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Abstract

:

Let f(z)=z+∑n=2∞anzn and gp,b,c(z)=z+∑n=2∞(−c4)n−1(32)n−1(k)n−1zn with p,b,c∈ℂ, k=p+b+22≠0,−1,−2,… be two analytic functions in the unit disk U={z:|z|<1}. This paper gives conditions so that the function Tp,b,c(z)=(f∗g)(z), a function associated with the Struve function, is univalent, starlike, or convex in the unit disk.
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1. Introduction


In light of Louis de Brange using a special function, namely the generalized hypergeometric function, in proving the Bieberbach Conjecture, renewed interest was sparked among the mathematics community in special functions. Following this, many articles were presented in dealing with the geometric properties of different types of special functions including but not limited to generalized hypergeometric function, Gaussian, Kummer hypergeometric functions, Bessel functions, and, most recently, Struve functions [1,2,3,4,5,6,7,8,9]. Sufficient conditions on the parameters of these special functions were also determined by many authors for them to belong to a certain class of univalent functions [10,11,12,13,14,15,16,17,18,19,20].



Let A denote the class of analytic functions in the unit disk U={z:|z|<1} of the following form:


 f(z)=z+∑n=2∞anzn, 



(1)




and normalized by f(0)=f′(0)−1=0. Denote S to be the subclass of A consisting of univalent functions. Subsequently, denote S∗ and C to be subclasses of function S which are starlike and convex, respectively, in the unit disk U with the following definitions:



Definition 1.

A setDin the plane is said to be starlike with respect tow0an interior point ofDif each ray with initial pointw0intersects the interior ofDin a set that is either a line segment or a ray. If a functionf(z)mapsUonto a domain that is starlike with respect tow0, then we say thatf(z)is starlike with respect tow0. In the special case thatw0=0, we say thatf(z)is a starlike function.





Definition 2.

A setDin the plane is called convex if, for every pair of pointsw1andw2in the interior ofD, the line segment joiningw1andw2is also in the interior ofD. If a functionf(z)mapsUonto a convex domain, thenf(z)is called a convex function.





The analytical definition for the classes of starlike and convex functions are as follows, where ℜ denotes the real part of a complex function:



Proposition 1.

Letf∈S, thenf∈S∗if and only if


 ℜ{zf′(z)f(z)}>0  (z∈U). 













Proposition 2.

Letf∈A, thenf∈Cif and only if


 ℜ{1+zf″(z)f′(z)}>0  (z∈U). 













For more insights on these classes, refer to References [21,22].



According to the Alexander theorem [23], every function f is convex in the unit disk if and only if zf' is starlike in the unit disk, i.e., f∈C ⇔zf'∈S∗.



Given any analytic functions, f(z)=∑n=0∞anzn and g(z)=∑n=0∞bnzn, define the convolution function of f and g, denoted by f∗g, as




 (f∗g)(z)=∑n=0∞anbnzn. 









Trivially, f∗g is analytic and it is sometimes referred to as the Hadamard product of f and g in honour of J. Hadamard, where Hadamard used an alternative representation,


 (f∗g)(z)=12πi∫|ξ|=ρf(zξ)g(ξ)ξdξ,   |z|<ξ<1, 








to illustrate the convolution.



Firstly, consider the following differential equation [24]:


 z2w″(z)+zw′(z)+(z2−p2)w(z)=4(z2)p+1πΓ(p+12), 



(2)




where p∈ℝ and a particular solution for Equation (2) is


 Hp(z)=∑n=0∞(−1)nΓ(n+32)Γ(p+n+32)(z2)2n+p+1  (z∈ℂ). 











The function Hp(z) is known as the Struve function of order p. Next, consider the following differential equation which only differs in the coefficient of w:


 z2w″(z)+zw′(z)−(z2+p2)w(z)=4(z2)p+1πΓ(p+12), 



(3)




and a particular solution for Equation (3) is


Lp(z)=−ie−ipπ2Hp(iz)=∑n=0∞1Γ(n+32)Γ(p+n+32)(z2)2n+p+1  (z∈ℂ), 








where Lp(z) is known as the modified Struve function of order p. Refer to Reference [25] for a more in-depth discussion on the Struve function. Now, consider the differential equation


 z2w″(z)+bzw′(z)+[cz2−p2+(1−b)p]w(z)=4(z2)p+1πΓ(p+b2), 



(4)




where b,c,p∈ℂ. Note that if b=1 and c=1, then Equation (4) reduces to Equation (2), and if b=1 and c=−1, then Equation (4) reduces to Equation (3). A particular solution for Equation (4), denoted by wp,b,c(z), is




 wp,b,c(z)=∑n=0∞(−1)ncnΓ(n+32)Γ(p+n+b+22)(z2)2n+p+1  (z∈ℂ). 









Similarly to before, if b=1 and c=1, then wp,1,1(z)=Hp(z), and if b=1 and c=−1, then wp,1,−1(z)=Lp(z). This generalization allows the study of Hp(z) and Lp(z) together. Thus, wp,b,c(z) is identified as the generalized Struve function of order p. Although the series representation of wp,b,c(z) is convergent everywhere in ℂ, the function is univalent generally in U [26]. Now, consider the function up,b,c(z) defined as follows:


 up,b,c(z)=2pπΓ(p+b+22)z−p−12wp,b,c(z). 











Utilizing the Pochhammer symbol, (γ)n=Γ(γ+n)Γ(γ)=γ(γ+1)…(γ+n−1), the following form of up,b,c(z) can be written:


 up,b,c(z)=∑n=0∞(−c4)n(32)n(k)nzn=b0+b1z+b2z2+…, 








where k=p+b+22≠0,−1,−2,… and


 bn=(−1)ncnΓ(32)Γ(k)4nΓ(n+32)Γ(n+k), 








for n≥0. The function up,b,c is analytic in ℂ, and satisfies the condition up,b,c(0)=1, as well as the differential equation




 4z2u″(z)+2(2p+b+3)zu′(z)+(cz+2pb)u(z)=2p+b. 









For more discussion on generalized Struve function, refer to References [26,27,28].



The function Tp,b,c(z) is a convolution of f∈A and gp,b,c(z)=zup,b,c(z), i.e.,


 Tp,b,c(z)=(f∗gp,b,c)(z)=z+∑n=2∞(−c4)n−1(32)n−1(k)n−1anzn  (z∈U), 



(5)




where p,b,c∈ℂ and k=p+b+22. In Reference [26], Orhan and Yagmur investigated the geometric properties for the function gp,b,c(z), and this prompts the motivation to seek similar properties for the function Tp,b,c(z). The function Tp,b,c was first introduced by Raza and Yagmur [29]. As such, this paper studies univalency, starlikeness, and convexity properties of the function Tp,b,c.




2. Preliminaries


The following preliminary results are needed to prove the results in the next section. These results can be found in References [30,31,32,33] respectively except for Lemma 3 which can be found in Reference [16].



Theorem 1.

Iff∈S, then|an|≤nforn≥2.





Lemma 1.

Iff∈Asatisfies the inequality


 |zf′(z)f(z)−1|<M  (z∈U), 








whereMis the solution of the equationcos(M)=M, thenℜ{f′(z)}>0.





Lemma 2.

Iff∈Aandℜ{f′(z)}>0, thenfis univalent.





Lemma 3.

Iff∈Aand


 |zf′(z)f(z)−1|1−β|zf″(z)f′(z)|β<(1−α)1−2β(1−3α2+α2)β, 








for some fixedα∈[0,12],β≥0and for allz∈U, thenf∈S∗(α).





Proposition 3.

Consider forx∈ℝ, the quartic functionP(x)of the form


 P(x)=rx4+sx3+tx2+ux+v, 








wherer,s,t,u,v∈ℝ. Solutions ofP(x)=0are given as follows:


 x1,2=−s4r−S±12−4S2−2a+dS, x3,4=−s4r+S±12−4S2−2a−dS, 








whereaanddare the coefficients of the second and of the first degree, respectively, in the associated depressed quartic


 a=8rt−3s28r2, d=s3−4rst+8r2u8r3, 








and where


 S=12−23a+13r(Q+Δ0Q), Q=Δ1+Δ12−4Δ0323, 








with


 Δ0=t2−3su+12rv, Δ1=2t3+9stu+27s2v+27r2−72rtv. 














3. Results


Sufficient conditions for Tp,b,c to be univalent, starlike, and convex are shown in the theorems below, respectively.



Theorem 2.

Letf∈AandTp,b,c(z)be defined by Equation (5). Ifp,b,c,∈ℂ,k1=p+b+22and


k1>7M+2+β+16M3+(17β+100)M2+(40β+80)M+12β+16−β3β24M|c|≈ 1.098143352|c|, 








whereMis the solution the equationcos(M)=Mand


β=13[49αM3+(28α+17)M2+(4α+α+40)M+12]≈ 3.469588501, 



(6)




with


α3=−343M3−2886M2−948M−8+243M1029M4+5113M3+3138M2+540M+8≈−28.2795216, 



(7)




thenℜ{Tp,b,c'(z)}>0for allz∈U.





Proof. 

Suppose f∈A. Using |z1+z2|≤|z1|+|z2|, the inequalities (32)n≥32n and (k)n≥kn(n∈ℕ) for |z|<1,


|Tp,b,c'(z)−Tp,b,c(z)z|=|∑n=2∞(−c4)n−1(32)n−1(k)n−1(n−1)anzn−1|≤23∑n=2∞n(|c|4k)n−1  (as |an|≤n for n≥2 by Theorem 1)=23|c|4k[11−|c|4k+1(1−|c|4k)2]=16k|c|−2|c|23(4k−|c|)2  . 



(8)









Obviously, the restriction on k is k>|c|4. On the other hand, using |z1−z2|≥||z1|−|z2||, the inequalities (32)n≥(32)n and (k)n≥kn(n∈ℕ) for |z|<1,


|Tp,b,c(z)z|=|1+∑n=2∞(−c4)n−1(32)n−1(k)n−1anzn−1|≥1−∑n=2∞(n+1)(|c|6k)n=1−|c|6k[11−|c|6k+1(1−|c|6k)2]=2(18k2−12k|c|+|c|2)(6k−|c|)2 , 



(9)




where the restriction on k is k>|c|3(1+12). Combining Equations (8) and (9) gives


|zTp,b,c'(z)Tp,b,c(z)−1|=|Tp,b,c'(z)−Tp,b,c(z)z||zTp,b,c(z)|<(16k|c|−2|c|23(4k−|c|)2)((6k−|c|)22(18k2−12k|c|+|c|2))=Ψ(k,|c|). 



(10)







Next, to determine the values of k1 such that it satisfies


 Ψ( k1,|c|)<M, 



(11)




where M is the solution of the equation cos(M)=M, the inequality can be written as




Ψ( k1,|c|)<M⇒(8k1|c|−|c|2)(6k1−|c|)2<3M(4k1−|c|)2(18k12−12k1|c|+|c|2)⇒288k13|c|−132k12|c|2+20k1|c|3+|c|4<3M(288k14−336k13|c|+130k12|c|2−20k1|c|3+|c|4)⇒F(k1)=Mk14−7M+26k13|c|+65M+22144k12|c|2−15M+5216k1|c|3+3M+1864|c|4>0. 



(12)





Using Proposition 3 to find F(x),


 Mx4−7M+26x3|c|+65M+22144x2|c|2−15M+5216x|c|3+3M+1864|c|4=0. 











Putting


 a=−17M2+40M+12288M2|c|2, d=−4M3+25M2+20M+4864M3|c|4, Δ0=49M2+28M+420736|c|4, Δ1=−343M3+2886M2+948M+81492992|c|6, Δ12−4Δ03=1728M(1029M4+5113M3+3138M2+540M+8)14929922|c|12, Q=α144|c|2  where α is (7), S=β24M|c|  where β is (6), 








and since cos(M)=M gives M≈0.7390851332, the zeros of F are




 {x1,2∈ℂ  as −4S2−2a+dS<0,x3,4∈ℝ  as −4S2−2a−dS>0. 









The real roots x3,4 are given by


x3,4=−s4r+S±12−4S−2a−dS=7M+2+β±16M3+(17β+100)M2+(40β+80)M+12β+16−β3β24M|c|, 








which upon simplification, results in the following approximation:


x3=7M+2+β−16M3+(17β+100)M2+(40β+80)M+12β+16−β3β24M|c|≈  0.1018970715|c|,x4=7M+2+β+16M3+(17β+100)M2+(40β+80)M+12β+16−β3β24M|c|≈ 1.09813352|c|. 











Thus, it can be concluded that F(k1)>0 for k1<x3 or k1>x4. Since k>|c|3(1+12), then


 k>x4=7M+2+β+16M3+(17β+100)M2+(40β+80)M+12β+16−β3β24M|c|, 








is the range of values of k1 that satisfies Equation (11). As Tp,b,c is an analytic function, then, by Lemma 1, ℜ{Tp,b,c(z)}>0 for all z∈U. □



Remark 1.

Obviously from Lemma 2, withcandksatisfying the constraints given in Theorem 2, the functionTp,b,cis univalent inU.





Theorem 3.

Letf∈AandTp,b,c(z)be defined by Equation (5). If p,b,c,∈ℂ, k2=p+b+22and


 k2>9+θ+−θ3+69θ+212θ24|c|≈0.970886809|c|, 








where


 θ= 23+−155+16913+9−155+16913≈3.862149964, 



(13)




then Tp,b,cis starlike in U.





Proof. 

Suppose f∈A. Similar to the previous result, the aim is to seek constraints on k2 such that Tp,b,c is starlike in U. Hence, replacing k1 with k2 and M with 1 in Equation (11) gives the following:


Ψ(k2,|c|)<1⇒4|c|2−80k2|c|3+522k22|c|2−1296k23|c|+864k24>0⇒G(k2)=k24−32k23|c|+2948k22|c|2−554k2|c|3+1216|c|4>0. 



(14)









Once again, using Proposition 3 to find the zeros of G(y),


 y4−32y3|c|+2948y2|c|2−554y|c|3+1216|c|4=0. 











Putting


 a=−2396|c|2, d=−56864|c|4, Δ0=1256|c|4, Δ1=−15555296|c|6, Δ12−4Δ03=9111943936|c|12, Q=−155+1691483|c|2, S=θ24|c|  where θ is (13), 








the zeros of G are




 {y1,2∈ℂ  as −4S2−2a+dS<0,y3,4∈ℝ  as −4S2−2a−dS>0. 









The real roots y3,4 are given by


 y3,4=−s4r+S±12−4S−2a−dS=9+θ±−θ3+69θ+212θ24|c|, 








which, upon simplification, results in the following approximation:


 y3=9+θ−−θ3+69θ+212θ24|c|≈0.00958649|c|, y4=9+θ+−θ3+69θ+212θ24|c|≈0.970886809|c|. 











Thus, it can be concluded that G(k2)>0 for k2<y3 or k2>y4. Since k>|c|3(1+12), then


 k2>y4=9+θ+−θ3+69θ+212θ24|c|, 








is the range of values of k2 that satisfies Equation (14) which, in turn, implies that Tp,b,c is starlike in U by Lemma 3 when α=β=0. □



Theorem 4.

Letf∈AandTp,b,c(z)defined by Equation (5). If p,b,c∈ℂ, k3=p+b+22and k3>13+13012|c|, then Tp,b,c(z)is convex in U.





Proof. 

Suppose f∈A. Using |z1+z2|≤|z1|+|z2|, the inequalities (32)n>n(n+1)2 and (k)n≥kn(n∈ℕ) for |z|<1,


|zTp,b,c''(z)|=|∑n=2∞(−c4)n−1(32)n−1(k)n−1n(n−1)anzn−1|≤2∑n=2∞n(|c|4k)n−1  (as |an|≤n for n≥2 by Theorem 1)=2(|c|4k)[11−|c|4k+1(1−|c|4k)2]=16k|c|−2|c|2(4k−|c|)2  . 



(15)









Obviously, the restriction on k is k>|c|4. Using |z1−z2|≥||z1|−|z2||, the inequalities (32)n>3(n+1)4 and (k)n≥kn(n∈ℕ) for |z|<1,


|Tp,b,c'(z)|=|1+∑n=2∞(−c4)n−1(32)n(k)n−1nanzn−1|≥1−43∑n=2∞n(|c|4k)n−1=1−43(|c|4k)[11−|c|4k+1(1−|c|4k)2]=48k2−56k|c|+7|c|23(4k−|c|)2 , 



(16)




where the restriction on k is k>7+2712|c|. Comparing Equations (16) and (17) gives the following:


 |zTp,b,c''(z)Tp,b,c'(z)|=|zTp,b,c''(z)||1Tp,b,c'(z)|<48k|c|−6|c|248k2−56k|c|+7|c|2. 











The next step is to determine the values of k3 such that it satisfies the following:


 48k|c|−6|c|248k2−56k|c|+7|c|2<1. 



(17)







From Equation (17),


48k3|c|−6|c|248k32−56k3|c|+7|c|2<1⇒48k3|c|−6|c|2<48k32−56k3|c|+7|c|2⇒48k32−104k3|c|+13|c|2>0⇒k32−136k3|c|+1348|c|2>0⇒k3<13−13012|c|≈0.133187|c|  OR  k3>13+13012|c|≈2.03345|c|. 











Since k>7+2712|c|, then k3>13+13012|c| is the range of values of k3 such that it satisfies Equation (17). Since the range of values of k3 satisfies the condition in Theorem 3, then zTp,b,c' is starlike in U which, in turn, implies that Tp,b,c is convex in U by the Alexander theorem. □




4. Conclusions


In summary, the bounds on k for function Tp,b,c to be univalent, starlike, and convex were obtained. Specifically, for k=k1>1.098143352|c|, Tp,b,c is univalent; for k=k2>0.970886809|c|,Tp,b,c is starlike; and for k=k3>2.03345|c|,Tp,b,c is convex. The bounds obtained for convexity and starlikeness of the function Tp,b,c are in agreement since k2<k3 and all convex functions are starlike. Secondly, the same goes for the function to be univalent and convex since k1<k3 and all convex functions are univalent for z∈U. However, since the bounds obtained in k1 and k2 are not necessarily sharp, the relationship between k1 and k2 does not imply the outcome that all starlike functions are univalent in the unit disk. This is probably due to the fact that the approach in establishing Theorem 3 used Lemma 3 (a necessary condition) as opposed to using Proposition 1 (necessary and sufficient). This allows for further research to explore better methods, such as using Proposition 1, to achieve better bounds. Nevertheless, the results attained in this paper are in adherence with the results in Reference [26]. Conducting further research in the future will hopefully produce a sharper result.
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