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Abstract: In this paper, we propose a new method, which is called the combination projection
method (CPM), for solving the convex feasibility problem (CFP) of finding some x∗ ∈ C := ∩m

i=1{x ∈
H | ci(x) ≤ 0}, where m is a positive integer, H is a real Hilbert space, and {ci}m

i=1 are convex
functions defined as H. The key of the CPM is that, for the current iterate xk, the CPM firstly
constructs a new level set Hk through a convex combination of some of {ci}m

i=1 in an appropriate
way, and then updates the new iterate xk+1 only by using the projection PHk . We also introduce the
combination relaxation projection methods (CRPM) to project onto half-spaces to make CPM easily
implementable. The simplicity and easy implementation are two advantages of our methods since
only one projection is used in each iteration and the projections are also easy to calculate. The weak
convergence theorems are proved and the numerical results show the advantages of our methods.
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hilbert space
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1. Introduction

LetH be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖, respectively. Recall that the
projection operator of a nonempty closed convex subset D ofH, PD : H → D, is defined by

PD(x) := arg min
y∈D
‖x− y‖2, x ∈ H.

It is inevitable to use projections to solve convex feasibility problems (CFP) [1–3] split feasibility
problems (SFP) [4,5], and variational inequality problems (VIP) [6,7].

If the set D is simple, such as a hyperplane or a halfspace, the projection onto D can be calculated
explicitly. However, it is well known that in general, D is very complex, and PD has no closed form
formula, for which, the computation of PD is rather difficult [8]. So, how to efficiently compute PD is a
very important and interesting problem. Fukushima [9] suggested the half-space relaxation projection
method and the idea was followed by many authors to introduce relaxed projection algorithms for
solving the SFP [10,11] and the VIP [12,13].

Let m be a positive integer and {Ci}m
i=1 be a finite family of nonempty closed convex subsets ofH

with a nonempty intersection. The convex feasibility problem [14] is to find

x∗ ∈ C :=
m⋂

i=1

Ci, (1)
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which is very common problem in diverse areas of mathematics and physical sciences [15]. In the
last twenty years, there has been growing interests in the CFP since it was found to have various
applications in imaging science [16,17], medical treatments [18], and statistics [19].

A great deal of literature on methods for solving the CFP have been published (e.g., [20–23]).
The classical method traces back at least to the alternating projection method introduced by von
Neumann [14] in 1930s, which is called the successive orthogonal projection method (SOP) in
Reference [24]. The SOP in Reference [14] solves the CFP with C1 and C2 being two closed subspaces
inH, and generates a sequence {xk}∞

k=1 via the iterating process:

xk = (PC1 PC2)kx0, k ≥ 0, (2)

where x0 ∈ H is an arbitrary initial guess. Von Neumann [14] proved that the sequence {xk}∞
k=1

converges strongly to PC1∩C2 x0. In 1965, Bregman [2] extended von Neumann’s results to the case
where C1 and C2 are closed convex subsets and proved the weak convergence. Hundal [25] showed
that for two closed convex subsets C1 and C2, the SOP does not always converge in norm by providing
an explicit counterexample. Further results on the SOP were obtained by Gubin et al. [26] and
Bruck et al. [27].

The SOP is the most fundamental method to solve CFP, and many existing algorithms [24,28]
can be regarded as generalizations or variants of the SOP. Let {Ci}m

i=1 be a finite family of level
sets of convex functions {ci}m

i=1 (i.e., Ci = {x | ci(x) ≤ 0}) such that C :=
⋂m

i=1 Ci 6= ∅. Adopting
Fukushima’s relaxed technique [9], He et al. [28] introduced a contraction type sequential projection
algorithm which generates the iterating process:

xk+1 = λku + (1− λk)PCm
k

PCm−1
k
· · · PC2

k
PC1

k
xk, k ≥ 0, (3)

where the sequence {λk}∞
k=0 ⊂ (0, 1), u ∈ H is a given point and {Ci

k}
m
i=1 is a finite family of

half-spaces such that Ci
k ⊃ Ci for i = 1, 2, · · · , m and all k ≥ 0. They proved that the sequence

{xk}∞
k=1 converges strongly to PCu under certain conditions. Because the projection operators onto

half-spaces have closed-form formulae, the algorithm (3) seems to be easily implemented. However,
one common feature of SOP-type algorithms is that they need to evaluate all the projections {PCi}m

i=1
(or relaxed projections {PCi

k
}m

i=1) in each iteration (see, e.g., Reference [24]), which results in prohibitive
computational cost for large scale problems.

Therefore, to solve the CFP (1) efficiently, it is necessary to design methods which use fewer
projections in each iteration. He et al. [29,30] proposed the selective projection method (SPM) for solving
the CFP (1) where C is the intersection of a finite family of level sets of convex functions. An advantage
of the SPM is that we only need to compute one (appropriately selected) projection in each iteration,
and the weak convergence of the algorithm is still guaranteed. More precisely, the SPM consists
of two steps in each iteration. Step one, once the k-th iterate xk is obtained, according to a certain
criterion, we select one set Cik or Cik

k from the sets {Ci}m
i=1, or the relaxed sets {Ci

k}
m
i=1, where Ci

k is
some half-space containing Ci for all i = 1, 2, · · · , m and k ≥ 0, respectively. Step two, we then update
the new iterate xk+1 via the process:

xk+1 = PCik xk (or P
C

ik
k

xk). (4)

Because (4) only involves one projection, the SPM is simpler than the SOP-type algorithms.
The main purpose of this paper is to propose a new method, which is called the combination

projection method (CPM), for solving the convex feasibility problem of finding some

x∗ ∈ C := ∩m
i=1{x ∈ H | ci(x) ≤ 0},
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where m is a positive integer and {ci}m
i=1 are convex functions defined asH. The key of the CPM is that

for the current iterate xk, the CPM firstly constructs a new level set Hk through a convex combination
of some of {ci}m

i=1, and then updates the new iterate xk+1 by using the projection PHk . The simplicity
and ease of implementation are two of the advantages of our method since only one projection is used
in each iteration and the projections are easy to calculate. To make the CPM easily implementable,
we also introduce the combination relaxation projection method (CRPM), which involves projection
onto half-spaces. The weak convergence theorems are proved and the numerical results show the
advantages of our methods. In fact, the methods in this paper can be easily extended to solve other
nonlinear problems, for example, the SFP and the VIP.

2. Preliminaries

LetH be a real Hilbert space and T : H → H be a mapping. Recall that

• T is nonexpansive if ‖Tx− Ty‖ ≤ ‖x− y‖ for all x, y ∈ H.
• T is firmly nonexpansive if ‖Tx− Ty‖2 ≤ ‖x− y‖2 − ‖(I − T)x− (I − T)y‖2 for all x, y ∈ H.
• T : H → H is an averaged mapping if there exists some α ∈ (0, 1) and nonexpansive mapping

V : H → H such that T = (1− α)I + αV; in this case, T is also said to be α-averaged.
• T is inverse strongly monotone (ISM) if there exists some ν > 0 such that

〈Tx− Ty, x− y〉 ≥ ν‖Tx− Ty‖2, x, y ∈ H.

In this case, we say that T is ν-ISM.

Lemma 1 ([31]). For a mapping T : H → H, the following are equivalent:

(i) T is 1
2 -averaged;

(ii) T is 1-ISM;
(iii) T is firmly nonexpansive;
(iv) I − T is firmly nonexpansive.

Recall that the projection onto a closed convex subset D ofH is defined by

PD(x) := arg min
y∈D
‖x− y‖2, x ∈ H.

It is well known that PD is characterized by the inequality

PD(x) ∈ D, 〈x− PD(x), y− PD(x)〉 ≤ 0, x ∈ H, y ∈ D. (5)

Some useful properties of the projection operators are collected in the lemma below.

Lemma 2 ([31]). For any nonempty closed convex subset D of H, the projection PD is both 1
2 -averaged and

1-ISM. Equivalently, PD is firmly nonexpansive.

Lemma 3 ([32]). Let D be a nonempty closed convex subset ofH. Let {uk}∞
k=0 ⊂ H satisfy the properties:

(i) limk→∞ ‖uk − u‖ exists for each u ∈ D;
(ii) ωw(uk) ⊂ D.

Then, {uk}∞
k=0 converges weakly to a point in D.

Lemma 4. Let {ci}m
i=1 be a finite family of convex functions defined asH such that their level sets Ci = {x ∈

H | ci(x) ≤ 0}, i = 1, 2, · · · , m, with nonempty intersection. Let H = {x ∈ H | ∑m
i=1 βici(x) ≤ 0} with

{βi}m
i=1 ⊂ (0, 1) such that ∑m

i=1 βi = 1. Then, the following properties are satisfied.
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(i) If each Ci is a half-space, i.e., ci = 〈x, vi〉 − di with di ∈ R and vi ∈ H such that vi 6= 0, in addition,
if the vector group {vi}m

i=1 is also linearly independent, then H is a half-space;
(ii) H is a closed ball if each Ci is a closed ball;
(iii) H is a closed ball if each Ci is a closed ball or a half-space, and at least one of them is a closed ball.

Proof. (i) Obviously, for any {βi}m
i=1 ⊂ (0, 1) with ∑m

i=1 βi = 1, we have

m

∑
i=1

βici(x) = 〈x,
m

∑
i=1

βivi〉 −
m

∑
i=1

βidi. (6)

Since {vi}m
i=1 is a linearly independent group, we assert that ∑m

i=1 βivi 6= 0, and hence, it is easy
to see from (6) that H is a half-space.

(ii) If Ci = {x ∈ H | ci(x) ≤ 0} is a closed ball with center xi ∈ H and radius ri, then ci(x) =

‖x− xi‖2 − r2
i , i = 1, 2, · · · , m. For any {βi}m

i=1 ⊂ (0, 1) with ∑m
i=1 βi = 1, noting the identity

‖x−
m

∑
i=1

βixi‖2 = ‖
m

∑
i=1
‖βi(x− xi)‖2 =

m

∑
i=1

βi‖x− xi‖2 −∑
i<j

βiβ j‖xi − xj‖2,

We directly deduce

m

∑
i=1

βici(x) =
m

∑
i=1

βi‖x− xi‖2 −
m

∑
i=1

βir2
i

=‖x−
m

∑
i=1

βixi‖2 + ∑
i<j

βiβ j‖xi − xj‖2 −
m

∑
i=1

βir2
i .

(7)

Consequently,

H = {x ∈ H | ‖x−
m

∑
i=1

βixi‖2 ≤
m

∑
i=1

βir2
i −∑

i<j
βiβ j‖xi − xj‖2}. (8)

Since ∩m
i=1Ci 6= ∅, there exists some z ∈ H such that ci(z) ≤ 0 for all i = 1, 2, · · · , m, thus this

implies that
m

∑
i=1

βir2
i −∑

i<j
βiβ j‖xi − xj‖2 ≥ ‖z−

m

∑
i=1

βixi‖2 ≥ 0,

that is, H is a closed ball.
(iii) Assume that C1 is a closed ball and C2 is a half-space, then c1 and c2 have the forms c1(x) : =

‖x − x0‖2 − r2 and c2(x) := 〈x, v〉 − d, respectively, where x0, v ∈ H, r ∈ R+ and d ∈ R. For any
β ∈ (0, 1), we have from calculating βc1(x) + (1− β)c2(x) that

H = {x ∈ H | ‖x− (x0 − 1− β

2β
v)‖2 ≤ ‖x0 − 1− β

2β
v‖2 − ‖x0‖2 + r2 +

1− β

β
d}.

By using the same argument as in (ii), we assert ‖x0 − 1−β
2β v‖2 − ‖x0‖2 + r2 + 1−β

β d ≥ 0, and this
means that H is indeed a closed ball. This together with (i) and (ii) indicates that the conclusion is true
for the general case.

Suppose f : H → (−∞, ∞] is a proper, lower-semicontinuous (lsc), convex function. Recall that
an element ξ ∈ H is said to be a subgradient of f at x if

f (z) ≥ f (x) + 〈ξ, z− x〉, ∀z ∈ H. (9)
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We denote by ∂ f (x) the set of all subgradients of f at x. Recall that f is said to be subdifferentiable
at x if ∂ f (x) 6= ∅, and f is said to be subdifferentiable (onH) if it is subdifferentiable at every x ∈ H.
Recall also that the inequality (9) is called the subdifferential inequality of f at x.

3. The CPM for Solving Convex Feasibility Problems

In this section, the combination projection method (CPM) is proposed for solving the convex
feasibility problem (CFP):

Find a point x∗ such that x∗ ∈ C =
m⋂

i=1

Ci, (10)

where
Ci = {x ∈ H | ci(x) ≤ 0}, i = 1, 2, · · · , m,

with ci : H → R a convex function for each i = 1, 2, · · · , m. The algorithm proposed below for solving
the CFP (10) is called the combination projection method (CPM) for the reason that the projection that
is used to update the next iterate is on the level set of a convex combination of some of {ci}m

i=1 in an
appropriate way. Throughout this section, we always assume that C 6= ∅ and use I to represent the
index set {1, 2, · · · , m} for convenience.

Remark 1. Algorithm 1 suits for the case where {PHk}
∞
k=0 have closed-form representations. For example,

according to Lemma 4, if each of {Ci}m
i=1 is a closed ball or a half-space, then Hk is also a closed ball or a half-space

for each k ≥ 0, and hence, PHk has the closed-form representation for all k ≥ 0. In this case, Algorithm 1 is
easy implementable.

Algorithm 1: (The Combination Projection Method)

Step 1: Choose x0 ∈ H arbitrarily and set k := 0.
Step 2: Given the current iterate xk. Check the index set Ik := {i ∈ I | ci(xk) > 0}. If Ik = ∅,

i.e., ci(xk) ≤ 0 for all i = 1, 2, · · · , m, then stop and xk is a solution of the CFP (10).
Otherwise, select {β(k)

i }i∈Ik ⊂ (0, 1) such that ∑i∈Ik
β
(k)
i = 1, and construct the

level set:
Hk := {x ∈ H | ∑

i∈Ik

β
(k)
i ci(x) ≤ 0},

Step 3: Compute the new iterate
xk+1 := PHk (xk).

Set k := k + 1 and return to Step 2.

Remark 2. The simplicity and ease of implementation of Algorithm 1 can be illustrated through a simple
example in R3. Compute the projection PCu, where u = (0, 0, 4)> ∈ R3 and C ⊂ R3 is given by

C = ∩4
i=1Ci := ∩4

i=1{(x1, x2, x3)
> ∈ R3 | ci(x1, x2, x3) ≤ 0},

where

c1(x1, x2, x3) = (x1 − 1)2 + 2x2
2 + 4x2

3 − 5, c2(x1, x2, x3) = 2x2
1 + (2x2 − 1)2 + x2

3 − 2,

c3(x1, x2, x3) = (x1 + 1)2 + x2
2 + 3x2

3 − 4, c4(x1, x2, x3) = x2
1 + (2x2 + 1)2 + 2x2

3 − 3.

Selecting the initial guess x0 = u and using the CPM (Algorithm 1), only one iteration step is needed to
get the exact solution of the problem. Indeed, since ci(0, 0, 4) > 0 for each i = 1, 2, 3, 4, then I0 = {1, 2, 3, 4}.
Taking the convex combination coefficients as βi = 1

4 , i = 1, 2, 3, 4, the CPM firstly generates a new set
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H0 = {(x1, x2, x3) |
5x2

1
4 +

11x2
2

4 +
5x2

3
2 −

5
2 ≤ 0}, i.e., the level set of the convex function ∑4

i=1 βici(x1, x2, x3) =
5x2

1
4 +

11x2
2

4 +
5x2

3
2 −

5
2 , then, the CPM updates the new iterate x1 = PH0 x0 = (0, 0, 1) = PCu. However, if

we adopt the SOP to get PCu, the iteration process will be complicated. On one hand, although there is an
expression for the projection onto an ellipsoid [8], obtaining a constant in the expression requires solving an
algebraic equation. On the other hand, the actual calculation shows that after several iterations, we can only get
an approximate solution of PCu.

We have the following convergence result for Algorithm 1.

Theorem 1. Assume that for each i = 1, 2, · · · , m, ci : H → R is a bounded uniformly continuous
(i.e., uniformly continuous on each bounded subset ofH) and convex function. If β∗ = inf{β(k)

i | i ∈ Ik, k ≥
0} > 0, then the sequence {xk}∞

k=0 generated by Algorithm 1 converges weakly to a solution of CFP (10).

Proof. Obviously, we may assume that xk /∈ C for all k ≥ 0 with no loss of generality. By the definition
of Hk, it is very easy to see that C ⊂ Hk holds for all k ≥ 0. For any x∗ ∈ C, we have by Lemma 2 that

‖xk+1 − x∗‖2 = ‖PHk xk − PHk x∗‖2

≤ ‖xk − x∗‖2 − ‖xk − xk+1‖2. (11)

From (11), we assert that {‖xk − x∗‖} is nonincreasing; hence, {xk}∞
k=0 is bounded and

limk→∞ ‖xk − x∗‖2 exists. Furthermore, we also get

∞

∑
k=0
‖xk − xk+1‖2 < +∞.

Particularly, ‖xk − xk+1‖ → 0 as k → ∞. By Lemma 3, all we need to prove is that ωw(xk) ⊂ C.
To see this, take x̂ ∈ ωw(xk) and let {xkj}∞

j=1 be a subsequence of {xk}∞
k=0 weakly converging to x̂.

Noticing xk+1 ∈ Hk, we get

∑
i∈Ik

β
(k)
i ci(xk+1) ≤ 0. (12)

For each fixed i ∈ I and any j ≥ 0, if i /∈ Ikj
, then

ci(xkj) ≤ 0. (13)

If i ∈ Ikj
, by virtue of the definition of Ikj

and (12), we get

β
(kj)

i ci(xkj) ≤ ∑
l∈Ikj

β
(kj)

l cl(xkj)

≤ ∑
l∈Ikj

β
(kj)

l cl(xkj)− ∑
l∈Ikj

β
(kj)

l cl(xkj+1)

≤
m

∑
l=1
|cl(xkj)− cl(xkj+1)|.

(14)

Moreover, noting β∗ = inf{β(k)
i | i ∈ Ik, k ≥ 0} > 0, the combination of (13) and (14) yields

ci(xkj) ≤ 1
β∗

m

∑
l=1
|cl(xkj)− cl(xkj+1)|, (15)



Mathematics 2018, 6, 249 7 of 13

for each i = 1, 2, · · · , m and all j ≥ 0. Since xkj ⇀ x̂, ‖xkj − xkj+1‖ → 0, and {cl}m
l=1 are w-lsc

and bounded uniformly continuous, we can obtain ci(x̂) ≤ 0 by taking the limit in (15) as j → ∞.
Hence x̂ ∈ C and ωw(xk) ⊂ C. This completes the proof.

The second algorithm for solving the CFP (10) is named the combination relaxation projection method
(CRPM), which works for the case where the projection operators {PHk}

∞
k=0 do not have closed-form

formulae. In this case, we assume that the convex functions {ci}m
i=1 are subdifferentiable onH.

The convergence of Algorithm 2 is given as follows.

Algorithm 2: (The combination Relaxation Projection Method)

Step 1: Choose x0 ∈ H arbitrarily and set k := 0.
Step 2: Given the current iterate xk. Check the index set Ik := {i ∈ I | ci(xk) > 0}. If Ik = ∅,

i.e., ci(xk) ≤ 0 for all i = 1, 2, · · · , m, then stop and xk is a solution of the CFP (10).
Otherwise, select {β(k)

i }i∈Ik ⊂ (0, 1) such that ∑i∈Ik
β
(k)
i = 1, and construct a half

space by

HR
k := {x ∈ H | ∑

i∈Ik

β
(k)
i ci(xk) + 〈∑

i∈Ik

β
(k)
i ξ i

k, x− xk〉 ≤ 0},

where ξ i
k ∈ ∂ci(xk) for each i ∈ Ik.

Step 3: Compute the new iterate
xk+1 := PHR

k
(xk).

Set k := k + 1 and return to Step 2.

Theorem 2. Assume that for each i = 1, 2, · · · , m, ci : H → R is a w-lsc, subdifferentiable, convex function
such that the subdifferential mapping ∂ci is bounded (i.e., bounded on bounded subsets of H). If β∗ =

inf{β(k)
i | i ∈ Ik, k ≥ 0} > 0, then the sequence {xk}∞

k=0 generated by Algorithm 2 converges weakly to a
solution of the CFP (10).

Proof. With no loss of generality, we assume xk /∈ C for all k ≥ 0. First of all, we show that HR
k is a

half-space, i.e., ∑i∈Ik
β
(k)
i ξ i

k 6= 0. Indeed, if otherwise, it can be asserted by (16) that ci(xk) ≤ 0 holds
for each i ∈ Ik and this is contradictory to the definition of Ik. We next show C ⊂ HR

k . Indeed, for each
x ∈ C, we have from the subdifferential inequality (9) that

ci(xk) + 〈ξ i
k, x− xk〉 ≤ ci(x) ≤ 0, i ∈ Ik, (16)

where ξ i
k ∈ ∂ci(xk). Summing (16) over i ∈ Ik, we have

∑
i∈Ik

β
(k)
i ci(xk) + 〈∑

i∈Ik

β
(k)
i ξ i

k, x− xk〉 ≤ 0. (17)

By the definition of HR
k (see (16)), we assert from (17) that x ∈ HR

k and hence C ⊂ HR
k . For any

x∗ ∈ C, noting x∗ ∈ C ⊂ HR
k , we have by Lemma 2 that

‖xk+1 − x∗‖2 = ‖PHR
k

xk − PHR
k

x∗‖2

≤ ‖xk − x∗‖2 − ‖xk+1 − xk‖2.

This implies that {xk}∞
k=0 is bounded, limk→∞ ‖xk − x∗‖2 exists, and limk→∞ ‖xk+1 − xk‖ = 0.

Now we verify that ωw(xk) ⊂ C. Since {xk}∞
k=0 is bounded and ∂ci (i = 1, 2, · · · , m) is a bounded
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operator, there exists a constant M ≥ 0 such that ‖ξ i
k‖ ≤ M for all k ≥ 0 and i ∈ Ik. By the definition of

HR
k and the fact that xk+1 ∈ HR

k , we get

∑
i∈Ik

β
(k)
i ci(xk) + 〈∑

i∈Ik

β
(k)
i ξ i

k, xk+1 − xk〉 ≤ 0. (18)

For each i ∈ I and k ≥ 0, if i /∈ Ik, then

ci(xk) ≤ 0, (19)

and if i ∈ Ik, it follows from the definition of HR
k and (18) that

β
(k)
i ci(xk) ≤ ∑

l∈Ik

β
(k)
l cl(xk) ≤ |〈∑

l∈Ik

β
(k)
l ξ l

k, xk+1 − xk〉|

≤ M‖xk+1 − xk‖ → 0 (k→ ∞).
(20)

Hence, for each i ∈ I, the combination of (19) and (20) leads to

ci(xk) ≤ M
β∗
‖xk+1 − xk‖ → 0 (k→ ∞). (21)

From (21), the containment ωw(xk) ⊂ C follows immediately from an argument similar to the
final part of the proof of Theorem 1.

4. Numerical Results

In this section, we compare the behavior of the CPM (Algorithm 1) and SOP by solving two
synthetic examples in the Euclidean space Rn. All the codes were written by Matlab R2010a and all the
numerical experiments were conducted on a HP Pavilion notebook with Intel(R) Core(TM) i5-3230M
CPU@2.60 GHz and 4 GB RAM running on Windows 7 Home Premium operating system.

Example 1. Consider the convex feasibility problem:

Find a point x∗ ∈ C =
m⋂

i=1

Ci :=
m⋂

i=1

{x ∈ Rn | 〈vi, x〉 − di ≤ 0}, (22)

where {vi}m
i=1 ⊂ Rn and {di}m

i=1 are nonnegative real numbers. Take n = 6, m = 8,

v1 = (5.5, 10,−1.5, 10,−80, 260.7),

v2 = (14, 3, 13.6, 14.5, 7.1,−200.3),

v3 = (13.7, 13, 10,−390, 10,−179.5),

v4 = (16, 17,−10.5, 16.5, 17.3,−99.3),

v5 = (16.5, 15.7, 19.3,−3, 19,−98.5),

v6 = (28,−90.1, 14.9, 17, 19,−89.7),

v7 = (−26, 6,−22.5, 15, 17,−5.3),

v8 = (29.9, 11, 13.5,−5.9, 12.5,−4.3),

d1 = 1, d2 = 1, d3 = 2, d4 = 1, d5 = 2, d6 = 1.2, d7 = 2, d8 = 1 and the initial point x0 is randomly chosen
in (0, 10)6.
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Obviously, 0 ∈ C, i.e., problem (22) is solvable. We use xk = (xk
1, xk

2, . . . , xk
n)
> to denote the k-th

iterate and define
Errk := max

1≤i≤m
ci(xk) (23)

to measure the error of the k-th iteration, which also serves as the role of checking whether or not the
proposed algorithm converges to a solution. In fact, it is easy to see that if Errk is less than or equal to
zero, then xk is an exact solution of Problem (22) and the iteration can be terminated; if Errk is greater
than zero, then xk is just an approximate solution and the smaller Errk, the smaller the error of xk to
a solution.

Let |Ik| denote the number of elements of the set Ik. We give two ways to choose β
(k)
i .

(1) β
(k)
i = 1/|Ik|, i ∈ Ik. Denote the corresponding combination projection method by CPM1.

(2) β
(k)
i = ci(xk)/ ∑j∈Ik

cj(xk), i ∈ Ik. Denote the corresponding combination projection method
by CPM2.

Table 1 illustrates that the set Ik is generally different each iteration. From Figure 1, we conclude
that the behaviors of the CPM1 and CPM2 depend on the initial point x0. The errors for CPM1 and
CPM2 oscillate which may be because only partial information about the convex sets {Ci}m

i=1 is used in
each iteration. However, in view of the SOP, all the information about the convex sets {Ci}m

i=1 is used
in each iteration since it involves all projections {PCi}m

i=1 in each iteration. From Figure 2, the CPM1
behaves better than the SOP.

Table 1. Comparison of Ik of the combination projection method (CPM) 1 and CPM2.

k
Ik |IK|

CPM1 CPM2 CPM1 CPM2

1 {1, 8} {1, 8} 2 2
2 {2, 4, 5, 6, 8} {2, 4, 5, 6, 8} 5 5
3 {1, 5, 8} {1, 8} 3 2
4 {2, 4, 5, 6, 8} {2, 4, 5, 6, 8} 5 5
5 {1, 5, 6, 8} {1, 5, 8} 4 3
6 {2, 4, 5, 7, 8} {2, 4, 5, 6, 8} 5 5
7 {1, 4, 5, 7, 8} {1, 5, 8} 5 3
8 {2, 4, 5, 6, 7, 8} {2, 4, 5, 6, 8} 6 5

0 50 100 150 200

Number of iteration

10
-15

10
-10

10
-5

10
0

10
5

E
rr

k

CPM1

CPM2

(a)

0 50 100 150 200

Number of iteration

10
-6

10
-4

10
-2

10
0

10
2

10
4

E
rr

k

CPM1

CPM2

(b)

Figure 1. The comparison of two choices of β
(k)
i for different random choices of x0 for Example 1. (a)

Number of iteration.
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Figure 2. The comparison of the CPM and the successive orthogonal projection method (SOP) for
Example 1.

Example 2. Consider the linear equation system:

Ax = b (24)

where A is an m× n matrix, m < n, and b is a vector in Rm. If the noise is taken into consideration, Problem (24)
is stated as

‖Ax− b‖2 ≤ ε (25)

where ε > 0 measures the level of errors.
Let

Ci = {x ∈ Rn | |〈A(i, :), x〉 − b(i)| − εi ≤ 0}.

where εi ≥ 0. It is easy to show that Problem (25) is equal to the convex feasibility problem:

Find a point x∗ ∈ C =
m⋂

i=1

Ci (26)

The set C is nonempty since the linear equation system has infinite solutions.
Set

Errk := max
1≤i≤m

|A(i, :)xk − b(i)|. (27)

The initial point x0 is randomly chosen in (0, 10)n. We compared the CPM2 and SOP for different m
and n. From Figure 3, the behavior of the CPM2 is better than that of the SOP. The error of the CPM2 has
a bigger oscillation than that in Example 2, the oscillation seems to decrease when the iteration is very big.
The SOP behaves well when m and n are small, while its error is very big for big m and n. In Figure 4,
we compare the CPU time of the CPM2 and SOP, which illustrates that the CPU time of the CPM2 is less than
that of the SOP. Furthermore, the CPU time of the SOP exceeds that of the CPM2 with the iteration.
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Figure 3. (a) (m, n) = (20, 40); (b) (m, n) = (200, 400); (c) (m, n) = (500, 1000); (d) (m, n) = (1000, 2000).
Comparison of the CPM1 and SOP for different m and n of Example 2.
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Figure 4. The comparison of the CPU time of the CPM and SOP for (m, n) = (1000, 2000) of Example 2.
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5. Conclusions

In this paper, we propose the combination projection method (CPM) for solving the convex feasibility
problem (CFP). The CPM is simple and easy to implement, and has a fast convergence speed. How to
further speed up the convergence for the CPM through selecting the convex combination coefficients
{β(k)

i }i∈Ik in Algorithms 1 and 2 is worthy of further study.
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