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Abstract: Given a (molecular) graph, the first multiplicative Zagreb index Π1 is considered to be
the product of squares of the degree of its vertices, while the second multiplicative Zagreb index
Π2 is expressed as the product of endvertex degree of each edge over all edges. We consider a set
of graphs Gn,k having n vertices and k cut edges, and explore the graphs subject to a number of cut
edges. In addition, the maximum and minimum multiplicative Zagreb indices of graphs in Gn,k are
provided. We also provide these graphs with the largest and smallest Π1(G) and Π2(G) in Gn,k.
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1. Introduction

Within the areas of theoretical chemistry and mathematics, the structure invariant is an important
tool to study the quantitative molecular properties [1]. One type of the most classical topological
molecular expression is called as Zagreb indices M1 and M2 [2]. This information can be used as
qualitative levels for integral π-electron energy of the conjugated molecules. In the view of successful
considerations on the applications on Zagreb indices [3], Todeschini et al., (2010) [4–6] introduced
the multiplicative Zagreb indices of molecular graphs, denoted by Π1 and Π2 the multiplicative
Zagreb indices. (Multiplicative) Zagreb indices are employed as molecular expressions in quantitative
structure–property relationships and quantitative structure–activity relationships [7,8].

Mathematicians have been interested in the information of Zagreb indices about the upper and
lower bounds for special (chemical) graphs, as well as corresponding areas of determining their
extremal graphs [9–23]. In addition to a plenty of applications for the usage of Zagreb indices in
theoretical chemistry, there are many studies for multiplicative Zagreb indices, which attracted one of
the focus of interests in physics and graph theory. Borovićanin et al. [24] investigated upper bounds on
Zagreb indices of noncyclic graphs with given domination number. Wang and Wei [6] determined the
maximal and minimal values of multiplicative Zagreb indices in the extended noncyclic graph, k-trees.
In some graph classes, Liu and Zhang provided some upper bounds for Π1-index and Π2-index
of graphs subject to structure parameters [25]. Xu and Hua [26] explored a common method to
characterize the bounds of 0, 1, 2-cyclic graphs. Iranmanesh et al. [27] gave these indices for a type of
chemical molecules, specific dendrimers. Kazemi [28] found interesting extremal values for related
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moments and probability generating functions in random trees. The graphs subject to a given number
of cut edges (or vertices) are intriguing in extremal mathematics [29–33]. It is a natural observation that
trees having largest and smallest multiplicative Zagreb indices have been considered as interesting
topics [27,34,35].

In view of mentioned outcomes, we continue this way and study multiplicative Zagreb indices of
graphs subject to a given number of cut edges. In addition, the maximum and minimum of Π1(G) and
Π2(G) of graphs in Gn,k subject to fixed number of cut edges are provided. Lastly, the corresponding
graphs with the largest and smallest multiplicative Zagreb indices in Gn,k are determined.

2. Preliminaries

Denote by G = (V(G), E(G)) a simple undirected connected graph of vertex number n and edge
number m with vertex set V = V(G) and edge set E = E(G). For w ∈ V(G), N(w) denotes the
neighbors of w, that is, N(w) = {v| wv ∈ E(G)}, and d(w) = |N(w)| is the degree of w. The Zagreb
indices [3] of a connected graph are given by

M1(G) = ∑
u∈V(G)

d(u)2 and M2(G) = ∑
uv∈E(G)

d(u)d(v).

The first multiplicative Zagreb index Π1 = Π1(G) and the second multiplicative Zagreb index
Π2 = Π2(G) [4,5] of any graph G are considered as

Π1(G) = ∏
u∈V(G)

d(u)2 and Π2(G) = ∏
uv∈E(G)

d(u)d(v) = ∏
u∈V(G)

d(u)d(u).

A vertex of degree one is called pendent vertex. The supporting vertex is a vertex in a graph
which is incident to at least one pendent vertex. A pendent edge is an edge connecting a pendent vertex
and a supporting vertex. If G1, G2, · · · , Gl with l ≥ 2 share a common vertex v, then G1vG2v · · · vGl
denote the graph with edge set E(G1) ∪ E(G2) ∪ · · · ∪ E(Gl) and V(G1) ∩V(G2) ∩ · · · ∩V(Gl) = {v}.
For u1 ∈ V(G1) and us ∈ V(G2), if P = u1u2 · · · us is a path, then denote this graph by G1PG2 or
G1u1u2 · · · usG2 in which P is called an internal path. By deleting a vertex or an edge, the resulting
graph has at least two components, and this vertex or edge is called a cut. If G has no cut vertex, then
G is 2-connected. A block is 2-connected, and an endblock has not more than two cut vertices. G1

∼= G2

means that G1 is isomorphic to G2. As usual, Pn, Kn, Sn and Cn are a path, a clique, a star and a cycle on
n vertices, respectively. The cyclomatic number c(G) of a graph G is defined as m− n + 1. In particular,
if c(G) = 0, 1 and 2, then G will be trees, unicyclic graphs and bicyclic graphs, respectively. If c(G) ≥ 1,
then G has at most n− 3 cut edges. Thus, we suppose that G contains 1 ≤ k ≤ n− 3 cut edges in our
following discussion.

Let Gn,k be the set of the connected graphs with k ∈ [1, n− 3] cut edges, and Ec = {e1, e2, · · · , ek}
be a set of cut edges of the graph G ∈ Gn,k. Then Ec can be considered as two categories, which
are the pendent edges and nonpendent edges (or internal paths of length 1). G− Ec contains some
2-connected graphs and isolated vertices. Denote by KS

n (or KP
n , respectively) a graph obtained by

identifying (connecting to, respectively) the nonpendent vertex of a star Sk+1 (or a pendent vertex of a
path Pk, respectively) to a vertex of Kn−k (see Figure 1). In addition, let CS

n (or CP
n , respectively) be a

graph obtained by identifying (connecting to, respectively) the nonpendent vertex of a star Sk (or a
pendent vertex of a path Pk, respectively) to a vertex of Cn−k.

In our work, we may use some terminologies and notations of these textbooks of graph theory
(see [36,37]). By elementary processes, the following results are not hard.

Proposition 1. If s(l) = l
l+t is a function for t > 0, then s(l) is an increasing function in R.

Proposition 2. If k(l) = ll

(l+t)l+t is a function for t > 0, then k(l) is a decreasing function in R.
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Figure 1. KS
n , KP

n , CS
n and CP

n .

Based on the concepts of Π1(G) and Π2(G) and the fact that adding edges increases the degrees,
we have

Lemma 1. Suppose that G = (V, E) is a connected graph and i = 1, 2.

(i) If u, v are not adjacent in G, then Πi(G + uv) > Πi(G).

(ii) If uv ∈ E(G), we have Πi(G− e) < Πi(G).

Lemma 2 yields the following result.

Lemma 2. Suppose that G = (V, E) is a 2-connected graph with i = 1, 2.

(i) If Πi(G) is maximal, then G ∼= Kn.

(ii) If Πi(G) is minimal, then G ∼= Cn.

Lemma 3. Let C1, C2 be cycles, and Ps = u1u2 · · · us be an internal path of G = C1PsC2 such that u1 ∈ V(C1)

and us ∈ V(C2). Assume that u1v1, u1v2 ∈ E(C1) and usw1, usw2 ∈ E(C2) such that v1 6= v2 and w1 6= w2.
Let G′ = G− {u1v2, usw1, usw2}+ {v2w2, u1w1}. Then Πi(G) > Πi(G′) with i = 1, 2.

Proof. By the graph operations from G to G′, we have dG′(us) = 1 < dG(us) = 3. For v ∈ V(G)−{us},
dG(v) = dG′(v). Then Πi(G) > Πi(G′) with i = 1, 2, and we complete the proof.

Lemma 4. Let G1PmG2 and G1G2Pm be graphs (see Figure 2), in which Pm is a path, and G1, G2 are connected.
Then Π1(G1PmG2) ≥ Π1(G1G2Pm) and Π2(G1PmG2) ≤ Π2(G1G2Pm).

Proof. Let dG1PmG2(u) = x and dG1PmG2(v) = y. Then dG1G2Pm(u) = x + y− 1. From the formulas of
multiplicative Zagreb indices, we obtain

Π1(G1PmG2)

Π1(G1G2Pm)
=

x2y2

(x + y− 1)212 =

( x
x+y−1

1
1+(y−1)

)2

.
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Since x ≥ 1, y ≥ 1, and by Proposition 1, we have Π1(G1PmG2) ≥ Π1(G1G2Pm). Note that

Π2(G1PmG2)

Π2(G1G2Pm)
=

xxyy

(x + y− 1)(x+y−1)11
=

xx

(x+y−1)(x+y−1)

11

(1+y−1)(1+y−1)

.

By x ≥ 1 and Proposition 2, we have Π2(G1PmG2)
Π2(G1G2Pm)

≤ 1, that is, Π2(G1PmG2) ≤ Π2(G1G2Pm). Thus,
this completes the proof.

From Lemma 4, if we have an internal path, then we can move out it. By keeping this process, we
have the useful lemma below.

Lemma 5. Let GT be a graph by identifying a vertex of a tree T (not Sn) to a vertex u of G, and GS be a graph
by attaching |E(T)| pendent edges to u (see Figure 3). Then Π1(GT) > Π1(GS) and Π2(GT) < Π2(GS).

Figure 2. G1PmG2 and G1G2Pm.

Figure 3. GT and GS.

Lemma 6. Let u (v, respectively) be a vertex in G, and u1, u2, . . . , us be the endvertices of pendent path
P1, P2, · · · , Ps (v1, v2, . . . , vt be the endvertices of P′1, P′2, · · · , P′t , respectively). Set uu′i ∈ E(Pi) with 1 ≤ i ≤ s,
and vv′j ∈ E(P′j ) with 1 ≤ j ≤ t. Let G′ = G−

{
uu′i

}
+

{
vu′i

}
with 1 ≤ i ≤ s, G′′ = G− {vv′j}+ {uv′j}

with 1 ≤ j ≤ t and |V(G0)| ≥ 3 (see Figure 4). Then either Π1(G) ≥ Π1(G′) and Π2(G) ≤ Π2(G′), or
Π1(G) > Π1(G

′′
) and Π2(G) < Π2(G

′′
).
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Figure 4. G, G′ and G′′.

Proof. Let dG(u) = x, dG(v) = y. By the constructions of G′ and G′′ , we have dG′(u) = dG(u)− s =
x − s, dG′(v) = dG(v) + s = y + s, dG′′(u) = dG(u) + t = x + t and dG′′(v) = dG(v) − t = y − t.
Combining with the concepts of multiplicative Zagreb indices, we have

Π1(G)

Π1(G′)
=

x2y2

(x− s)2(y + s)2 =
( y

y+s )
2

( x−s
(x−s)+s )

2 ,

Π2(G)

Π2(G′)
=

xxyy

(x− s)x−s(y + s)y+s =

yy

(y+s)y+s

(x−s)x−s

xx

=

yy

(y+s)y+s

(x−s)x−s

[(x−s)+s](x−s)+s

,

Π1(G)

Π1(G′′)
=

x2y2

(x + t)2(y− t)2 =
( x

x+t )
2

( y−t
(y−t)+t )

2
,

Π2(G)

Π2(G′′)
=

xxyy

(x + t)x+t(y− t)y−t =

xx

(x+t)x+t

(y−t)y−t

yy

=

xx

(x+t)x+t

(y−t)y−t

[(y−t)+t](y−t)+t

.

If x− s ≤ y, by Propositions 1 and 2, we can obtain that Π1(G) ≥ Π1(G′) and Π2(G) ≤ Π2(G′).
If x − s− 1 ≥ y, then x ≥ y + s + 1 > y− t. Propositions 1 and 2 yield that Π1(G) > Π1(G′′) and
Π2(G) < Π2(G′′). Thus, the lemma is proved.

Lemma 7. Let P1 = u1u2 · · · us and P2 = v1v2 · · · vt be two pendent paths of G with s, t ≥ 2 and d(us) =

d(vt) = 1 (see Figure 5). Let G′ = G− v1v2 + usv2. Then Π1(G) < Π1(G′) and Π2(G) > Π2(G′).

Figure 5. G and G′.

Proof. Note that d(u1) ≥ 3, d(v1) ≥ 3. From the expressions of multiplicative Zagreb indices, we have

Π1(G)

Π1(G′)
=

d(us)2d(v1)
2

dG′(us)2dG′(v1)2 =

( 1
2

d(v1)−1
d(v1)

)2

.
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By Proposition 1, we have Π1(G)
Π1(G′)

< 1, that is, Π1(G) < Π1(G′).

Π2(G)

Π2(G′)
=

d(us)d(us)d(v1)
d(v1)

dG′(us)
dG′ (us)dG′(v1)

dG′ (v1)
=

( 11

22

(d(v1)−1)d(v1)−1

d(v1)
d(v1)

)2

.

By Proposition 2, we have Π2(G)
Π2(G′)

> 1, that is, Π2(G) > Π2(G′).
Thus, this completes the proof.

3. Graphs with Smallest Multiplicative Zagreb Indices in Gn,k

We begin to determine the graphs having the smallest Π1(G) and Π2(G) in Gn,k.

Theorem 1. Let G be a graph in Gn,k with 1 ≤ k ≤ n− 3. Then

Π1(G) ≥ 4n−k−1(k + 2)2,

where the equality holds if and only G ∼= CS
n , respectively.

Proof. Choose a graph G ∈ Gn,k such that the value of Π1(G) is as small as possible. Let Ec be a cut
edge set of G and B1, B2, · · · , Bk+1 be the components of G− Ec. We first do some graph operations by
previous lemmas. By Lemma 2, we have Bi is a cycle or an isolated vertex. Lemma 3 implies that G
has a unique cycle. By Lemma 5, all cut edges in G are pendent edge. By Lemma 6, all pendent edges
share a common supporting vertex, that is, G ∼= CS

n . Thus, this completes the proof.

Theorem 2. Assume that G is a graph in Gn,k for 1 ≤ k ≤ n− 3. We have

Π2(G) ≥ 27 ∗ 4n−2,

where the equality holds if and only G ∼= CP
n .

Proof. Let G ∈ Gn,k be a graph such that Π2(G) is minimal. Let Ec be a cut edge set of G and
B1, B2, · · · , Bk+1 be the components of G− Ec. By Lemma 2, we have Bi is a cycle or an isolated vertex.
Lemma 3 implies that G has a unique cycle. By Lemma 7, there is only one pendent path in G. Thus
G ∼= CP

n , and we prove this theorem.

4. Graphs with Largest Multiplicative Zagreb Indices in Gn,k

We proceed to consider graphs with the largest Π1(G) and Π2(G) in Gn,k in this section.

Theorem 3. If G is a graph in Gn,k for 1 ≤ k ≤ n− 3, we have

Π1(G) ≤ 4k−1(n− k− 1)2(n−k−1)(n− k)2,

where the equality holds if and only G ∼= KP
n .

Proof. Denote by a graph G ∈ Gn,k such that Π1(G) is maximal. Set Ec to be a cut edge set of G and
B1, B2, · · · , Bk+1 the components of G− Ec. By Lemma 2, we have Bi is a clique of size at least 3 or an
isolated vertex. Next we start with the following claims.

Claim 1. Every two cliques of size at least 3 do not share a common vertex.

Proof of Claim 1. We prove it by a contradiction. Assume there are at least two blocks B1, B2 sharing
a common vertex v0 in G such that |B1|, |B2| ≥ 3. Choose v1 ∈ V(B1), v2 ∈ V(B2) and v1, v2 6= v0.
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Let G′ = G + v1v2. By Lemma 1, Π2(G′) > Π2(G), that is a contradiction to the assumption of G. The
claim is proved.

We introduce a graph transformation that is used in the rest of our proof.

Claim 2. Let Kn1 and Kn2 be two farthest endblocks of Kn1 G0Kn2 such that v11 ∈ V(Kn1) ∩ V(G0) and
vl1 ∈ V(Kn2) ∩ V(G0) (see Figure 6). If d(v11) = n1 ≥ 3 and d(vl1) = n2 ≥ 3, then Π1(Kn1 G0Kn2) <

Π1(Kn1+n2−1G0).

Figure 6. G and G′.

Proof of Claim 2. Let V(Kn1) = {v11, v12, · · · , v1n1} and V(Kn2) = {vl1, vl2, · · · , vln2}. Denote by
G = Kn1 G0Kn2 and G′ = G− {vl1vli, i ≥ 2}+ {vliv1j, i ≥ 2, j ≥ 1} = Kn1+n2−1G0. From concepts of
multiplicative Zagreb indices, one may obtain that

Π1(G)

Π1(G′)
=

(
d(v11)d(v12)d(v13) · · · d(v1n1)d(vl1)d(vl2)d(vl3) · · · d(vln2)

d′(v11)d′(v12)d′(v13) · · · d′(v1n1)d
′(vl1)d′(vl2)d′(vl3) · · · d′(vln2)

)2

=

(
n1n2(n1 − 1)n1−1(n2 − 1)n2−1

(n1 + n2 − 1)(n1 + n2 − 2)n1+n2−2

)2

≤
(

n1n2(n1 − 1)n1−1(n2 − 1)n2−1

(n1 + n2 − 2)n1+n2−1

)2

.

Let f (x) = xn2(x−1)x−1(n2−1)n2−1

(x+n2−2)x+n2−1 . Then we take a derivative of ln( f (x)) as 1
x + ln(x − 1) + 1−

ln(x + n2 − 2)− x+n2−1
x+n2−2 < 1

x + ln(x− 1)− ln(x + n2 − 2) ≤ 1
x + ln(x− 1)− ln(x + 1), by n2 ≥ 3.

Set g(x) = 1
x + ln(x − 1) − ln(x + 1). Note that g′(x) = x2+1

x2(x2−1) > 0 and limx→∞g(x) =

limx→∞ln( (x−1)e
1
x

x+1 ) = 0, by L’ Hospital’s Rule. Thus, g(x) < 0, that is, the function f (x) is decreasing.
We have

Π1(G1)

Π1(G2)
≤ 3n2(3− 1)3−1(n2 − 1)n2−1

(3 + n2 − 2)3+n2−1 =
12 ∗ n2 ∗ (n2 − 1)n2−1

(n2 + 1)2(n2 + 1)(n2 + 1)n2−1 .

Since 12 ≤ (n2 + 1)2 and n2 < n2 + 1, then Π1(G1)
Π1(G2)

< 1. This completes the proof of Claim 2.

Claim 3. If Π1(G) is maximal, then there exists exactly one path in G.

Proof of Claim 3. We prove it by contradictions. Assume that there are at least two paths P1 =

u1u2 · · · us, P2 = v1v2 · · · vl with d(u1), d(v1) ≥ 3. We consider three cases that Pi is either a pendent
path or an internal path with i = 1, 2.

Case 1. d(us) = d(vl) = 1.
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Proof of Case 1. By Lemma 7, there is another graph G′ ∈ Gk
n such that Π1(G) < Π1(G′), which is a

contradiction to the choice of G.

Case 2. d(us) = 1, d(vl) ≥ 3.

Proof of Case 2. Let G′′ = G− {v1v2, u1u2}+ {v1u2, v2us}. Note that

Π1(G)

Π1(G′′)
=

d(u1)
2d(us)2

dG′′(u1)2dG′′(us)2 =

( 1
2

d(u1)−1
d(u1)

)2

.

Since d(u1) ≥ 3, by Proposition 1, we have Π1(G) < Π1(G′′), that is a contradiction to
the choice of G.

Case 3. d(us) ≥ 3, d(vl) ≥ 3.

Proof of Case 3. By Case 2, there does not exist any pendent paths in G. Then every cut edge is in an
internal path. By choosing two farthest endblocks and Claim 2, there is another graph G′′′ such that
Π1(G′′′) > Π1(G), which contradicts that Π1(G) is maximal. This completes the proof of Case 3.

Therefore, G contains a unique clique of size at least 3 and the unique path is a pendent path.
Thus G ∼= KP

n , and this completes the proof.

Theorem 4. Let G be a graph in Gn,k with 1 ≤ k ≤ n− 3. Then

Π2(G) ≤ (n− 1)n−1(n− k− 1)(n−k−1)2
,

where the equality holds if and only G ∼= KS
n .

Proof. Pick a graph G ∈ Gn,k such that Π2(G) is as large as possible. Denote by Ec a cut edge set
of G and B1, B2, · · · , Bk+1 be the components of G− Ec. By Lemma 2, we have Bi is a clique of size
at least 3 or an isolated vertex. By Lemma 4, if two blocks are connected by a path, then they share
a common vertex.

Claim 4. There is a unique block B such that |B| ≥ 3.

Proof of Claim 4. We prove it by a contradiction. Assume that there are at least two blocks B1, B2

sharing a common vertex v0 in G such that |B1|, |B2| ≥ 3. Choose v1 ∈ V(B1) and v2 ∈ V(B2) and
v1, v2 6= v0. Let G′ = G + v1v2. By Lemma 1, Π2(G′) > Π2(G) and this claim is proved.

By Lemmas 5 and 6, we have G ∼= KS
n , and this completes the proof.
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randić index. MATCH Commun. Math. Comput. Chem. 2005, 54, 425–434.
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