, Equations (12) and (35) hold with vnk instead of snk, where vnk
is defined by Equation (4).

(13) S = (snk) ∈ (bv, cs(Nt)) if, and only if, Equations (12), (35) and (37) hold with vnk instead of snk where
vnk is defined by Equation (4).

(14) S = (snk) ∈ (bv0, cs(Nt)) if, and only if, Equations (12) and (37) hold with vnk instead of snk, where
vnk is defined by Equation (4).

5. Results

The present paper is concerned with the domain of the trianglular infinite matrix. The triangular
matrix we use in this study is the Nörlund matrix. We introduced the sequence spaces cs(Nt) and
bs(Nt) as the domain of the Nörlund matrix, where cs and bs are convergent and bounded series,
respectively. We found that these spaces are linear spaces and they have the same norm,

‖x‖ = sup
n∈N

∣∣∣∣∣ n

∑
j=0

j

∑
k=0

tj−k

Tj
xk

∣∣∣∣∣,
where x ∈ bs(Nt) or x ∈ cs(Nt). cs(Nt) and bs(Nt) are Banach spaces with that norm. Some inclusion
theorems of them were given. It was found that cs(Nt) ⊂ bs(Nt) holds. At the same time, bs, bs(Nt); cs,
cs(Nt); bs(Nt), l∞; and cs(Nt), c have an overlap, but neither of them contains the other. It was shown
that the space bs(Nt) has no Schauder basis, but the space cs(Nt) has a Schauder basis. We detected
that both spaces have the α-, β-, and γ-duals and calculated them. Finally, the necessary conditions for
the matrix transformations on and into these spaces were given.
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6. Discussion

The spaces l∞(Nt) and lp(Nt) were studied by Wang [2] while 1 ≤ p < ∞. f0(Nt) and f (Nt)

were studied by Tuğ and Başar [35], where f0 and f are almost-null and almost-convergent sequence
spaces, respectively. Tuğ and Başar [35] have not investigated whether the space was the expansion
or the contraction or overlap of the original space. However, it is determined to be the overlap in
our study. Tuğ [47] defined and investigated a new sequence space as the domain of the Nörlund
matrix in the space of all the sequences of the bounded variation. In our study, we determined that it is
an expansion.

We introduced new sequence spaces, bs(Nt) and cs(Nt), as the sets of all sequences whose
Nt = (at

nk) transforms are in the sequence space, bs and cs,

bs(Nt) =

{
x = (xk) ∈ w : sup

n∈N

∣∣∣∣∣ n

∑
j=0

j

∑
k=0

tj−k

Tj
xk

∣∣∣∣∣ < ∞

}
,

cs(Nt) =

x = (xk) ∈ w :

(
n

∑
j=0

j

∑
k=0

tj−k

Tj
xk

)
n

∈ c

.

We realize that these spaces are linear and have normed spaces with the same norm and Banach
spaces as the convenient norm. The pairs bs(Nt), bs and cs(Nt), cs are isomorphic as normed spaces.
Also, cs(Nt) ⊂ bs(Nt) holds. At the same time, bs, bs(Nt); cs, cs(Nt); bs(Nt), l∞; and cs(Nt), c have
an overlap, but neither of them contains the other. It was determined that they have α-, β-, and γ-duals.
Finally, we found some matrix transformations related to these new spaces.

7. Illustrative Examples

Example 1. Let S = (snk) be infinite unit matrix for all k,n ∈ N such that,

snk =

{
1, k = n
0, k 6= n.

We show that S = (snk) ∈ (bs(Nt), l∞). For this, let’s look at the conditions of Equations (43) and (44).

i- The Equation (43): lim
k→∞

pnk = 0 for each n ∈ N.

pnk =
∞

∑
j=k

(−1)j−kDj−kTksnj =

{
Tn, k = n
0, k 6= n.

In that case lim
k→∞

pnk = 0.

ii- The Equation (44): sup
n

∑
k

∣∣pnk − pn,k+1
∣∣ < ∞. We find,

pnk − pn,k+1 =

{
Tn, k ≤ n ≤ k + 1
0, k 6= n or k + 1 6= n.

Hence, sup
n

∑
k

∣∣pnk − pn,k+1
∣∣ = sup

n
2Tn = 2sup

n

n
∑

k=0
tk.

Consequently, S = (snk) ∈ (bs(Nt), l∞) for every t = (tk) ∈ bs.
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Also, there is no non-negative t = (tk) such that S = (snk) ∈ (bs(Nt), bs). This is because, if Equation
(47) is investigated, we find,

sup
m∈N

∑
k

∣∣∣∣∣ m

∑
n=0

(pnk − pn,k+1)

∣∣∣∣∣ = T0 + 2sup
m∈N

m

∑
k=1

k

∑
j=0

tj.

Since t = (tk) is non-negative, Equation (47) is not bounded.

Example 2. Let S = (snk) be an infinite unit matrix for all k,n ∈ N, such as Example 1.
We show that S = (snk) ∈ (bs(Nt), bv). For this, let’s look at the conditions of Equations (43) and (51).
We know that the condition Equation (43) holds. For Equation (51), if we calculate, then we find:

sup
N,K∈F

∣∣∣∣∣∑n∈N ∑
k∈N

[(pnk − pn,k+1)− (pn−1,k − pn−1,k+1)]

∣∣∣∣∣ = 2 sup
N,K∈F

∞

∑
k=0

tk.

This result is the same as the result of Example 1. Hence, S = (snk) ∈ (bs(Nt), bv) for every
t = (tk) ∈ bs.

Example 3. Let S = (snk) be an infinite unit matrix for all k,n ∈ N, such as Example 1.
We show that S = (snk) ∈ (cs(Nt), l1). For this, let’s look at the condition of Equation (57).
If we calculate, then we find:

sup
N,K∈F

∑
n∈N

∣∣∣∣∣∑k∈N (pnk − pn,k−1)

∣∣∣∣∣ = 0

This result shows that S = (snk) ∈ (cs(Nt), l1).

Example 4. Let S = (snk) be an infinite unit matrix for all k,n ∈ N, such as Example 1.
We show that S = (snk) ∈ (cs(Nt), bv). For this, let’s look at the condition of Equation (59).
If we calculate, then we find

sup
N,K∈F

∣∣∣∣∣∑n∈N ∑
k∈N

[(pnk − pn−1,k)− (pn,k−1 − pn−1,k−1)]

∣∣∣∣∣ = 0

This result shows that S = (snk) ∈ (cs(Nt), bv).

8. Summary and Conclusions

In this article, two new sequence spaces are constructed using the domain of the Nörlund matrix
on the bs and cs sequence spaces. These Spaces are bs(Nt) and cs(Nt), where Nt is the Nörlund matrix
according to t = (tk). The formulation of the Nt-transform function of any sequence space is obtained,
and it is shown that they are linear spaces. Also, their norms are defined. We found that bs(Nt) ∼= bs
and cs(Nt) ∼= cs. That is, the pairs bs(Nt), bs and cs(Nt), cs are isomorphic spaces. At the same time,
they are proven to be Banach spaces. Their inclusion relations are given and they are compared to
other spaces. It is determined that the cs(Nt) space has a Schauder base. Also, the α-, β-, and γ- duals
of these two spaces are calculated. Finally, the necessary conditions for the matrix transformations
on and into these spaces are provided. They are in the form of (bs(Nt), λ), (cs(Nt), λ), (µ, bs(Nt)),
and (µ, cs(Nt)), where we denote the class of infinite matrices moved from sequences of µ space to
sequences of λ space with (µ, λ).
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23. Çakan, C.; Çoşkun, H. Some new inequalities related to the invariant means and uniformly bounded function

sequences. Appl. Math. Lett. 2007, 20, 605–609. [CrossRef]
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34. Şengönül, M.; Başar, F. Some new cesaro sequence spaces of non-absolute type which include thespaces c0

and c. Soochow J. Math. 2005, 31, 107–119.
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38. Yaşar, F.; Kayaduaman, K. A Different Study on the Spaces of Generalized Fibonacci Difference bs and cs

Spaces Sequence. Symmetry 2018, 10, 274. [CrossRef]
39. Mears, F.M. Some Multiplication Theorems for the Nörlund Mean. Bull. Am. Math. Soc. 1935, 41, 875–880.

[CrossRef]
40. Mears, F.M. The Inverse Nörlund Mean. Ann. Math. 1943, 44, 401–409. [CrossRef]
41. Lorentz, G.G. A contribution to the theory of divergent sequences. Acta Math. 1948, 80, 167–190. [CrossRef]
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