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Abstract: In this work, we introduced new notions of a new contraction named S-weakly contraction;
after that, we obtained the p-common best proximity point results for different types of contractions
in the setting of complete metric spaces by using weak Pp-property and proved the uniqueness of
these points. Also, we presented some examples to prove the validity of our results.
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1. Introduction

Banach Contraction Principle [1] is a very familiar theorem that helps out in the branch of fixed
point theory to describe the tools for finding a solution to non-linear equations of the type Ux = x if
given mapping U is a self-mapping defined on any non-empty subset of metric space or any other
relevant framework. If the given mapping U is non-self then it is possible that given mapping has
no solution Ux = x. Then, in those cases we try to find those points for that non-self mapping U
which give us a close solution to the equation Ux = x, with this idea we approach towards the best
approximation problems and then we obtain the solution which is not optimal but is an approximate
solution to the equation Ux = x. With the help of these approximate solutions, we attain a target to
find the solution which is optimal because the error d(x, Ux) is minimum and d(x, Ux) = d(A, B)
and that optimal approximate solution is called the best proximity point for given mapping which is
non-self. To find out the best proximity point, it is necessary that we should have only one non-self
mapping; with the help of that mapping, we can find a best proximity point, but whenever we have
more than one non-self mappings in a problem and we have to find the optimal solution for those
mappings defined on same subsets of any space, then that type of optimal solution is known as a
common best proximity point for given mappings.

The basic purpose of this paper is to construct some new theorems with new notions and
contractions; with the help of these new results, we will describe a common best proximity point for
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given mappings in metric spaces. Then, we will establish some examples for the justification of our
results. The given results are more general than earlier ones.

2. Preliminaries and Mathematical Definition

In this section, let us recall some definitions, lemmas and theorems that will be used in
what follows.

Definition 1. [2] Let A and B be two nonempty subsets of a metric space (X, d). We define the sets
A0 = {a ∈ A : there exists some b ∈ B such that d(a, b) = d(A, B)},

and
B0 = {b ∈ B : there exists some a ∈ A such that d(a, b) = d(A, B)},

where d(A, B) = inf{d(a, b) : a ∈ A, b ∈ B} is the distance between the sets A and B.

Definition 2. [3] Let (A, B) be a pair of nonempty subsets of a metric space (X,d) with A0 6= ∅. Then the pair
(A,B) is said to have the weak P-property if and only if for any x1, x2 ∈ A0 and x3, x4 ∈ B0,

d(x1, x3) = d(A, B)
d(x2, x4) = d(A, B)

}
⇒ d(x1, x2) ≤ d(x3, x4).

Definition 3. [4] Given a non-self mapping f : A→ B, then an element x∗ is called a best proximity point of
the mapping f if

d(x∗, f x∗) = d(A, B),

and denote the set of all best proximity points of f by BPP( f ).

Definition 4. [5] Let f : A→ B and g : A→ B be non-self mappings. An element x∗ is called a common best
proximity point of the mappings f and g if this condition is satisfied:

d(x∗, f x∗) = d(A, B) = d(x∗, gx∗).

Lemma 1. [4] Let {xn} be a sequence in X such that d(xn+1, xn) ≤ kd(xn, xn−1) for all n ∈ N and 0 ≤ k < 1.
Then {xn} is a Cauchy sequence.

Theorem 1. [4] Let (A, B) be a pair of non-empty closed subsets of a complete metric space (X, d) and let
S : A→ B and T : A→ B be the mappings such that A0 is nonempty. Assume that the following conditions
are satisfied:

1. The pair (A, B) has weak P-property;
2. d(Sx, Ty) ≤ kd(x, y) for 0 ≤ k < 1.

Then there exists a unique common best proximity point x to the pair (S, T) that is d(x, Sx) = d(x, Tx) =
d(A, B).

Theorem 2. [4] Let (A, B) be a pair of non-empty closed subsets of a complete metric space (X, d) and let
S : A→ B and T : A→ B be the mappings such that A0 is nonempty. Assume that the following conditions
are satisfied:

1. The pair (A, B) has weak P-property;
2. S and T are continuous;
3. d(Sx, Ty) ≤ k[d(x, Sx) + d(y, Ty)− 2d(A, B)] for 0 ≤ k < 1.

Then there exists a unique common best proximity point x to the pair (S, T) that is d(x, Sx) = d(x, Tx) =
d(A, B).
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Theorem 3. [6] A C-contraction defined on a complete metric space (X, d) has a unique fixed point that is if
T : X → X satisfies

d(Tx, Ty) ≤ α[d(x, Ty) + d(y, Tx)],

where 0 < α < 1 and x, y ∈ X, then T has a unique fixed point.

Next, we recall w-distance on a metric space (X, d) and give some facts by using
w-distance function.

Definition 5. [7] Let (X, d) be a metric space. Then a function p : X× X → [0, ∞) is called w-distance on X
if the following are satisfied:

1. p(x, z) ≤ p(x, y) + p(y, z), for any x, y, z ∈ X;
2. for any x ∈ X, p(x, ·) : X → [0, ∞) is lower semi continuous;
3. for any ε > 0, there exists δ > 0 such that p(z, x) ≤ δ and p(z, y) ≤ δ implies d(x, y) ≤ ε.

Note that the metric d is an example of w-distance.

Definition 6. [7] Let (X, d) be a metric space. A set valued mapping T : X → X is called weakly contractive if
there exists a w-distance p on X and r ∈ [0, 1) such that for any x1, x2 ∈ X and y1 ∈ Tx1 there is y2 ∈ Tx2

with p(y1, y2) ≤ rp(x1, x2).

3. On p-Common Best Proximity Point Theorems for S-Weakly Contractive Mappings

Before giving our main results, we first introduce some notations by considering the concept of
the ws-distance.

Definition 7. Let (X, d) be a metric space. Then a function p : X× X → [0, ∞) is called ws-distance on X if
the following are satisfied:

1. p(x, z) ≤ p(x, y) + p(y, z), for any x, y, z ∈ X;
2. p(x, y) ≥ 0, for any x, y ∈ X;
3. if {xm} and {ym} be any sequences in X such that xn → x, yn → y as n→ ∞, then p(xn, yn)→ p(x, y)

as n→ ∞;
4. for any ε > 0, there exists δ > 0 such that p(z, x) ≤ δ and p(z, y) ≤ δ implies d(x, y) ≤ ε.

Note that the metric d is also an example of ws-distance.

Definition 8. Let (X, d) be a metric space and p be ws-distance on X. Let A and B be two nonempty subsets of
X, define

A0,p = {a ∈ A : there exists some b ∈ B such that p(a, b) = p(A, B)}
and

B0,p = {b ∈ B : there exists some a ∈ A such that p(a, b) = p(A, B)},
where p(A, B) = inf{p(a, b) : a ∈ A, b ∈ B}.

Definition 9. Let (X, d) be a metric space and A, B ⊆ X. Let p be ws-distance on X such that A0,p 6= ∅.
A set valued mapping T : A→ B with T(A0, p) ⊆ B0,p is called S-weakly contractive or Pp-contractive if there
exists a ws-distance p on A and r ∈ [0, 1) such that for any x1, x2 ∈ A and y1 ∈ Tx1 in B there is y2 ∈ Tx2 in
B with p(y1, y2) ≤ rp(x1, x2).

Definition 10. Let (A, B) be a part of nonempty subsets of a metric space (X, d) and p be ws-distance on X
with A0,p 6= ∅. Then the pair (A, B) is said to have weak Pp-property if and only if for any x1, x2 ∈ A0,p and
y1, y2 ∈ B0,p

p(x1, y1) = p(A, B)
p(x2, y2) = p(A, B)

}
⇒ p(x1, x2) ≤ p(y1, y2).
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Definition 11. Let p be ws-distance on a metric space (X, d) and A, B ⊆ X. Given two non-self mappings
f : A→ B and g : A→ B, then an element x∗ is called p-common best proximity point of the mappings if

p(x∗, f x∗) = p(A, B) = p(x∗, gx∗).

Lemma 2. Let p be ws-distance on a metric space (X, d) and {xn} be a sequence in X such that p(xn+1, xn) ≤
kp(xn, xn−1) for all n ∈ N and 0 ≤ k < 1. Then {xn} is a Cauchy sequence.

Proof. We have, p(xn+1, xn) ≤ kp(xn, xn−1) ≤ k2 p(xn−1, xn−2) ≤ ... ≤ kn p(x1, x0).
Let m > n ≥ n0 for some n0 ∈ N. Then

p(xm, xn) ≤ p(xm, xm−1) + p(xm−1, xm−2) + ... + p(xn+1, xn)

≤ (km−1 + km−2 + ... + kn)p(x1, x0)

≤ (kn + kn+1 + ...)p(x1, x0)

=
kn

1− k
d(x1, x0)→ 0, as n→ ∞, and 0 ≤ k < 1.

This implies {xn} is a Cauchy sequence.

Theorem 4. Let (X, d) be a metric space and A, B are nonempty closed subsets of X. Suppose that T : A→ B
and U : A → B are continuous set valued, S-weakly contractives or pp-contractive mappings with (A, B)
satisfies the weak Pp-property where p is the ws-distance with A0,p 6= ∅. If T(A0,p) ⊆ B0,p and U(A0,p) ⊆ B0,p
then there exists a unique p-common best proximity point.

Proof. Since T and U are S-weakly-contractive mappings and A0,p is nonempty. Thus, we take
x0 ∈ A0,p, there exists x1 ∈ A0,p such that

p(x1, Tx0) = p(A, B). (1)

and similarly
p(x1, Ux0) = p(A, B). (2)

Again, since T(A0,p) ⊆ B0,p and U(A0,p) ⊆ B0,p, there exists x2 ∈ A0,p such that

p(x2, Tx1) = p(A, B). (3)

Also,
p(x2, Ux1) = p(A, B). (4)

Repeating this process, we get a sequence {xn} in A0,p satisfying

p(xn+1, Txn) = p(A, B) = p(xn+1, Uxn),

for any n ∈ N.
Since (A, B) has weak Pp-property, we have that

p(xn, xn+1) ≤ p(Txn−1, Txn)

and
p(xn, xn+1) ≤ p(Uxn−1, Uxn),

for any n ∈ N.
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Note that T and U are S-weakly-contractive mappings and (A, B) has weak Pp-property, so for
any n ∈ N, we have that

p(xn, xn+1) ≤ p(Txn−1, Txn)

≤ rp(xn−1, xn)

< p(xn−1, xn),

and also

p(xn, xn+1) ≤ p(Uxn−1, Uxn)

≤ rp(xn−1, xn)

< p(xn−1, xn),

where 0 ≤ r < 1. Then we have
p(xn, xn+1) < p(xn−1, xn).

This implies that {p(xn, xn+1)} is strictly decreasing sequence of nonnegative real numbers. Then,
we can suppose that there exists n0 ∈ N such that p(xn0 , xn0+1) = 0. In this case,

0 = p(xn0 , xn0+1) = p(Txn0−1, Txn0) = p(Uxn0−1, Uxn0),

and consequently
Txn0−1 = Txn0 ,

and
Uxn0−1 = Uxn0 ,

Therefore,
p(A, B) = p(xn0 , Txn0−1) = p(xn0 , Txn0) = p(xn0 , Uxn0).

Note that xn0 ∈ A0, Uxn0−1 ∈ B0, Txn0−1 ∈ B0, and xn0 = Txn0−1 , xn0 = Uxn0−1, for any n0 ∈ N,
so A

⋂
B is nonempty, then p(A, B) = 0. Thus in this case, there exists p-common best proximity point,

i.e., there exists unique x∗ in A such that p(x∗, Tx∗) = p(A, B) = p(x∗, Ux∗).
In the contrary case, suppose that p(Txn0 , Txn0−1) > 0 and p(Uxn0 , Uxn0−1) > 0 this implies that

p(xn, xn+1) > 0 for any n ∈ N. Since {p(xn, xn+1)} is strictly decreasing sequence of nonnegative real
numbers and hence there exists k ≥ 0 such that

lim
n→∞

p(xn, xn+1) = k.

We have to show that k = 0. Let k 6= 0 and k > 0, then from

p(x, y) = lim
n→∞

p(xn, xn+1)

and
p(x, y) ≤ lim inf

n→∞
p(x, xn+1) ≤ 0,

we have
lim

n→∞
p(xn, xn+1) = 0.

for any n ∈ N. Which yields that
lim

n→∞
p(xn−1, xn) = 0.
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Hence k = 0 and this contradicts our assumption that k > 0. Therefore,

lim
n→∞

p(xn, xn+1) = 0.

Since p(xn+1, Txn) = p(A, B) for any n ∈ N, for fixed p, q ∈ N, we have

p(xp, Txp−1) = p(xq, Txq−1) = p(A, B)

and since (A, B) satisfies weak Pp-property, so

p(xp, xq) ≤ p(Txp−1, Txq−1)

and
p(xp, xq) ≤ p(Uxp−1, Uxq−1).

By Lemma 2, we conclude that {xn} is a Cauchy sequence in A. Since {xn} ⊆ A and A is closed
subset of a complete metric space (X, d). There is x∗ ∈ A such that xn → x∗ as n→ ∞. Since T and U
are continuous, so we have

Txn → Tx∗ and Uxn → Ux∗ as n→ ∞.

Then we conclude that

p(xn+1, Txn)→ p(x∗, Tx∗) and p(xn+1, Uxn)→ p(x∗, Ux∗) as n→ ∞.

Taking into account that {p(xn+1, Txn)} and {p(xn+1, Uxn)} are constant sequences with a value
p(A, B), we deduce

p(x∗, Tx∗) = p(A, B) = p(x∗, Ux∗),

i.e., x∗ is p-common best proximity point of T.

Next, we will prove the uniqueness of a p-common best proximity point. Since p is a w-distance
and also T and U are Pp-contractives then p(Tx, Ty) ≤ rp(x, y) for every x, y ∈ A of X. We suppose
that given mappings T and U have two distinct p-common best proximity points x0, x1 ∈ A, that
is p(x0, Tx0) = p(x0, Ux0) = p(A, B), and p(x1, Tx1) = p(x1, Ux1) = p(A, B). Since T and U have
Pp-property, then

p(x0, x1) = p(Tx0, Tx1)

≤ rp(x0, x1),

and

p(x0, x1) = p(Ux0, Ux1)

≤ rp(x0, x1),

which shows
p(x0, y0) ≤ rp(x0, y0).

It contradicts our assumption and so we get x0 = y0. Therefore, there exists a unique p-common
best proximity point for the pair (T, U).
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4. Characterizations Related to p-Contractive Type Mappings

In this section, now we are in a position to show the results for different p-contractive
type mappings.

Theorem 5. Let (A, B) be a pair of non empty closed subsets of a complete metric space X and p be the
ws-distance on X. Let S : A → B and T : A → B such that A0,p is nonempty and S, T(A0,p) ⊆ B0,p.
Assume that the following conditions are satisfied:

1. The pair (A, B) has weak Pp-property;
2. p(Sx, Ty) ≤ kp(x, y) for 0 ≤ k < 1.

Then there exists a unique p-common best proximity point x to the pair (S, T) that is p(x, Sx) =

p(x, Tx) = p(A, B).

Proof. We consider x0 ∈ A0,p as A0,p is non empty, since Sx0 ∈ S(A0,p) ⊆ B0,p, then by definition
of A0,p we can find x1 ∈ A0,p, such that p(x1, Sx0) = p(A, B). Again Tx1 ∈ T(A0,p) ⊆ B0,p, we find
x2 ∈ A0,p such that p(x2, Tx1) = p(A, B). Since x2 ∈ A0,p and S(A0,p) ⊆ B0,p, we have x3 ∈ A0,p
such that p(x3, Sx2) = p(A, B). In this manner we can get x4 ∈ A0,p such that p(x4, Tx3) = p(A, B) as
T(A0,p) ⊆ B0,p and Tx3 ∈ B0,p. Repeating the process, we obtain a sequence {xn} in A0,p satisfying
p(x2n, Tx2n−1) = p(A, B), for all n ∈ N and p(x2n−1, Sx2n−2) = p(A, B), for all n ∈ N Since (A, B) has
weak Pp-property, we obtain that

p(x2n, x2n−1) ≤ p(Tx2n−1, Sx2n−2) = p(Sx2n−2, Tx2n−1)

for any n ∈ N and
p(x2n+1, x2n) ≤ p(Sx2n, Tx2n−1) = p(Tx2n−1, Sx2n)

for any n ∈ N. Now p(x2n+2, x2n+1) ≤ p(Sx2n, Tx2n+1) ≤ kp(x2n, x2n+1). Again p(x2n+1, x2n) ≤
p(Sx2n, Tx2n−1) ≤ kp(x2n, x2n−1).

Hence, we get p(xn+1, xn) ≤ kp(xn, xn−1) for all n ∈ N, where 0 ≤ k < 1. Then by Lemma 2, {xn}
is a Cauchy sequence in A. As A is closed subset of a complete metric space so A is complete. Hence
there exists x ∈ A such that xn → x as n→ ∞. Now we claim that p(Sxn, Sx) = 0 and p(Txm, Tx) = 0
as n, m→ ∞. Note that

p(Sxn, Sx) ≤ p(Sxn, Txm) + p(Txm, Sx)

≤ k[p(xn, xm) + p(xm, x)]

→ 0 as n, m→ ∞.

Similarly, one can show that p(Txm, Tx) = 0. Now as n→ ∞, we have

p(x2n−1, Sx2n−2) = p(A, B))p(x, Sx) = p(A, B)

and
p(x2n, Tx2n−1) = p(A, B)p(x, Tx) = p(A, B).

Therefore, p(x, Sx) = p(x, Tx) = p(A, B) that is x is a p-common best proximity point for the
pair of mappings (S, T). Now, we shall prove uniqueness of the p-common best proximity point to
the pair of mappings (S, T). Let us consider another p-common best proximity point y for the pair of
mappings (S, T) then

p(y, Sy) = p(y, Ty) = p(A, B).

Then by weak Pp-property,

p(x, Sx) = p(x, Tx) = p(A, B),
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and
p(y, Sy) = p(y, Ty) = p(A, B)

imply
p(x, y) ≤ p(Sx, Ty) ≤ kp(x, y)

or
p(x, y) ≤ p(Sx, Sy) ≤ p(Sx, Ty) + p(Ty, Sy) ≤ k[p(x, y) + p(y, y)] = kp(x, y)

or
p(x, y) ≤ p(Tx, Ty) ≤ p(Tx, Sy) + p(Sy, Ty) ≤ k[p(x, y) + p(y, y)] = kp(x, y).

As 0 ≤ k < 1, in any of the above three cases, we conclude a contradiction. Hence there exists a
unique p-common best proximity point to the pair (S, T) that is p(x, Sx) = p(x, Tx) = p(A, B).

Theorem 6. Let (A, B) be a pair of non empty closed subsets of a complete metric space (X, d) and p be the
ws-distance on X. Let S : A→ B and T : A→ B such that A0,p is nonempty, S(A0,p) ⊆ B0,p, T(A0,p) ⊆ B0,p
and B0,p is closed. Assume that the following conditions are satisfied:

1. The pair (A, B) has weak Pp-property;
2. S and T are continuous;
3. p(Sx, Ty) ≤ k

2 [p(x, Ty) + p(y, Sx)− 2p(A, B)] for 0 ≤ k < 1.

Then there exists a unique p-common best proximity point x to the pair (S, T) that is p(x, Sx) =

p(x, Tx) = p(A, B).

Proof. Since A0,p 6= ∅ and the pair (A, B) satisfies weak Pp-property, also B0,p is closed. We have
S(A0,p) ⊆ B0,p and T(A0,p) ⊆ B0,p. Let us define an operator PA0,p : S(A0,p) → A0,p, by PA0,py =

{x ∈ A0,p : p(x, y) = p(A, B)}. Since the pair (A, B) has weak Pp-property, then

p(PA0,p(Sx), Sx) = p(A, B)

and
p(PA0,p(Sy), Sy) = p(A, B).

imply that

p(PA0,p(Sx)PA0,p(Sy)) ≤ p(Sx, Sy)

≤ k
2
[p(x, Sy) + p(y, Sx)− 2p(A, B)]

≤ k
2
[p(x, PA0,p(Sy)) + p(PA0,p(Sy), Sy) + p(y, PA0,p(Sx))

+ p(PA0,p(Sx), Sx)− 2p(A, B)]

≤ k
2
[p(x, PA0,p(Sy)) + p(y, PA0,p(Sx))].

for any x, y ∈ A0,p and 0 ≤ k < 1. This gives that PA0,poS : A0,p → A0,p is C-contractive mapping from
complete metric subspace A0,p into itself then by [6], we can see that PA0,poS has a unique p-fixed
point say x1. That is PA0,poSx1 = x1 ∈ A0,p, which implies that p(x1, Sx1) = p(A, B). In the same
fashion, we can take a mapping PA0,poT : A0,p → A0,p and also that PA0,poS has a unique p-fixed
point say x2. That is PA0,poTx2 = x2 ∈ A0,p, which implies that p(x2, Tx2) = p(A, B).
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Now, we will show that x1 = x2. Since (A, B) satisfies weak Pp-property, then p(x1, Sx1) = p(A, B)
and p(x2, Tx2) = p(A, B) imply that

p(x1, x2) ≤ p(Sx1, Tx2)

≤ k
2
{p(x1, Tx2) + p(x2, Sx1)− 2p(A, B)}

≤ k
2
{p(x1, x2) + p(x2, Tx2) + p(x2, x1) + p(x1, Sx1)− 2p(A, B)}

=
k
2
{p(x1, x2)}

= kp(x1, x2),

which shows that x1 = x2 := x(say). Therefore

p(x, Sx) = p(x, Tx) = p(A, B).

That is x is a p-common best proximity point.
Next, we will prove the uniqueness of the p-common best proximity point. Let y be another

p-common best proximity point for the pair of mappings (S, T). Then

p(x, Sx) = p(x, Tx) = p(A, B).

p(y, Sy) = p(y, Ty) = p(A, B).

Then by weak Pp-property, we have

p(x, y) ≤ p(Sx, Ty)

≤ k
2
{p(x, Ty) + p(y, Sx)− 2p(A, B)}

≤ k
2
{p(x, y) + p(y, Ty) + p(y, x) + p(x, Sx)− 2p(A, B)}

= kp(x, y)

or

p(x, y) ≤ p(Sx, Sy)

≤ {p(Sx, Ty) + p(Ty, Sy)}

≤ k
2
{p(x, Ty) + p(y, Sx)− 2p(A, B)}+ k

2
{p(y, Ty) + p(y, Sy)− 2p(A, B)}

≤ k
2
{p(x, y) + p(y, Ty) + p(y, x) + p(x, Sx)− 2p(A, B)}

+
k
2
{p(y, Ty) + p(y, Sy)− 2p(A, B)}

= kp(x, y)
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or

p(x, y) ≤ p(Tx, Ty)

≤ {p(Tx, Sy) + p(Sy, Ty)}

≤ k
2
{p(x, Sy) + p(y, Tx)− 2p(A, B)}+ k

2
{p(y, Sy) + p(y, Ty)− 2p(A, B)}

≤ k
2
{p(x, y) + p(y, Sy) + p(y, x) + p(x, Tx)− 2p(A, B)}

= kp(x, y).

As 0 ≤ k < 1, in any of the above three different situations we conclude that x = y. Hence there
exists a unique p-common best proximity point x to the pair (S, T) that is

p(x, Sx) = p(x, Tx) = p(A, B).

Example 1. Consider X = R2, with the with the p-distance defined as p((x1, y1), (x2, y2)) =√
(x1 − y1)2 + (x2 − y2)2. Let A = {(x, 1) : 0 ≤ x < ∞} and B = {(x, 0) : 0 ≤ x < ∞}. Obviously,

p(A, B) = 1 and A, B are nonempty subsets of X, take A0,p = A and B0,p = B.
We define S : A→ B as:

S(x, 1) = (
x + 1

3
, 0),

where (x, 1) ∈ A.
Let T : A→ B defined as:

T(x, 1) = (
x + 1

4
, 0).

Then, we see that S(A0,p) ⊆ B0,p and T(A0,p) ⊆ B0,p. Also, the pair (A, B) has weak Pp-property as:

p((x1, 1), (y1, 1)) =
√
(1− 02) + (x1 − y1)2 = p(A, B) = 1,

and
p((x2, 1), (y2, 1)) =

√
(1− 02) + (x2 − y2)2 = p(A, B) = 1,

then one can easily obtain x1 = y1 and x2 = y2, hence p((x1, 1), (x2, 1)) = |x1 − x2| = |y1 − y2| ≤
p((y1, 0), (y2, 0)). Furthermore, p((0, 1), (0, 2)) = 1 = p(A, B) and p((0, 1), (0, 0)) = 1 = p(A, B),
implies that p((0, 1), (0, 0)) = 1 = p(A, B). Thus, the given pair (A, B) satisfies the weak Pp-property but not
Pp-property.

Next, for any different x, y, let us suppose two elements (x1, 1), (x2, 1) ∈ A,

p(S(x1, 1), (x2, 1)) = p((
x1 + 1

3
, 0), (

x2 + 1
4

, 0))

=
x
3
− y

4
+

1
12

≤ k|x− y|
≤ kp((x1, 1), (x2, 1))

for any k ∈ [0, 1). If x1 = x2 then surely this satisfied. So every condition of the Theorem 4 is satisfied thus one
can find the unique p-common best proximity point for given pair of mappings (S, T). Hence, that p-common
best proximity point is (0, 1) ∈ A.
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