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Abstract: Let M be a three-dimensional trans-Sasakian manifold of type («, B). In this paper, we obtain
that the Ricci operator of M is invariant along Reeb flow if and only if M is an a-Sasakian manifold,
cosymplectic manifold or a space of constant sectional curvature. Applying this, we give a new
characterization of proper trans-Sasakian 3-manifolds.
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1. Introduction

A trans-Sasakian manifold is usually denoted by (M, ¢,¢, 7,4, «, B), where both « and B are
smooth functions and (¢, &, 7, ) is an almost contact metric structure. M is said to be proper if either
x =0or B =0. When § = 0, a is a constant if dimM > 5 (see [1]) and in this case M becomes an
«-Sasakian manifold if « € R* or a cosymplectic manifold if « = 0. This conclusion is not necessarily
true for dimension three. However, unlike the above case, when a = 0, § is not necessarily a constant
even if dimM > 5 or M is compact for dimension three (see [2]). The set of all trans-Sasakian manifolds
of type (0, B) coincides with that of all f-cosymplectic manifolds (see [3]) or f-Kenmotsu manifolds
(see [4-0]). A trans-Sasakian manifold of dimension > 5 must be proper (see [1]). In the geometry of
trans-Sasakian 3-manifolds, there exists a basic interesting problem, that is:

Under what condition is a trans-Sasakian 3-manifold proper?

De [7-12], Deshmukh [13-15], Wang and Liu [16] and Wang [2,17] answered this question from
various points of view. In this paper, we study this question under a new geometric condition. Before
stating our main results, we recall some results related with such a condition.

On an almost contact metric manifold (M, ¢, ¢, 77, g), the Ricci operator of M is said to be Reeb
flow invariant if it satisfies

L:Q =0, )

where £, ¢ and Q are the Lie derivative, Reeb vector field and the Ricci operator, respectively. Cho
in [18] proved that a contact metric 3-manifold satisfies Equation (1) if and only if it is Sasakian
or locally isometric to SU(2) (or SO(3)), SL(2,R) (or O(1,2)), the group E(2) of rigid motions of
Euclidean 2-plane. Cho in [19] proved that an almost cosymplectic 3-manifold satisfies (1) if and only if
it is either cosymplectic or locally isometric to the group E(1,1) of rigid motions of Minkowski 2-space.
In addition, Cho and Kimura in [20] proved that an almost Kenmotsu 3-manifold satisfies (1) if and
only if it is of constant sectional curvature —1 or a non-unimodular Lie group. Reeb flow invariant
Ricci operators were also investigated on the unit tangent sphere bundle of a Riemannian manifold
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(see [21]), even on real hypersurfaces in complex two-plane Grassmannians (see [22]). In this paper,
we obtain a new characterization of proper trans-Sasakian 3-manifolds by employing (1) and proving

Theorem 1. The Ricci operator of a trans-Sasakian 3-manifold is invariant along Reeb flow if and only if the
manifold is an a-Sasakian manifold, cosymplectic manifold or a space of constant sectional curvature.

According to calculations shown in Section 3, we observe that Ricci parallelism with respect
to the Levi—Civita connection (i.e., VQ = 0) is stronger than a Reeb flow invariant Ricci operator.
Thus, we have

Remark 1. Theorem 1 is an extension of Wang and Liu [16] (Theorem 3.12).

Some corollaries induced from Theorem 1 are also given in the last section.

2. Trans-Sasakian Manifolds

On a smooth Riemannian manifold (M, g) of dimension 2n + 1, we assume that ¢, ¢ and 7 are
(1,1)-type, (1,0)-type and (0,1)-type tensor fields, respectively. According to [23], M is called an
almost contact metric manifold if

P*X = —X+3(X)E, 1(&) =1, n(¢pX) =0,

@)
89X, 9Y) = g(X,Y) —n(X)n(Y), n(X) = g(X,¢)
for any vector fields X and Y. An almost contact metric manifold is said to be normal if [, ¢] =
—2dn ® &, where [¢, ¢] denotes the Nijenhuis tensor of ¢.
A normal almost contact metric manifold is called a trans-Sasakian manifold (see [1]) if
(Vx¢)Y = a(e(X, V)& = n(Y)X) + B(g(¢X, Y)§ — 1 (Y)$X) ®)

for any vector fields X, Y and two smooth functions &, B. In particular, a three-dimensional almost
contact metric manifold is trans-Sasakian if and only if it is normal (see [24,25]).

A normal almost contact metric manifold is called an a-Sasakian manifold if dy = a® and d® =0,
where & € R* (see [26]). An a-Sasakian manifold reduces to a Sasakian manifold (see [23]) when & = 1.
A normal almost contact metric manifold is called a S-Kenmotsu manifold if it satisfies dy = 0 and
d® = 2By A D, where B € R* (see [26]). A B-Kenmotsu manifold becomes a Kenmotsu manifold when
B = 1. A normal almost contact metric manifold is called a cosymplectic manifold if it satisfies dy = 0
and d® = 0.

Putting Y = ¢ into (3) and using (2), we have

Vxg = —apX + B(X — (X)) @)
for any vector field X. In this paper, all manifolds are assumed to be connected.

3. Reeb Flow Invariant Ricci Operator on Trans-Sasakian 3-Manifolds

In this section, we give a proof of our main result Theorem 1. First, we introduce the following
two important lemmas (see [12]) which are useful for our proof.

Lemma 1. On a trans-Sasakian 3-manifold of type («, B) we have

¢(a)+2aB=0. ()
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Lemma 2. On a trans-Sasakian 3-manifold of type («, B), the Ricci operator is given by

Q=(5+2(B) — o +p2)id — (5 +E(p) — 3> +3p7) @ ¢
+1® (§(Va) = V) +5(9(Va) = V, ) 04,

(6)

where by V f we mean the gradient of a function f.
We also need the following lemma (see [17])

Lemma 3. On a trans-Sasakian 3-manifold of type («, B), the following three conditions are equivalent:

(1)  The Reeb vector field is minimal or harmonic.
(2)  The following equation holds: $Va — VB +E(B)5 =0 (& Va+ ¢VB +2apE = 0).
(3)  The Reeb vector field is an eigenvector field of the Ricci operator.

Lemma 4. The Ricci operator on a cosymplectic 3-manifold is invariant along the Reeb flow.
The above lemma can be seen in [19]
Lemma 5. The Ricci operator on an a-Sasakian 3-manifold is invariant along the Reeb flow.

Proof. According to Lemma 2 and the definition of an a-Sasakian 3-manifold, the Ricci operator is
given by

QX = (5 —a?) X — (5 —3) n(X)¢, @)

for any vector field X and certain nonzero constant «. Moreover, according to [16] (Corollary 3.10),
we observe that the scalar curvature r is invariant along the Reeb vector field ¢, i.e., {(r) = 0. In fact,
such an equation can be deduced directly by using the formula divQ = %Vr and (7). Applying
&(r) = 0, it follows directly from (7) that £L;Q = 0. O

Proof of Theorem 1. Let M be a trans-Sasakian 3-manifold and e be a unit vector field orthogonal
to {. Then, {{, e ¢e} forms a local orthonormal basis on the tangent space for each point of M.
The Levi—Civita connection V on M can be written as the following (see [12])

V&g =0, Vee = Ape, Vepe = —Ae,
VeG =pe —ade, Vee = =BG+ e, Vepe = ag — e, ®)
Vel =ae + Bpe, Vgee = —al — dpe, Vg = —BC + de,

where A, y and J are smooth functions on some open subset of the manifold. We assume that the Ricci
operator is invariant along the Reeb flow. From (1) and (4), we have

0=(£:Q)X = (VeQ)X + agpQX — aQpX + p(QX)& — p(X)Q¢ ©)

for any vector field X.
By using the local basis {¢, ¢, pe} and Lemma 2, the Ricci operator can be rewritten as the following:

Q¢ =¢Va — VB + (207 = 287~ E(B))E,
Qe = (5 +8(B) a2+ 82) e — (ge(a) +e(B))E, (10)
Qpe = (5 +2(B) —a? + B) g + (ela) - pe(B)2.
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Replacing X in (9) by ¢, we obtain

Ve(¢Va —VB) + (20> — 287 — &(B))§ + a(~Va + ()¢ — ¢Vp)
+2p(a? — B = C(B))C — B(@Va — VB) — p(20” — 2% — {(B))E = 0.

Taking the inner product of the above equation with ¢, e and ¢e, respectively, we obtain

(11)

E(Z(B)) +2BE(B) + 4a*p =0,
we(w) — Boe(a) — Be(B) — age(B) =0, (12)
Be(a) + age(a) + ae(B) — Boe(B) =0,

where we have employed Lemma 1. The addition of the second term of (12) multiplied by « to the
third term of (12) multiplied by B gives

(o + B?)(e(a) — pe(B)) = 0. (13)

Following (13), we consider the following several cases.

Case i: & + % = 0, or equivalently, « = B = 0. In this case, the manifold becomes a cosymplectic
3-manifold. The proof for this case is completed because of Lemma 4.

Case ii: «® + B> # 0. It follows immediately from (13) that e(a) — ¢e(8) = 0, or equivalently,
2(Va+ ¢VpB,e) = 0. Because ¢ is assumed to be an arbitrary vector field, it follows that Va + ¢V =

(Va4 ¢VB)E, ie.,
Va+¢VB+2aB =0, (14)

or equivalently, pVa — VB + {(B)¢ = 0, where we have used Lemma 1. When B = 0, it follows
from (14) that « is a nonzero constant. Thus, the proof can be done by applying Lemma 5. In what

follows, we consider the last case.
Case iii: & + % # 0 and B # 0. In this context, (10) becomes

Q¢ =2(a® = B* = 5(P))S,
Qe = (F+2(B) - +p)e, (15)
Qpe = (5 +E(B) — o + ) g
Replacing X by e in (9) and using (8), (15), we acquire
0= (L:Qe=¢ (5 +2(B)—a?+p)e.
With the aid of Lemma 1 and the first term of (12), from the previous relation, we have

&(r) =0. (16)

From (15), we calculate the derivative of the Ricci operator as the following:

(VeQ)Z =0,
(VeQ)e =e(A)e — BAZ +2B(a® — B> — E(B))E, (17)
(VpeQ) e =ge(A)pe — BAZ +2(a* — B> — E(B))E,

where we have used the first term of (8) and (12) and, for simplicity, we put

A= £+{;’(ﬁ) a4 (18)
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On a Riemannian manifold, we have divQ = 1¥r. In this context, it is equivalent to

1
$((V2Q)E + (VeQle + (VgeQ)ge, X) = 5 X(1) (19)
for any vector field X. Replacing X in (19) by ¢ and recalling (16) and the first term of (12), we obtain
2B(A —2a% +2p% +2Z(B)) = 0, or equivalently,
v

C(B)—a?+ B = —¢, (20

where we have used the assumption  # 0 and (18). According to (15), it is clear to see that the
manifold is Einstein, i.e, Q = %id. Because the manifold is of dimension three, then it must be of
constant sectional curvature. [

A Riemannian manifold is said to be locally symmetric if VR = 0 and this is equivalent to
VQ = 0 for dimension three. Wang and Liu in [16] proved that a trans-Sasakian 3-manifold is
locally symmetric if and only if it is locally isometric to the sphere space S3(c?), the hyperbolic space
H3(—c?), the Euclidean space R?, product space R x §?(c?) or R x H?(—c?), where c is a nonzero
constant. According to [16], on a locally symmetric trans-Sasakian 3-manifold, the Reeb vector field
is an eigenvector field of the Ricci operator. Thus, following Lemma 3 and relations (9) and (10), we
observe that Ricci parallelism is stronger than the Reeb flow invariant Ricci operator. Hence, our main
result in this paper extends [16] (Theorem 3.12).

From Theorem 1, we obtain a new characterization of proper trans-Sasakian 3-manifolds.

Theorem 2. A compact trans-Sasakian 3-manifold with Reeb flow invariant Ricci operator is homothetic to
either a Sasakian manifold or a cosymplectic manifold.

Proof. As seen in the proof of Theorem 1, a trans-Sasakian 3-manifold with Reeb flow invariant Ricci
operator is a a-Sasakian manifold, a cosymplectic manifold or a space of constant sectional curvature.
It is well known that an a-Sasakian manifold is homothetic to a Sasakian manifold. Moreover, there do
exist compact Sasakian and cosymplectic manifolds. To complete the proof, we need only to prove
that Case iii in the proof of Theorem 1 cannot occur.

Let M be a trans-Sasakian 3-manifold satisfying Case iii. According to (14) and Lemma 5, we know
that the Reeb vector field is minimal or harmonic. It has been proved in [17] (Lemma 5.1) that when
¢ of a compact trans-Sasakian 3-manifold is minimal or harmonic, then « is a constant. Because the
manifold is of constant sectional curvature, then the scalar curvature r is also a constant. Therefore,
the differentiation of (20) along ¢ gives

¢(¢(p)) +2p(B) = 0. (21)

Adding the above equation to the first term of (12) implies that « = 0 because of § # 0. Using this
in (14), we have VB = &(B)¢. The following proof follows directly from [2]. For sake of completeness,
we present the detailed proof.

Applying VB = ¢(B)¢ and (7), we obtain

VxVB = X(G(B))E+E(B)(BX — pn(X)5) =0

for any vector field X. Contracting X in the previous relation and using (21), we obtain AB = £(&(B)) +
2B&(B) = 0. Because the manifold is assumed to be compact, the application of the divergence theorem
gives that f is a non-zero constant. Next, we show that this is impossible. In fact, the application
of (4) gives that div{ = 2B. Since the manifold is assumed to be compact, it follows that 8 = 0,
a contradiction. This completes the proof. [J
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Theorem 2 can also be written as follows.
Theorem 3. A compact trans-Sasakian 3-manifold with Reeb flow invariant Ricci operator is proper.

The curvature tensor R of a trans-Sasakian 3-manifold is given by (see [10,27])

R(X,Y)Z
~B(3(Y, 2)X — g(X, 2)Y) — Cg(Y, Z)y(X)¢
+8(Y, Z)(n(X)(¢Va — VB) = g(VB — ¢Va, X){)

22
1 Cg(X, Zp(V)E — 8(X, Z) ((Y) (¥ — VB) — §(VF — §Va, V){) 22
—(&(VB—=¢Va,Z)n(Y) +g(VB—¢Va,Y)n(Z))X — Cn(Y)n(Z)X
+(8(VB = ¢Va, Z)n(X) +g(VB — ¢Va, X)n(Z)) X + Cy(X)n(Z)Y
for any vector fields X, Y, Z, where, for simplicity, we set
B= % 1 26(B) — 202 + 282, C = % +&(B) — 3% + 382 (23)

Substituting (14) and (20) into (22), with the aid of (23), we get

R(X,Y)Z = L(3(Y,2)X — ¢(X, 2)Y)

N =

for any vector fields X, Y, Z. This implies that, on a trans-Sasakian 3-manifold satisfying Case iii in
the proof of Theorem 1, we do not know whether &« = 0 or not. In view of this, we introduce an
interesting question:

Problem 1. Is there a non-proper and non-compact trans-Sasakian 3-manifold of constant sectional curvature?

Remark 2. According to De and Sarkar [10] (Theorem 5.1), we observe that a compact trans-Sasakian
3-manifold of constant sectional curvature is either a-Sasakian or B-Kenmotsu.

Remark 3. Given a trans-Sasakian 3-manifold, following proof of Theorem 1, we still do not know whether B is
a constant or not even when o = 0 and the manifold is compact (see [2]).
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