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Abstract: There are several equivalent axioms, which can be used to characterize the positive implicativity
in BCK-algebras. In this paper, we investigate interrelationships among such axioms in a more general
setting of groupoids, and several aspects regarding their differences in the theory of groupoids.

Keywords: groupoid; d-algebra;BCK-algebra; (positive, central, meet, quasi) implicativity; leftoid;
rightoid; (selective, medial) groupoid

1. Introduction

Bruck ([1]) published a book, A survey of binary systems discussed in the theory of groupoids, loops
and quasigroups, and several algebraic structures. Boru̇vka ([2]) stated the theory of decompositions
of sets and its application to binary systems.

The notion of d-algebras which is another useful generalization of BCK-algebras was introduced
by Neggers and Kim ([3]), and some relations between d-algebras and BCK-algebras as well as several
other relations between d-algebras and oriented digraphs were investigated. Several aspects on
d-algebras were studied [4–6]. Recently some notions of the graph theory were applied to the theory
of groupoids ([7]).

There are several different axioms, which can give equivalent characterizations of the positive
implicativity in BCK-algebras. By using other axioms or their induced results, the proofs of their
equivalences were obtained in BCK-algebras. It is interesting and useful to investigate these axioms in
a more general mathematical structure called groupoids.

In this study, we discuss some relations among such axioms in groupoids, and obtain some results
disclosing their differences in the groupoid setting. If we discuss these conditions in BCK/BCI-algebras,
their delicate differences may not be discovered. Although simple mathematical structures are difficult
to deal with in some cases, they can capture essential ideas of some axioms, and provide a starting
point of new mathematical structures in future.

2. Preliminaries

A groupoid (X, ∗) is said to be a left-zero-semigroup if x ∗ y := x for all x, y ∈ X. Similarly,
a groupoid (X, ∗) is said to be a right-zero-semigroup if x ∗ y := y for all x, y ∈ X. A groupoid (X, ∗)
is said to be a leftoid (resp., rightoid) for f if x ∗ y := f (x) (resp., x ∗ y := f (y)) for a map f : X → X.
For example, if we define a binary operation ∗ by x ∗ y := x sin x for all x, y ∈ R, then (R, ∗) is a
leftoid [8].

A d-algebra [3] is a non-empty set X with a constant 0 and a binary operation “ ∗ ” satisfying the
following axioms:
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(I) x ∗ x = 0,
(II) 0 ∗ x = 0,
(III) x ∗ y = 0 and y ∗ x = 0 imply x = y for all x, y ∈ X.

For brevity, we also call X a d-algebra. In X, we can define a binary relation “ ≤ ” by x ≤ y if and
only if x ∗ y = 0. For general references on d-algebras, we refer to [4–6].

A BCK-algebra [9] is a d-algebra X satisfying the following additional axioms:

(IV) (x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0,
(V) (x ∗ (x ∗ y)) ∗ y = 0 for all x, y, z ∈ X.

Example 1 ([6]). Let X := {0, 1, 2, 3, 4} be a set with the following table:

∗ 0 1 2 3 4
0 0 0 0 0 0
1 1 0 1 0 1
2 2 2 0 3 0
3 3 3 2 0 3
4 4 4 1 1 0.

Then, (X, ∗, 0) is a d-algebra that is not a BCK-algebra. For general references on BCK-algebras, we refer
to [9–11].

A BCK-algebra (X, ∗, 0) is said to be positive implicative [9] if (x ∗ z) ∗ (y ∗ z) = (x ∗ y) ∗ z for all
x, y, z ∈ X.

Theorem 1 ([9]). Let (X, ∗, 0) be a BCK-algebra. Then, the following are equivalent:

(1) (X, ∗, 0) is positive implicative,
(2) x ∗ y = (x ∗ y) ∗ y,
(3) (x ∗ (x ∗ y)) ∗ (y ∗ x) = x ∗ (x ∗ (y ∗ (y ∗ x))),
(4) x ∗ y = (x ∗ y) ∗ (x ∗ (x ∗ y)),
(5) x ∗ (x ∗ y) = (x ∗ (x ∗ y)) ∗ (x ∗ y),
(6) (x ∗ (x ∗ y)) ∗ (y ∗ x) = (y ∗ (y ∗ x)) ∗ (x ∗ y),

for all x, y, z ∈ X.

Let (X,≤) be a poset and let S be a subset of X. A full subposet [12] (S,≤) is a poset whose
underlying set is S and its poset structure is inherited from (X,≤). A poset (X,≤) is said to be
Q-free [13] if there is no full subposet (P,≤) of (X,≤) which is order isomorphic to the poset (Q,≤).
Similarly, a graph (X,→) is said to be Q-free if there is no full subgraph (P,→) of (X,→) which is
isomorphic to the graph (Q,→). A directed graph X := {x1, x2, · · · , xn} is said to be a cycle of order n
if there are arrows x1 → x2 → · · · → xn → x1. We denote it by Cn. A complete graph is a graph whose
vertices are pairwise adjacent, and we denote it by Kn. For general references on graph theory, we refer
to [14].

3. Positive Implicativity

A groupoid (X, ∗) is said to be

• positive implicative: (x ∗ z) ∗ (y ∗ z) = (x ∗ y) ∗ z,
• central implicative: (x ∗ y) ∗ y = x ∗ y,
• meet implicative: (x ∗ y) ∗ (x ∗ (x ∗ y)) = x ∗ y,
• quasi implicative: ((x ∗ y) ∗ y) ∗ y = (x ∗ y) ∗ y,

for all x, y, z ∈ X.



Mathematics 2018, 6, 235 3 of 8

Proposition 1. (a) If (X, ∗) is a leftoid for ϕ, i.e., x ∗ y := ϕ(x) for all x, y ∈ X, then (X, ∗) is
positive implicative.
(b) If (X, ∗) is a rightoid for ϕ, i.e., x ∗ y := ϕ(y) for all x, y ∈ X, then (X, ∗) is positive implicative if and only
if ϕ2 = ϕ.

Proof. (a). Given x, y, z ∈ X, we have (x ∗ z) ∗ (y ∗ z) = ϕ(x) ∗ ϕ(y) = ϕ(ϕ(x)) = ϕ(x) ∗ z = (x ∗ y) ∗ z.
(b). If ϕ2 = ϕ, then (x ∗ z) ∗ (y ∗ z) = ϕ(z) ∗ ϕ(z) = ϕ(ϕ(z)) = ϕ(z) = (x ∗ y) ∗ z, which shows (X, ∗)
is positive implicative. Assume (X, ∗) is positive implicative. Then, (x ∗ z) ∗ (y ∗ z) = (x ∗ y) ∗ z for all
x, y, z ∈ X. It follows that ϕ(ϕ(z)) = ϕ(z) ∗ ϕ(z) = ϕ(z), proving that ϕ2 = ϕ.

Given a graph (X,→), a groupoid (X, ∗) is said to be a selective groupoid from the graph (X,→) if

x ∗ y :=

{
x if x 6→ y,
y if x → y.

Proposition 2. Let (X, ∗) be a selective groupoid from a graph (X,→). If (X, ∗) is positive implicative,
then (X,→) is C3-free.

Proof. Assume (X,→) has C3 as a subgraph. Then, there exist a, b, c ∈ X such that

c • // • b

{{
a •

OO

Then, (a ∗ c) ∗ (b ∗ c) = c ∗ b = b, while (a ∗ b) ∗ c = a ∗ c = c, a contradiction.

Proposition 3. Any selective groupoid (Kn, ∗) from a complete graph (Kn,→) is positive implicative.

Proof. Given a, b ∈ Kn, there exist arrows a → b and b → a in (Kn,→), and hence a ∗ b = b and
b ∗ a = a. It follows that (a ∗ c) ∗ (b ∗ c) = c ∗ c = c and (a ∗ b) ∗ c = b ∗ c = c, proving that (Kn, ∗) is
positive implicative.

Proposition 4. Let (X, ∗), (Y, •) be selective groupoids and let Z := X × Y. Define (x, y)O(u, v) :=
(x ∗ u, y • v) for all (x, y), (u, v) ∈ Z. Then, (Z,O) is also positive implicative.

Proposition 5. Let (X, ∗) be a leftoid for ϕ and let (Y, •) be a rightoid for ψ such that ψ(y) • ψ(y) = ψ(y)
for all y ∈ Y. Let Z := X× Y. Define (x, y)O(u, v) := (x ∗ u, y • v) for all (x, y), (u, v) ∈ Z. Then, (Z,O)
is positive implicative.

Proof. Given (x, y), (u, v) ∈ Z, we have (x, y)O(u, v) = (x ∗ u, y • v) = (ϕ(x), ψ(v)). It follows that

[(x1, y1)O(u, v)]O[(x2, y2)O(u, v)] = (ϕ(x1), ψ(v))O(ϕ(x2), ψ(v))

= (ϕ(x1) ∗ ϕ(x2), ψ(v) • ψ(v))

= (ϕ(ϕ(x1)), ψ(v)),

and

[(x1, y1)O(x2, y2)]O(u, v) = (ϕ(x1), ψ(y2))O(u, v)

= (ϕ(x1) ∗ u, ψ(v) • v)

= (ϕ(ϕ(x1)), ψ(v)).
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This shows that (Z,O) is positive implicative.

Proposition 6. Let (X, ∗) be a positive implicative groupoid. If ϕ : (X, ∗) → (Y, •) is an epimorphism of
groupoids, then (Y, •) is also positive implicative.

Proof. Given a, b, c ∈ Y, since ϕ is onto, there exist x, y, z ∈ X such that a = ϕ(x), b = ϕ, c = ϕ(z).
It follows that

(a • c) • (b • c) = (ϕ(x) • ϕ(z)) • (ϕ(y) • ϕ(z))

= ϕ(x ∗ z) • ϕ(y ∗ z)

= ϕ((x ∗ z) ∗ (y ∗ z))

= ϕ((x ∗ y) ∗ z)

= ϕ(x ∗ y) • ϕ(z)

= (ϕ(x) • ϕ(y)) • ϕ(z)

= (a • b) • c,

proving that (Y, •) is also primitive implicative.

Proposition 7. Let (X, ∗) be a positive implicative groupoid and let (A, ∗) be a subgroupoid of (X, ∗).
Then, (A, ∗) is also positive implicative.

By Propositions 5–7, we obtain the following:

Theorem 2. The collection of all positive implicative groupoids forms a variety.

4. Central and Meet Implicativity

Proposition 8. Let (X, ∗) be a leftoid for ϕ. Then, (X, ∗) is central implicative if and only if ϕ2 = ϕ.

Proof. Assume that (X, ∗) is central implicative. Then, (x ∗ y) ∗ y = x ∗ y for all x, y ∈ X. It follows
that ϕ(ϕ(x)) = ϕ(x) ∗ y = (x ∗ y) ∗ y = x ∗ y = ϕ(x), proving that ϕ2 = ϕ. If ϕ2 = ϕ, then (x ∗ y) ∗ y =

ϕ(x) ∗ y = ϕ(ϕ(x)) = ϕ(x) = x ∗ y.

Proposition 8 shows that any leftoid (X, ∗) for ϕ, where ϕ2 6= ϕ, is positive implicative, but not
central implicative.

Example 2. Let X := R be the set of all real numbers. Define a binary operation “∗" on X by x ∗ y := bxc
for all x, y ∈ X. Since bbxcc = bxc for any x ∈ X, the groupoid (X, ∗) is both positive implicative and
central implicative.

Proposition 9. Let (X, ∗) be a leftoid for ϕ. Then, (X, ∗) is meet implicative if and only if ϕ2 = ϕ.

Proof. Assume that (X, ∗) is meet implicative. Then, (x ∗ y) ∗ (x ∗ (x ∗ y)) = x ∗ y for all x, y ∈ X.
It follows that ϕ(x) ∗ ϕ(x)) = ϕ(x) and hence ϕ2(x) = ϕ(x). If ϕ2 = ϕ, then (x ∗ y) ∗ (x ∗ (x ∗ y)) =
ϕ(x) ∗ ϕ(x) = ϕ(ϕ(x)) = ϕ(x) = x ∗ y.

By using Propositions 8 and 9, we obtain the following:

Theorem 3. Let (X, ∗) be a leftoid for ϕ. Then, the following are equivalent:

(i) (X, ∗) is central implicative,
(ii) (X, ∗) is meet implicative,
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(iii) ϕ2 = ϕ.

Example 3. Let X := N be the set of all natural numbers. Define a map ϕ : X → X by ϕ(x) := x + 1 and
define x ∗ y := ϕ(x) for all x, y ∈ X. Then, it is easy to see that (X, ∗) is positive implicative. Since ϕ(ϕ(x)) =
ϕ(x + 1) = x + 2 6= x + 1 = ϕ(x), by Theorem 3, it is neither central implicative nor meet implicative.

Proposition 10. Let (X, ∗) be a rightoid for ψ. Then, (X, ∗) is meet implicative if and only if ψ3(x) = ψ(x)
for all x ∈ X.

Proof. Given x, y ∈ X, we have

(X, ∗) is meet implicative ⇔ (x ∗ y) ∗ (x ∗ (x ∗ y)) = x ∗ y

⇔ ψ(y) ∗ ψ(x ∗ y) = ψ(y)

⇔ ψ(ψ(x ∗ y)) = ψ(y)

⇔ ψ3(y) = ψ(y),

proving the proposition.

Corollary 1. Let (X, ∗) be a rightoid for ψ. If (X, ∗) is positive implicative, then it is meet implicative.

Proof. Suppose that (X, ∗) is positive implicative. Then, (x ∗ y) ∗ (y ∗ z) = (x ∗ y) ∗ z for all x, y, z ∈
X. It follows that ψ(z) ∗ ψ(z) = ψ(z) and hence ψ(ψ(z)) = ψ(z) for all z ∈ X. This shows that
ψ(ψ(ψ(z))) = ψ(ψ(z)) = ψ(z) for all z ∈ X. By Proposition 10, (X, ∗) is meet implicative.

The converse of Corollary 1 does not hold in general.

Example 4. Consider X := Z/(6). If we define ψ(x + (6)) := x + 3 + (6) for all x + (6) ∈ X, and define
(x + (6)) ∗ (y + (6)) := ψ(y + (6)) on X, then (X, ∗) is a rightoid for ψ. Given x + (6) ∈ X, we have
ψ(ψ(x + (6))) = ψ(x + 3 + (6)) = x + 3 + 3 + (6) = x + (6) 6= x + 3 + (6) = ψ(x + (6)) and
ψ(ψ(ψ(x + (6)))) = ψ(ψ(x + 3 + (6))) = ψ(x + 3 + 3 + (6)) = x + 3 + 3 + 3 + (6) = x + 3 + (6) =
ψ(x + (6)). By Theorem 3 and Corollary 1, (X, ∗) is meet implicative, but not positive implicative.

Note that a central implicative groupoid need not be a meet implicative groupoid. Note that every
rightoid (X, ∗) for ψ is central implicative, since (x ∗ y) ∗ y = ψ(y) = x ∗ y for all x, y ∈ X. By Corollary
1, we obtain that every positive implicative rightoid (X, ∗) for ψ is both central implicative and
meet implicative.

Example 5. Define a binary operation “∗" on X := Z/(6) by (x + (6)) ∗ (y + (6)) := ψ(y + (6)) where
ψ(x + (6)) := x + 1 + (6). Then, (X, ∗) is a rightoid for ψ. Given x + (6) ∈ X, we have ψ(ψ(ψ(x +

(6)))) = x + 3 + (6) 6= x + 1 + (6) = ψ(x + (6)). This shows that (X, ∗) is central implicative, but not
meet implicative.

Proposition 11. Every selective groupoid is both central implicative and meet implicative.

Proof. Let (X, ∗) be a selective groupoid. Given x, y ∈ X, if x ∗ y = x, then (x ∗ y) ∗ y = x ∗
y = x = x ∗ y. If x ∗ y = y, then (x ∗ y) ∗ y = y ∗ y = y = x ∗ y, proving that (X, ∗) is central
implicative. Given x, y ∈ X, if x ∗ y = x, then (x ∗ y) ∗ (x ∗ (x ∗ y)) = x ∗ (x ∗ x) = x = x ∗ y.
If x ∗ y = y, then (x ∗ y) ∗ (x ∗ (x ∗ y)) = (x ∗ y) ∗ (x ∗ y) = y ∗ y = y = x ∗ y, proving that (X, ∗) is
meet implicative.

Note that selective groupoids need not be positive implicative.



Mathematics 2018, 6, 235 6 of 8

Example 6. Let X := {x, y, z} be a set with the following graph:

y • • z

x •

OO ;;

Then, its selective groupoid (X, ∗) can be represented as follows:

∗ x y z
x x y z
y y y y
z z z z

Then, it is easy to see that (X, ∗) is both central implicative and meet implicative. Since (x ∗ z) ∗ (y ∗ z) =
z ∗ y = z 6= y = y ∗ z = (x ∗ y) ∗ z, it is not positive implicative.

Example 7. Let (X, ∗) be a leftoid for ϕ and |X| ≥ 2. If ϕ(x) = t0 ∈ X for all x ∈ X, then ϕ(ϕ(x)) =

ϕ(t0) = t0 = ϕ(x), i.e., (X, ∗) is both central implicative and meet implicative. Note that (X, ∗, t0) need not
be a d/BCK-algebra. In fact, assume x ∗ y = y ∗ x = t0. Then, ϕ(x) = ϕ(y) = t0. Since |X| ≥ 2, x = y does
not hold in general.

5. Quasi Implicativity

Proposition 12. Let (X, ∗) be a leftoid for ϕ. Then, (X, ∗) is quasi implicative if and only if ϕ3 = ϕ2.

Proof. Assume that (X, ∗) is quasi implicative. Then, ((x ∗ y) ∗ y) ∗ y = (x ∗ y) ∗ y for all x, y ∈ X.
It follows that ϕ(ϕ(ϕ(x))) = ϕ(ϕ(x ∗ y)) = ϕ((x ∗ y) ∗ y) = ((x ∗ y) ∗ y) ∗ y = (x ∗ y) ∗ y = ϕ(x ∗ y) =
ϕ(ϕ(x)), proving that ϕ3 = ϕ2.

If ϕ3 = ϕ2, then ((x ∗ y) ∗ y) ∗ y = ϕ3(x) = ϕ2(x) = (x ∗ y) ∗ y, proving that (X, ∗) is
quasi implicative.

It is clear that every central implicative groupoid is quasi implicative, but the converse need not
be true in general.

Example 8. Let X := {0, 1, 2} be a set with x ∗ y := ϕ(x) for all x, y ∈ X where ϕ(0) = ϕ(1) = 0, ϕ(2) = 1.
Then, ϕ2(0) = ϕ2(1) = ϕ2(2) = 0, ϕ(2) = 1 6= 0 = ϕ2(2) and ϕ3(x) = 0 = ϕ2(x) for all x ∈ X.
By Theorem 3 and Proposition 12, (X, ∗) is quasi implicative, but not central(meet) implicative.

Proposition 13. Every rightoid for ψ is both central implicative and quasi implicative.

Proof. Given x, y ∈ X, we have (x ∗ y) ∗ y = ((x ∗ y) ∗ y) ∗ y = x ∗ y = ψ(y), proving that (X, ∗) is
both central implicative and quasi implicative.

6. Medial and Positive Implicative Groupoids

A groupoid (X, ∗) is said to be medial if (x ∗ y) ∗ (u ∗ v) = (x ∗ u) ∗ (y ∗ v) for all x, y, u, v ∈ X.

Example 9. Let X := R be the set of all real numbers. If we define x ∗ y := max{x, y} for all x, y ∈ X,
then (X, ∗) is both medial and idempotent. It is also a positive implicative groupoid.
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Example 10. Let X := R be the set of all real numbers and let α ∈ X. Define a map ϕ : X → X and define
a binary operation “∗" on X by x ∗ y := α + ϕ(x) for all x, y ∈ X. Then, (X, ∗) is medial. In fact, given
x, y, u, v ∈ X, we have

(x ∗ y) ∗ (u ∗ v) = α + ϕ(x ∗ y)

= α + ϕ(α + ϕ(x))

= α + ϕ(x ∗ u)

= (x ∗ u) ∗ (y ∗ v),

showing that (X, ∗) is medial.

Example 11. In Example 10, if (X, ∗) is idempotent, then x ∗ x = x for all x ∈ X, which shows that
α + ϕ(x) = x, i.e., ϕ(x) = x− α for all x ∈ X.

Note that if (X, ∗) is idempotent in Examples 10 and 11, then x ∗ y = α + ϕ(x) = α + (x− α) = x
for all x, y ∈ X. This shows that (X, ∗) is a left-zero semigroup.

Proposition 14. If (X, ∗) is an idempotent medial groupoid, then it is positive implicative.

Proof. If (X, ∗) is medial and positive implicative, then for any x, y, z ∈ X, we have (x ∗ z) ∗ (y ∗ z) =
(x ∗ y) ∗ (z ∗ z) = (x ∗ y) ∗ z, proving that (X, ∗) is positive implicative.

Note that the converse of Proposition 14 need not be true in general.

Example 12. Let X := {0, x, y, u, v} be a poset with the following Hasse diagram:

0

ux

y

v

If we define a binary operation “∗" on X by

x ∗ y :=

{
0 if x ≤ y,
x if x 6≤ y,

then it is easy to see that (X, ∗, 0) is a positive implicative BCK-algebra. Note that (x ∗ y) ∗ (u ∗ v) = 0 ∗ u = 0,
but (x ∗ u) ∗ (y ∗ v) = x ∗ 0 = x, which shows that (X, ∗) is not medial. Since x ∗ x = 0 6= x for all
x ∈ X \ {0}, it is not idempotent.

7. Conclusions

In this paper, we proved that the collection of all positive implicative groupoids forms a variety,
and discussed some relations between selective groupoids and the graph theory. We ascertained
several relations between the central implicativity and the meet implicativity in groupoids. Moreover,
we showed that every selective groupoid is both central and meet implicative, and every idempotent
groupoid is positive implicative. For further investigation, we will apply this concept to the semigroup
Bin(X) ([8]) of all groupoids defined on a set X related to ordered structures in groupoids ([15]).

Author Contributions: Conceptualization, F.F., H.S.K. and J.N.; Formal analysis, F.F., H.S.K. and J.N.;
Writing—original draft, F.F., H.S.K.; Writing—review & editing, F.F., H.S.K. and J.N.



Mathematics 2018, 6, 235 8 of 8

Funding: This work was partially supported by National Natural Science Foundation of China (Program
No. 11301415), Natural Science Basic Research Plan in Shaanxi Province of China (Program No. 2018JM1054),
Scientific Research Program Funded by Shaanxi Provincial Education Department of China (Program
No. 16JK1696), and the Special Funds Project for Key Disciplines Construction of Shaanxi Universities.

Acknowledgments: The authors are deeply grateful to four anonymous reviewers for their valuable suggestions.

Conflicts of Interest: The author declares no conflicts of interest.

References

1. Bruck, R.H. A Survey of Binary Systems; Springer: Berlin, Germany, 1958.
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