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Abstract: Based on the concepts of contractive conditions due to Suzuki (Suzuki, T., A generalized
Banach contraction principle that characterizes metric completeness, Proceedings of the American
Mathematical Society, 2008, 136, 1861–1869) and Jleli (Jleli, M., Samet, B., A new generalization
of the Banach contraction principle, J. Inequal. Appl., 2014, 2014, 38), our aim is to combine the
aforementioned concepts in more general way for set valued and single valued mappings and to
prove the existence of best proximity point results in the context of b-metric spaces. Endowing the
concept of graph with b-metric space, we present some best proximity point results. Some concrete
examples are presented to illustrate the obtained results. Moreover, we prove the existence of the
solution of nonlinear fractional differential equation involving Caputo derivative. Presented results
not only unify but also generalize several existing results on the topic in the corresponding literature.
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1. Introduction and Preliminaries

Metric fixed point theory progressed a lot after the classical result due to Banach [1], known as
the Banach contraction principle and it states that “Every contractive self mapping on a complete
metric space has a unique fixed point”. Due to its importance, several researchers have obtained
many interesting generalizations of Banach’s principle (see [2–10] and the references therein). Later on,
Nadler [11] extended the Banach contraction principle to the context of set valued contraction.

Theorem 1. [11] Every multivalued mapping T : X→ CB(X), where (X, d) a complete metric space, satisfying

H(Tx, Ty) ≤ kd(x, y)

for all x, y ∈ X, where k ∈ [0, 1) has at least one fixed point.

In 2009, Suzuki [12] proved the following result in compact metric spaces.

Theorem 2. [12] Let (X, d) be a compact metric space and T : X → X be a mapping. Assume that, for all
x, y ∈ X with x 6= y,

1
2

d(x, Tx) < d(x, y)⇒ d(Tx, Ty) < d(x, y),

then T has a unique fixed point in X.

Mathematics 2018, 6, 221; doi:10.3390/math6110221 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0003-4501-9269
http://dx.doi.org/10.3390/math6110221
http://www.mdpi.com/journal/mathematics
http://www.mdpi.com/2227-7390/6/11/221?type=check_update&version=2


Mathematics 2018, 6, 221 2 of 17

Recently, Jleli et al. [13] introduced the class Θ of all functions θ : (0, ∞)→ (1, ∞) satisfying the
following conditions:

(θ1) θ is non-decreasing;
(θ2) for each sequence {tn} ⊆ (0, ∞), lim

n→∞
θ(tn) = 1 if and only if lim

n→∞
tn = 0;

(θ3) there exists r ∈ (0, 1) and l ∈ (0, ∞] such that lim
t→0+

θ(t)−1
tr = l,

and proved the following result:

Theorem 3. [13] Let (X, d) be a complete metric space and T : X → X be a given mapping. Suppose that
there exist θ ∈ Θ and k ∈ (0, 1) such that

x, y ∈ X, d(Tx, Ty) 6= 0 ⇒ θ(d(Tx, Ty)) ≤ [θ(d(x, y))]k.

then T has a unique fixed point.

Observe that Banach contraction is a θ-contraction for θ(t) = et. So Theorem 3 is a generalization
of the Banach contraction principle [1].

Liu et al. [14] proved some fixed point results for θ-type contraction and θ-type Suzuki contraction
in complete metric spaces. Hancer et al. [15] introduced the notion of multi-valued θ-contraction
mapping as follows:

Let (X, d) be a metric space and T : X → CB(X) a multivalued mapping. Then T is said to be
multi-valued θ-contraction if there exists θ ∈ Θ and 0 < k < 1 such that

θ(H(Tx, Ty)) ≤ [θ(d(x, y))]k (1)

for any x, y ∈ X provided that H(Tx, Ty) > 0, where CB(X) is a collection of all nonempty closed and
bounded subsets of X.

Bakhtin [2] initiated the study of a generalized metric space named as b-metric space and presented
a version of Banach contraction principle [1] in the context of b-metric spaces. Subsequently, several
researchers studied fixed point theory for single-valued and set-valued mappings in b-metric spaces
(see [2,3,5,6,16–18] and references therein).

Definition 1. [2] Let X be a nonempty set, and let k ≥ 1 be a given real number. A functional db : X×X→ [0, ∞)

is said to be a b-metric if for all x, y, z ∈ X, following conditions are satisfied:

1. db(x, y) = 0⇔ x = y;
2. db(x, y) = db(y, x);
3. db(x, y) ≤ k(db(x, z) + db(z, y)).

The pair (X, db) is called b-metric space.

Example 1. [3] The space Lp(0 < p < 1) for all real function x(t), t ∈ [0, 1] such that
∫ 1

0 |x(t)|
pdt < ∞,

is b-metric space if we take

db(x, y) =

( ∫ 1

0
|x(t)− y(t)|pdt

) 1
p

.

On the other hand, let A and B be two nonempty subsets of a metric space (X, d) and T : A→ CB(B).
A point x∗ ∈ A is called a best proximity point of T if

D(x∗, Tx∗) = inf{d(x∗, y) : y ∈ Tx∗} = dist(A, B),
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where
dist(A, B) = inf{d(a, b) : a ∈ A, b ∈ B}.

If A ∩ B 6= φ, then x∗ is a fixed point of T. If A ∩ B = φ, then D(x, Tx) > 0 for all x ∈ A and T
has no fixed point.

Consider the following optimization problem:

min{D(x, Tx) : x ∈ A}. (2)

It is then important to study necessary conditions so that the above minimization problem has at
least one solution.

Since
d(A, B) ≤ D(x, Tx) (3)

for all x ∈ A. Hence the optimal solution to the problem

min{D(x, Tx) : x ∈ A} (4)

for which the value d(A, B) is attained is indeed a best proximity point of multivalued mapping T.
In the sequel, we denote (X, db) a b-metric space, C(X), CB(X) and K(X) by the families of

all nonempty closed subsets, closed and bounded subsets and compact subsets of (X, db). For any
A, B ∈ C(X) and x ∈ X, define

A0 = {a ∈ A : there exists some b ∈ B such that db(a, b) = D(A, B)}
B0 = {b ∈ B : there exists some a ∈ A such that db(a, b) = D(A, B)}

δ(A, B) = sup{D(a, B) : a ∈ A}
H(A, B) = max{δ(A, B), δ(B, A)}.

The function H is called the Pompeiu-Hausdorff b-metric.

Definition 2. [19] Let (A, B) be a pair of nonempty subsets of a b-metric space (X, db) with A0 6= ∅. Then
the pair (A, B) is said to have the weak P-property if and only if for any x1, x2 ∈ A and y1, y2 ∈ B,

db(x1, y1) = D(A, B)
db(x2, y2) = D(A, B)

}
implies db(x1, x2) ≤ db(y1, y2).

Definition 3. [20] Let T : A→ B and α : A× A→ [0, ∞). We say that T is α-proximal admissible if

α(x1, x2) ≥ 1
d(u1, Tx1) = D(A, B)
d(u2, Tx2) = D(A, B)

 implies α(u1, u2) ≥ 1,

for all x1, x2, u1, u2 ∈ A.

The aim of this paper is to define multivalued Suzuki type (α, θ)-contraction and prove the
existence of best proximity point results in the setting of b-metric spaces. Moreover, we obtain best
proximity point results in b-metric spaces endowed with a graph through our main results. Examples
are given to prove the validity of our results. Moreover, we show the existence of solution of nonlinear
fractional differential equation.
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2. Existence Results for Multivalued Mappings

We first define the notions of continuity of non-self multivalued mapping and continuity of the
underlying b-metric.

Definition 4. Let (X, db) be a b-metric space and A, B be two nonempty subsets of X. A function T : A→ CB(B)
is called continuous if for all sequences xn and yn of elements from A and B respectively and x ∈ A, y ∈ B such
that lim

n→∞
xn = x, lim

n→∞
yn = y and yn+1 ∈ T(xn) for every n ∈ N, we have y ∈ T(x).

Definition 5. Let (X, db) be a b-metric space. The b-metric db is called sequentially continuous if for every
A, B ∈ CB(B), every x ∈ A, y ∈ B and every sequence xn in A, yn in B such that xn → x, yn → y, we have
db(xn, yn)→ db(x, y).

Definition 6. Let (X, db) be a b-metric space with constant k ≥ 1, A and B be nonempty subsets of X.
A mapping T : A→ CB(B) is called multivalued (MV) Suzuki type (α, θ)-contraction if there exist a function
α : A× A→ [0, ∞), θ ∈ Θ and s ∈ (0, 1) such that

1
k

D(x, Tx)− D(A, B) ≤ α(x, y)db(x, y)

implies that
θ(H(Tx, Ty)) ≤ [θ(M(x, y))]s, (5)

where M(x, y) = max{db(x, y), D(x, Tx), D(y, Ty)} for all x, y ∈ A.

Example 2. Let X = R with a b-metric db = |x− y|2 for all x, y ∈ X. Let A = [2, 3] and B = [0, 1], then
D(A, B) = 1, define T : A→ CB(B) by

Tx =

{
[0, x

4 ] if x ∈ (2, 3)
{ x

10} if x ∈ {2, 3},

α : A× A→ [0, ∞) by
α(x, y) = 1 if x,y ∈ [2, 3]

and θ : (0, ∞)→ (1, ∞) by
θ(t) = e

√
tet

for all t > 0. It is easy to see that θ ∈ Θ. Now for all x, y ∈ A

1
k

D(x, Tx)− D(A, B) = α(x, y)db(x, y)

and

θ(H(Tx, Ty)) = θ

(
|x− y|2

16

)

= e

√
|x−y|2

16 e
|x−y|2

16

≤ e
1
2

√
|x−y|2e|x−y|2

= e
1
2

√
db(x,y)edb(x,y)

≤ e
1
2

√
M(x,y)eM(x,y)

= [θ(M(x, y))]
1
2 .

Hence, T is MV Suzuki type (α, θ)-contraction.
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Theorem 4. Let A and B be two nonempty closed subsets of a complete b-metric space (X, db) such that
A0 is nonempty. Let T : A → K(B) be a MV Suzuki type (α, θ)-contraction. Suppose that the following
conditions hold:

(i) for each x ∈ A0, we have Tx ⊆ B0 and the pair (A, B) satisfies weak P-property;
(ii) there exist x0, x1 ∈ A0 and y1 ∈ Tx0 such that

db(x1, y1) = D(A, B) and α(x0, x1) ≥ 1;

(iii) T is α-proximal admissible;
(iv) db is sequentially continuous and T is continuous.

Then T has a best proximity point.

Proof. By hypothesis (ii), there exist x0, x1 ∈ A0 and y1 ∈ Tx0 such that

db(x1, y1) = D(A, B) and α(x0, x1) ≥ 1. (6)

If y1 ∈ Tx1, then we obtain

D(A, B) ≤ D(x1, Tx1) ≤ db(x1, y1) = D(A, B),

so x1 is best proximity point of T and the proof is complete.
Next, we suppose that y1 6∈ Tx1. Since y1 ∈ Tx0, we have

D(x0, Tx0) ≤ db(x0, y1) ≤ k[db(x0, x1) + d(x1, y1)]. (7)

Using (6) in (7), we have

1
k

D(x0, Tx0)− D(A, B) ≤ α(x0, x1)db(x0, x1).

From (5), it follows that

θ(H(Tx0, Tx1)) ≤ [θ(M(x0, x1))]
s, (8)

where

M(x0, x1) = max {db(x0, x1), D(x0, Tx0), D(x1, Tx1)}.

Since Tx0 is compact, so we have

M(x0, x1) = max {db(x0, x1), db(x0, x1), D(x1, Tx1)}
= max {db(x0, x1), D(x1, Tx1)}.

Suppose that M(x0, x1) = D(x1, Tx1), then

1 < θ(D(x1, Tx1))

≤ θ(H(Tx0, Tx1))

≤ [θ(M(x0, x1))]
s

= [θ(D(x1, Tx1)]
s,

a contradiction. Therefore,

θ(H(Tx0, Tx1)) ≤ [θ(db(x0, x1))]
s. (9)
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On the other hand, since 0 < D(y1, Tx1) ≤ H(Tx0, Tx1) and from (θ1), we obtain that

θ(D(y1, Tx1) ≤ θ(H(Tx0, Tx1)) ≤ [θ(db(x0, x1))]
s

implies

θ(D(y1, Tx1) ≤ [θ(db(x0, x1))]
s. (10)

Since Tx1 is compact, there exists y2 ∈ Tx1 such that D(y1, Tx1) = db(y1, y2) and so

θ(db(y1, y2)) ≤ [θ[db(x0, x1))]
s. (11)

By hypothesis (i), we have Tx1 ⊆ B0 and so there exists x2 ∈ A0 such that

db(x2, y2) = D(A, B). (12)

Since T is α-proximal admissible, from (6) and (12), it follows that

α(x1, x2) ≥ 1. (13)

Since (A, B) satisfies weak P-property, we have

db(x1, x2) ≤ db(y1, y2). (14)

If x1 = x2, then x1 is best proximity point of T and proof is complete. From (11), (14) and (θ1),
we have

θ(db(x1, x2)) ≤ θ(db(y1, y2)) ≤ [θ[db(x0, x1))]
s. (15)

If y2 ∈ Tx2, then x2 is best proximity point of T. Now suppose that y2 6∈ Tx2, since y2 ∈ Tx1,
then by similar arguments given above we have. Since y1 ∈ Tx0, we have

θ(db(x2, x3)) ≤ θ(db(y2, y3)) ≤ [θ[db(x1, x2))]
s. (16)

Thus, by induction, we can find two sequences {xn} ⊆ A0 and {yn} ⊆ B0 such that

(a) α(xn, xn+1) ≥ 1 with xn 6= xn+1;
(b) yn ∈ Txn−1 and yn 6∈ Txn;
(c) db(xn, yn) = D(A, B) and

θ(db(xn, xn+1)) ≤ θ(db(yn, yn+1)) ≤ (θ[db(xn−1, xn)])
s. (17)

Now,

1 < θ(db(xn, xn+1)) ≤ [θ(db(xn−1, xn))]
s ≤ [θ(db(xn−2, xn−1))]

s2

.

.

.

≤ [θ[db(x0, x1))]
sn

, (18)

for all n ∈ N∪ {0}. This shows that lim
n→∞

θ(db(xn, xn+1)) = 1 and (θ2) gives

lim
n→∞

db(xn, xn+1) = 0. (19)
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As consequence, there exist r ∈ [0, 1) and l ∈ (0, ∞] such that

lim
n→∞

θ(db(xn, xn+1))− 1
db(xn, xn+1)r = l.

We distinguish two cases.

Case-I: If 0 < l < ∞.

By definition of the limit, there exists some natural number n0 such that

lim
n→∞

θ(db(xn, xn+1))− 1
db(xn, xn+1)r ≥ l

2
for all n ≥ n0,

which yields

n[db(xn, xn+1)]
r ≤ 2

l
n[θ(db(xn, xn+1))− 1] for all n ≥ n0.

Case-II: If l = ∞.

Let B > 0 be an arbitrary positive number. From the definition of the limit, there exists some
natural number n0 such that

lim
n→∞

θ(db(xn, xn+1))− 1
db(xn, xn+1)r ≥ B for all n ≥ n0,

which yields

n[db(xn, xn+1)]
r ≤ 1

B
n[θ(db(xn, xn+1))− 1] for all n ≥ n0.

As consequence, in all cases, there exist A > 0 and natural number n0 such that

n[db(xn, xn+1)]
r ≤ An[θ(db(xn, xn+1))− 1] for all n ≥ n0.

Using (18), we obtain

n[db(xn, xn+1)]
r ≤ An([θ(db(x0, x1))]

sn − 1) for all n ≥ n0.

Taking n→ ∞ in the above inequality, we get

lim
n→∞

n[db(xn, xn+1)]
r = 0. (20)

It follows from (20) that there exists n1 ∈ N such that

n[db(xn, xn+1)]
r ≤ 1 for all n > n1.

This implies that

db(xn, xn+1) ≤
1

n
1
r

for all n ≥ n1. (21)
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Now, for all m = 1, 2, ..., n = n1, n1 + 1, ... and using (21), we have

db(xn, xn+m) ≤ kdb(xn, xn+1) + kdb(xn+1, xn+m)

≤ kdb(xn, xn+1) + k2db(xn+1, xn+2) + k2db(xn+2, xn+m)

.

.

.

≤ kdb(xn, xn+1) + k2db(xn+1, xn+2) + ... + km−2db(xn+m−3, xn+m−2)

+km−1db(xn+m−2, xn+m−1) + kmdb(xn+m−1, xm+s)

=
1
kn [k

n+1db(xn, xn+1) + kn+2db(xn+1, xn+2) + ...

+kn+m−1db(xn+m−2, xn+m−1) + kn+mdb(xn+m−1, xm+s)]

=
1
kn

n+m

∑
i=n+1

ki.db(xi, xi+1)

<
1
kn

∞

∑
i=n+1

ki.db(xi, xi+1) ≤
1
kn

∞

∑
i=n+1

ki

i
1
r

.

Since 0 < r < 1,
∞
∑

i=n+1

1
i

1
r

converges. Therefore

1
kn

∞

∑
i=n+1

ki

i
1
r
→ 0, as n→ ∞,

which yields that {xn} is a Cauchy sequence in complete b-metric space (X, db). From (17), it follows that

db(yn+1, yn) ≤ db(xn−1, xn). (22)

Similarly, we can show that {yn} is a Cauchy sequence in B. Since A and B are closed subsets
of a complete b-metric space (X, db), there exist x∗ ∈ A and y∗ ∈ B such that xn → x∗ and yn → y∗

as n → ∞, respectively. Since db(xn, yn) → D(A, B) for all n ∈ N and db is sequentially continuous,
we conclude that

lim
n→∞

db(xn, yn) = db(x∗, y∗) = D(A, B).

Since T is continuous, we have y∗ ∈ Tx∗. Furthermore,

D(A, B) ≤ D(x∗, Tx∗) ≤ db(x∗, y∗) = D(A, B)

implies
D(x∗, Tx∗) = D(A, B).

Therefore, x∗ is a best proximity point of T. This completes the proof.

Example 3. Let X = [0, ∞)× [0, ∞) be endowed with b-metric

db(x, y) = |x2 − x1|2 + |y2 − y1|2

for all x = (x1, x2), y = (y1, y2) ∈ X and k = 2. Let A = { 1
5} × [0, ∞) and B = {0} × [0, ∞).

Define T : A→ K(B) by

T
(

1
5

, a
)
=

{
{(0, x

10 ) : 0 ≤ x ≤ a} if a ≤ 1,
{(0, x2) : 0 ≤ x ≤ a2} if a > 1,
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and a function α : A× A→ [0, ∞) as follows:

α(x, y) =

{
1 if x, y ∈ {( 1

5 , a) : 0 ≤ a ≤ 1},
0 otherwise.

Take θ(t) = t + 1 for all t > 0.
Note that A0 = A, B0 = B, D(A, B) = 1

25 and Tx ⊆ B0 for all x ∈ A0 and the pair (A, B) satisfies weak
P-property. Let x0, x1 ∈ {( 1

5 , 0) : 0 ≤ x ≤ 1}. Then we have

Tx0, Tx1 ⊆
{(

0,
x

10

)
: 0 ≤ x ≤ 1

}
.

Consider y1 ∈ Tx0, y2 ∈ Tx1 and u1, u2 ∈ A such that db(u1, y1) = D(A, B), db(u2, y2) = D(A, B).
Then we have u1, u2 ∈ {( 1

5 , x) : 0 ≤ x ≤ 1
10}. Hence α(u1, u2) = 1 implies that T is an α-proximal admissible.

For x0 = ( 1
5 , 1) and y1 = (0, 1

10 ) ∈ Tx0 ⊆ B0, we have x1 = ( 1
5 , 1

10 ) ∈ A0 such that
db(x1, y1) = D(A, B) and α(x0, x1) = 1. Furthermore,

D(x0, Tx0) = db

((
1
5

, 1
)

,
(

0,
1

10

))
≤ 2

[
db

((
1
5

, 1
)

,
(

1
5

,
1

10

))
+ db

((
1
5

,
1

10

)
,
(

0,
1

10

))]
= 2

[
db(x0, x1) + db(x1, y1)

]
.

Since db(x1, y1) = D(A, B) and α(x0, x1) ≥ 1, we obtain

1
2

D(x0, Tx0)− D(A, B) ≤ α(x0, x1)db(x0, x1).

Noting that Tx = {(0, a
10 ) : 0 ≤ a ≤ 1} and Ty = {(0, b

10 ) : 0 ≤ b ≤ 1
10}, so

M(x0, x1) = max {db(x0, x1), D(x0, Tx0), D(x1, Tx1)}

= max
{

81
100

,
85

100
,

481
10000

}
=

85
100

and H(Tx0, Tx1) =
81

10000 . Thus

θ(H(Tx0, Tx1)) = θ

(
81

10000

)
=

81
10000

+ 1 =
1081

10000
(23)

and

[θ(M(x0, x1))]
s =

(
θ

[
85

100

]) 1
2

=

(
85
100

+ 1
) 1

2

=

√
185
10

. (24)

From (23) and (24), we get that

θ(H(Tx0, Tx1)) ≤ [θ(M(x0, x1))]
s.
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Hence, T is MV Suzuki type (α, θ)-contraction. Furthermore, T is continuous and hypothesis (ii) of
Theorem 4 is verified. Indeed, for x0 = ( 1

5 , 1), x1 = ( 1
5 , 0) and y1 = (0, 0), we obtain

db(x1, y1) = db((
1
5

, 0), (0, 0)) =
1

25
= D(A, B) and α(x0, x1) = 1.

Hence all the hypothesis of Theorem 4 are verified. Therefore, T has a best proximity point, which is ( 1
5 , 0).

In the next result, we replace the continuity of the mapping T by the following property:

If {xn} is a sequence in A such that α(xn, xn+1) ≥ 1 for all n ∈ N and xn → x ∈ A as n→ ∞,
then there exists a subsequence {xnm} of {xn} such that α(xnm , x) ≥ 1 for all m ≥ 1. If the
above condition is satisfied then we say that the set A satisfies α-subsequential property.

Theorem 5. Let A and B be two nonempty closed subsets of a complete b-metric space (X, db) such that A0

is nonempty. Let T : A → K(B) be a MV Suzuki type (α, θ)-contraction such that conditions (i)–(iii) of
Theorem 4 are satisfied together with sequentially continuity of db. Then T has a best proximity point in A
provided that A satisfies α-subsequential property.

Proof. From the proof of Theorem 4, we obtain two sequences {xn} in A0 and {yn} in B0 such that

(a) α(xn, xn+1) ≥ 1 and xn 6= xn+1;
(b) yn ∈ Txn−1 and yn 6∈ Txn;
(c) db(xn, yn) = D(A, B) and

θ(db(xn, xn+1)) ≤ θ(db(yn, yn+1)) ≤ [θ[db(xn−1, xn))]
s. (25)

Also, there exist x∗ ∈ A, y∗ ∈ B such that xn → x∗, yn → y∗ as n → ∞, respectively,
and db(x∗, y∗) = D(A, B).

Now, we show that x∗ is a best proximity point of T. If there exists a subsequence {xnm} of {xn}
such that Txnm = Tx∗ for all m ≥ 1, then we obtain

D(A, B) ≤ D(xnm+1, Txnm) ≤ db(xnm+1, ynm+1) = D(A, B),

which yields that
D(A, B) ≤ D(xnm+1, Tx∗) ≤ D(A, B),

for all m ≥ 1. Letting m→ ∞, we obtain

D(A, B) ≤ D(x∗, Tx∗) ≤ D(A, B).

Hence x∗ is a best proximity point of T. So, without loss of generality, we may assume that
Txn 6= Tx∗ for all n ∈ N. By α-subsequential property, there exists a subsequence {xnm} of {xn} such
that α(xnm , x∗) ≥ 1 for all m ≥ 1. From the hypothesis (ii), we obtain ynk+1 ∈ Txnm such that

D(xnm , Txnm) ≤ db(xnm , ynm+1)

≤ k[db(xnm , xnm+1) + db(xnm+1, ynm+1)].

Since db(xnm+1, ynm+1) = D(A, B) and α(xnm , x∗) ≥ 1, we obtain

1
k

D(xnm , Txnm)− D(A, B) ≤ db(xnm , xnm+1) ≤ α(xnm , x∗)db(xnm , xnm+1).

From (5), we have
θ(H(Tnm , Tx∗)) ≤ [θ(M(xnm , x∗))]s.
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Thus

θ(H(Tnm , Tx∗)) ≤ [θ(M(xnm , x∗))]s = [θ(db(xnm , x∗))]s < θ(db(xnm , x∗)).

From (θ1), we obtain
H(Txnm , Tx∗) ≤ db(xnm , x∗).

On the other hand

D(y∗, Tx∗) ≤ k[db(y∗, ynm+1) + D(ynm+1, Tx∗)]

≤ k[db(y∗, ynm+1) + H(Txnm , Tx∗)]

≤ k[db(y∗, ynm+1) + db(xnm , x∗)].

Letting m→ ∞, we obtain D(y∗, Tx∗) = 0. Hence, we have

D(A, B) ≤ D(x∗, Tx∗) ≤ db(x∗, y∗) = D(A, B).

Therefore, x∗ is a best proximity point of T.

Following results are direct consequences of Theorems 4 and 5:

Corollary 1. Let A and B be two nonempty closed subsets of a complete b-metric space (X, db) such that A0 is
nonempty and db is sequentially continuous. Let T : A→ K(B) be multivalued contraction. Suppose that the
following conditions hold:

(i) for each x ∈ A0, we have Tx ⊆ B0 and the pair (A, B) satisfies weak P-property;
(ii) there exist x0, x1 ∈ A0 and y1 ∈ Tx0 such that

db(x1, y1) = D(A, B) and α(x0, x1) ≥ 1;

(iii) T is α-proximal admissible;
(iv) there exist θ ∈ Θ and s ∈ (0, 1) such that

1
k

D(x, Tx)− D(A, B) ≤ α(x, y)db(x, y)

implies that
θ(H(Tx, Ty)) ≤ [θ[db(x, y))]s.

(iv) T is continuous or A satisfied α-subsequential property.

Then T has a best proximity point.

Proof. If we take M(x, y) = db(x, y) in Theorem 4 (Theorem 5), we get the desire result.

Existence Results for Single Valued Mappings

Definition 7. Let (X, db) be a b-metric space with constant k ≥ 1, A and B be nonempty subsets of X.
A mapping T : A → B is called Suzuki type (α, θ)-contraction if there exist functions α : A× A → [0, ∞),
θ ∈ Θ and s ∈ (0, 1) such that

1
k

d(x, Tx)− d(A, B) ≤ α(x, y)db(x, y)

implies that
θ(d(Tx, Ty)) ≤ [θ(M(x, y))]s,
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where M(x, y) = max{db(x, y), db(x, Tx), db(y, Ty)} for all x, y ∈ A.

Theorem 6. Let A and B be two nonempty closed subsets of a complete b-metric space (X, db) such that A0 is
nonempty and db is sequentially continuous. Let T : A→ B be Suzuki type (α, θ)-contraction. Suppose that
the following conditions hold:

(i) T(A0) ⊆ B0 and the pair (A, B) satisfies weak P-property;
(ii) there exist x0, x1 ∈ A0 such that

db(x1, Tx0) = db(A, B) and α(x0, x1) ≥ 1;

(iii) T is α-proximal admissible;
(iv) T is continuous or A satisfies α-subsequential property.

Then T has a best proximity point.

Taking A = B = X in Theorem 6, with an extra condition as follows:

If {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 for all n ∈ N and xn → x ∈ X as
n→ ∞, then α(xn, x) ≥ 1 for all n ∈ N. If the above condition is satisfied then we say A has
α-sequential property.

Theorem 7. Let (X, db) be a complete b-metric space and T : X → X be a Suzuki type (α, θ)-contraction.
Suppose that the following conditions hold:

(i) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1;
(ii) T is α admissible;

(iii) T is continuous or A has α-sequential property

Then T has a fixed point.

Proof. The proof is similar to that of Theorem 6.

3. Existence Results in b-Metric Space Endowed with Graph

Jachymski [21] was the first who has presented an analogue of Banach contraction principle for
mappings on a metric space endowed with a graph. Dinevari [22] took initiative to extend the Nadler’s
theorem on the lines of Jachymski [21].

In this section, we give the existence of best proximity point theorems in b-metric space endowed
with graph. The following notions will be used in the sequel:

Definition 8. Let (X, db) be a b-metric space.

1. The set ∆ = {(x, x) : x ∈ X} ⊆ X× X is known as diagonal of the Cartesian product.
2. In a graph Gb, the set V(Gb) of its vertices coincides with X and the set E(Gb) of its edges contains all

loops, i.e., ∆ ⊆ E(Gb).
3. The graph Gb has no parallel edges and so we can identify Gb with the pair (V(Gb), E(Gb)).
4. The graph Gb is a weighted graph by assigning to each edge the distance between its vertices.

Definition 9. Let (X, db) be a b-metric space endowed with a graph Gb and A, B be two nonempty subsets
of X. A function T : A → CB(B) is called E(Gb)-continuous if for all sequences xn and yn of elements
from A and B respectively and x ∈ A, y ∈ B such that lim

n→∞
xn = x, lim

n→∞
yn = y, yn+1 ∈ T(xn) and

(xn, xn+1), (yn, yn+1) ∈ E(Gb) for every n ∈ N, we have y ∈ T(x).
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Definition 10. Let (X, db) be a b-metric space endowed with a graph Gb. The b-metric db is called
E(Gb)-sequentially continuous if for every A, B ∈ CB(B), every x ∈ A, y ∈ B and every sequence xn

in A, yn in B such that xn → x, yn → y and (xn, xn+1), (yn, yn+1) ∈ E(Gb) we have db(xn, yn)→ db(x, y).

Definition 11. Let A and B be nonempty subsets of a b-metric space (X, db) endowed with a graph Gb.
A mapping T : A→ CB(B) is said to be Gb-proximal if

(x1, x2) ∈ E(Gb)

db(u1, y1) = D(A, B)
db(u2, y2) = D(A, B)

 implies (u1, u2) ∈ E(Gb),

for all x1, x2, u1, u2 ∈ A and y1 ∈ Tx1, y2 ∈ Tx2.

Definition 12. Let (X, db) be a b-metric space endowed with graph Gb, A and B be nonempty subsets of X.
A mapping T : A→ CB(B) is called MV Suzuki type (α, θGb)-contraction if there exist α : A× A→ [0, ∞),
θ ∈ Θ and s ∈ (0, 1) such that

1
k

D(x, Tx)− D(A, B) ≤ db(x, y)

implies that
θ(H(Tx, Ty)) ≤ [θ[M(x, y))]s,

where M(x, y) = max {db(x, y), D(x, Tx), D(y, Ty)} and H(Tx, Ty) > 0 for all x, y ∈ A with
(x, y) ∈ E(Gb).

Theorem 8. Let A and B be two nonempty closed subsets of a b-metric space (X, db) endowed with a graph
Gb such that A0 is nonempty. Let T : A→ K(B) be a MV Suzuki type (α, θGb )-contraction. Suppose that the
following conditions hold:

(i) (X, db) is an E(Gb)-complete b-metric space;
(ii) for each x ∈ A0, we have Tx ⊆ B0 and the pair (A, B) satisfies weak P-property;

(iii) there exist x0, x1 ∈ A0 and y1 ∈ Tx0 such that

db(x1, y1) = D(A, B) and (x0, x1) ∈ E(Gb);

(iv) db is E(Gb)-sequentially continuous;
(v) T is Gb-proximal and E(Gb)-continuous.

Then T has a best proximity point.

Proof. Define α : A× A→ [0, ∞) by

α(x, y) =

{
1 if (x, y) ∈ E(Gb),
0 otherwise.

The conclusion follows from Theorem 4.

Now to remove the condition of E(Gb)-continuous on T, we need following condition:

If {xn} is a sequence in A such that (xn, xn+1) ∈ E(Gb) for all n ∈ N and xn → x ∈ A
as n → ∞, then there exists a subsequence {xnm} of {xn} such that (xnm , x) ∈ E(Gb)

for all m ≥ 1. If the above condition is satisfied then we say that the set A satisfied
αGb -subsequential property.
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Theorem 9. Let A and B be two nonempty closed subsets of a b-metric space (X, db) endowed with a graph
Gb such that A0 is nonempty. Let T : A→ K(B) be a MV Suzuki type (α, θGb )-contraction. Suppose that the
following conditions hold:

(i) (X, db) is an E(Gb)-complete b-metric space;
(ii) for each x ∈ A0, we have Tx ⊆ B0 and the pair (A, B) satisfies weak P-property;

(iii) there exist x0, x1 ∈ A0 and y1 ∈ Tx0 such that

db(x1, y1) = D(A, B) and (x0, x1) ∈ E(Gb);

(iv) T is Gb-proximal;
(v) db is E(Gb)-sequentially continuous;

(vi) A satisfied αGb -subsequential property.

Then T has a best proximity point.

Proof. Define α : A× A→ [0, ∞) by

α(x, y) =

{
1 if (x, y) ∈ E(Gb),
0 otherwise.

The conclusion follows from Theorem 5.

4. Application to Fractional Calculus

First, we recall some notions (see [23]). For a continuous function g : [0, ∞) → R, the Caputo
derivative of fractional order β is defined as

CDβ(g(t)) =
1

Γ(n− β)

∫ t

0
(t− s)n−β−1g(n)(s)ds (n− 1 < β < n, n = [β] + 1)

where [β] denotes the integer part of real number β and Γ is gamma function.
In this section, we present an application of Theorem 7 to show the existence of the solution for

nonlinear fractional differential equation:

CDβ(x(t)) + f (t, x(t)) = 0 (0 ≤ t ≤ 1, β < 1) (26)

via boundary conditions x(0) = 0 = x(1), where x ∈ C([0, 1],R) and C([0, 1],R) is the set of all
continuous functions from [0, 1] into R and f : [0, 1]×R→ R is continuous function (see [24]). Recall
Green function associated with the problem (26) is given by

G(t, s) =

{
(t(1− s))α−1 − (t− s)α−1 if 0 ≤ s ≤ t ≤ 1,

(t(1−s))α−1

Γ(α) if 0 ≤ t ≤ s ≤ 1.

First, let X = C([0, 1],R) be a b-metric space endowed with b-metric

db(x, y) = ||x||∞,p = sup
t∈[0,1]

|x(t)− y(t)|p,

for all x ∈ X with k = 2p−1.
Now we prove the following existence theorem:

Theorem 10. Suppose that
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(i) there exist a function µ : R×R→ R and p, τ > 1 such that

1
2p−1 dp(x, Tx) ≤ dp(x, y)

implies that

| f (t, a)− f (t, b)| ≤ e
−τ
p Q(a, b)

for all t ∈ [0, 1] and a, b ∈ R with µ(a, b) ≥ 0, where Q(a, b) = max {|a− b|, |a− Ta|, |b− Tb|};
(ii) There exists x0 ∈ C([0, 1],R) such that µ(x0(t).

∫ 1
0 Tx0(t)dt) ≥ 0 for all t ∈ [0, 1], where T :

C([0, 1],R)→ C([0, 1],R) is defined by

Tx(t) =
∫ 1

0
G(t, s) f (s, x(s))ds;

(iii) for each t ∈ [0, 1] and x, y ∈ C([0, 1],R), µ(x(t), y(t)) ≥ 0 implies µ(Tx(t), Ty(t)) ≥ 0;
(iv) for each t ∈ [0, 1], if {xn} is a sequence in C([0, 1],R) such that xn → x in C([0, 1],R) and

µ(xn(t), xn+1(t)) ≥ 0 for all n ∈ N, then µ(xn(t), x(t)) ≥ 0 for all n ∈ N.

Then, problem (26) has at least one solution.

Proof. It is easy to see that x ∈ X is a solution of (26) if and only if x∗ ∈ X is a solution of the equation
x(t) =

∫ 1
0 G(t, s) f (s, x(s))ds for all t ∈ [0, 1]. Then the problem (26) is equivalent to finding x∗ ∈ X

which is fixed point of T. From conditions (i) and (ii), for all distinct x, y ∈ X such that µ(x(t), y(t)) ≥ 0
for all t ∈ [0, 1], let q > 1 such that 1

p + 1
q = 1, we have

|Tu(x)− Tv(x)|p

=

∣∣∣∣∣ ∫ 1
0 G(t, s) f (s, x(s))ds−

∫ 1
0 G(t, s) f (s, y(s))ds

∣∣∣∣∣
p

≤
∣∣∣∣∣ ∫ 1

0 G(t, s)[ f (s, x(s))− f (s, y(s))]ds

∣∣∣∣∣
p

≤
( ∫ 1

0 |G(t, s) f (s, x(s))− f (s, y(s))|ds

)p

≤
[( ∫ 1

0 G(t, s)ds

) 1
q
( ∫ 1

0 | f (s, x(s))− f (s, y(s))|pdx

) 1
p
]p

≤
[( ∫ 1

0 G(t, s)ds

) 1
q
( ∫ 1

0 [e
−τ
p Q(x(s), y(s))]pdx

) 1
p
]p

≤
( ∫ 1

0 G(t, s)ds

) p
q
( ∫ 1

0 [e
−τ
p max {|x(s)− y(s)|p, |x(s)− Tx(s)|p, |y(s)− Ty(s)|p}]pds

) p
p

≤
( ∫ 1

0 G(t, s)ds

)p−1( ∫ 1
0 e−τ max {supt∈[0,1] |x(s)− y(s)|p,

supt∈[0,1] |x(s)− Tx(s)|p, supt∈[0,1] |y(s)− Ty(s)|p}ds

)

≤
( ∫ 1

0 G(t, s)ds

)p−1

e−τ max {db(x, y), db(x, Tx), db(y, Ty)}
∫ 1

0 ds

≤ e−τ M(x, y) supt∈[0,1]

( ∫ 1
0 G(t, s)ds

)p−1

≤ e−τ M(x, y),

(27)

where
M(x, y) = max {db(x, y), db(x, Tx), db(y, Ty)}.
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Thus for each x, y ∈ X, with µ(x(t), y(t)) ≥ 0 for all t ∈ [0, 1] we have

db(Tx, Ty) = ||Tx− Ty||∞,p = sup
t∈[0,1]

|Tx(t)− Ty(t)|p ≤ e−τ M(x, y).

Let θ(t) = e
√

t ∈ Θ, t > 0, we have

e
√

db(Tx,Ty) ≤ e
√

e−τ M(x,y) = [e
√

M(x,y)]k, ∀ x, y ∈ X,

where k =
√

e−τ . Since τ > 1 then k ∈ (0, 1). Therefore, T is Suzuki type (α, θ)-type contraction.
Also define

α(x, y) =

{
1 if µ(x(t), y(t)) ≥ 0, t ∈ [0, 1],
−∞ otherwise.

From (ii) there exists x0 ∈ C[0, 1] such that α(x0, Tx0) ≥ 2p−1, for all x, y ∈ C[0, 1], we get that

α(x, y) ≥ 1 ⇒ µ(x(t), y(t)) ≥ 0 for all t ∈ [0, 1]

⇒ µ(Tx(t), Ty(t)) ≥ 0 for all t ∈ [0, 1]

⇒ α(Tx, Ty) ≥ 1,

hence T is α-admissible. Finally, from condition (iv) in the hypothesis, condition (iii) of Theorem 7
holds. Hence all the conditions of Theorem 7 are satisfied. Thus we conclude that there exists x∗ ∈ C[0, 1]
such that Tx∗ = x∗ and so x∗ is a solution of the problem (26). This completes the proof.
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