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1. Introduction

Quantum difference operators dealing with sets of nondifferentiable functions have been
extensively studied as they can be used as a tool to understand complex physical systems. There are
several kinds of difference operators. The q-difference operator was first introduced by Jackson [1] and
was studied in intensive work especially by Carmichael [2], Mason [3], Adams [4] and Trjitzinsky [5].
The studies of quantum problems involving q-calculus have been presented. The recent works related
to q-calculus theories can be found in [6–8] and the references cited therein.

The q-symmetric difference operators are a useful tool in several fields, especially in quantum
mechanics [9]. However, there are few research works [10–13] involving the development of
q-symmetric difference operators.

In 2012, A.M.C. Brito da Cruz and N. Martins [10] studied the q-deformed theory, in which the
standard q-symmetric integral must be generalized to the basic integral defined.

Recently, Sun, Jin and Hou [12] introduced basic concepts of fractional q-symmetric integral and
derivative operator. Moreover, Sun and Hou [13] introduced basic concepts of fractional q-symmetric
calculus on a time scale.

In particular, the boundary value problem for q-symmetric difference equations has not been
studied. The results mentioned are the motivation for this research. In this paper, we devote our
attention to the estabished existence results for a nonlocal q-symmetric integral boundary value for
sequential q-symmetric integrodifference equation of the form

D̃qD̃pu(t) = F
(

t, u(t), (Sθu)(t), (Zωu)(t)
)

, t ∈ IT
χ
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u(0) = λu(T), (1)∫ η

0
g(s)u(s) d̃rs = 0, η ∈ IT

χ − {0, T},

where IT
χ := {χkT : k ∈ N} ∪ {0, T}, p, q, r, ω, θ ∈ (0, 1), p = p1

p2
, q = q1

q2
, r = r1

r2
, ω = ω1

ω2
, θ = θ1

θ2

and χ = 1
LCM

(
p2,q2,r2,ω2,θ2

) are the simplest form of proper fractions; g ∈ C
(

IT
χ ,R+

)
and F ∈

C
(

IT
χ ×R×R×R,R

)
are given functions; and for ϕ, φ ∈ C

(
IT
χ × IT

χ , [0, ∞)
)
, define

(Sθu) (t) :=
∫ t

0
ϕ(s, t)u(s)d̃θs and (Zωu) (t) :=

∫ t

0
φ(s, t)u(s)d̃ωs.

This paper is organized as follows. In Section 2, we provide basic definitions, properties of
q-symmetric difference operator and lemmas used in this paper. In Section 3, the existence results of
problem (1) will be proved by employing Banach’s contraction mapping principle and Krasnoselskii’s
fixed point theorem. In Section 4, we give some examples to illustrate our results.

2. Preliminaries

We introduce some basic definitions and properties of q-symmetric difference calculus as follows.

Definition 1. For q ∈ (0, 1), the q-symmetric difference of function f : R→ R is defined by

D̃q f (t) =
f (qt)− f (q−1t)

(q− q−1)t
and D̃q f (0) = f ′(t).

The higher order q-symmetric derivatives of f is defined by

D̃n
q f (t) = D̃qDn−1

q f (t), n ∈ N.

We note that D̃0
q f (t) = f (t).

Next, if f is a function defined on the interval I, q-symmetric integral is defined by

∫ b

a
f (s)d̃qs :=

∫ b

0
f (s)d̃qs−

∫ a

0
f (s)d̃qs

and
∫ x

0
f (s)d̃qs := x(1− q2)

∞

∑
k=0

q2k f
(

xq2k+1
)

where the above infinite series is convergent.
We next discuss the following lemmas used to simplify our calculations.

Lemma 1. Let 0 < q < 1, and f : I → R be continuous at 0. Then,

∫ t

0

∫ r

0
x(s) d̃qs d̃qr =

∫ t

0

∫ qt

q2s
x (qs) d̃qr d̃qs.

Proof. Using the definition of symmetric q-integral, we have

∫ t

0

∫ r

0
x(s) d̃qs d̃qr

=
∫ t

0

[
r(1− q2)

∞

∑
k=0

q2k x
(

rq2k+1
) ]

d̃qr =
∞

∑
k=0

q2k

[ ∫ t

0
r(1− q2) x

(
rq2k+1

)
d̃qr

]

=
∞

∑
k=0

q2kt(1− q2)
∞

∑
h=0

q2h [tq2h+1(1− q2)
]
x
( (

tq2h+1
)

q2k+1
)
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= qt2(1− q2)2
∞

∑
k=0

∞

∑
h=0

q2k+4h x
(

tq2k+2h+2
)

= qt2(1− q2)2
∞

∑
h=0

[
q4hx

(
tq2h+2

)
+ q4h+2x

(
tq2h+4

)
+ q4h+4x

(
tq2h+6

)
+ ...

]
= qt2(1− q2)2

{ [
x(tq2) + q2x

(
tq4
)
+ q4x

(
tq6
)
+ ...

]
+
[
q4x(tq4) + q6x

(
tq6
)
+ q8x

(
tq8
)
+ ...

]
+
[
q8x(tq6) + q10x

(
tq8
)
+ q12x

(
tq10

)
+ ...

]
+ ...

}
= qt2(1− q2)2

{
x(tq2) + q2(1 + q2) x

(
tq4
)
+ q4(1 + q2 + q4) x

(
tq6
)
+ ...

}
= qt2(1− q2)2

∞

∑
k=0

q2k[k + 1]q2 x
(

tq2k+2
)

= q
∞

∑
k=0

q2kt2(1− q2)
[
1− q2(k+1)] x

(
tq2k+2

)
=

∫ t

0

[
qt− q2s

]
x (qs) d̃qs

=
∫ t

0

[ ∫ qt

0
x (qs) d̃qr−

∫ q2s

0
x (qs) d̃qr

]
d̃qs

=
∫ t

0

∫ qt

q2s
x (qs) d̃qr d̃qs.

�

Lemma 2. Let 0 < q < 1. Then,

∫ t

0
d̃qs = t and

∫ t

0

∫ qt

q2s
d̃qrd̃qs =

qt2

1 + q2 .

Proof. Using the definition of symmetric q-integral, we have

∫ t

0
d̃qs = t(1− q2)

∞

∑
k=0

q2k = t(1− q2)

[
1

1− q2

]
= t,

∫ t

0

∫ qt

q2s
d̃qrd̃qs =

∫ t

0
[qt− q2s] d̃qs

= t(1− q2)
∞

∑
k=0

q2k
[
qt− q2k+3t

]
= qt2(1− q2)

[
1

1− q2 −
q2

1− q4

]
=

qt2

1 + q2 .

�

To study the solution of the boundary value problem (1), we first consider the solution of a linear
variant of the boundary value problem (1) as follows.

Lemma 3. Let p, q ∈ (0, 1), p = p1
p2

, q = q1
q2

, r = r1
r2

and κ = 1
LCM

(
p2,q2,r2

) are the simplest form of proper

fractions; λ ∈ R; g ∈ C
(

IT
κ ,R+

)
and h ∈ C

(
IT
κ ,R

)
are given functions. The solution for the problem

D̃qD̃pu(t) = h(t), t ∈ IT
κ (2)

u(0) = λu(T), (3)
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∫ η

0
g(s)u(s) d̃rs = 0, η ∈ IT

κ − {0, T}, (4)

is in the form

u(t) =
1
Λ

[ ∫ η

0
sg(s) d̃qs · λ

∫ T

0

∫ x

0
h(s) d̃qs d̃px− λT

∫ η

0

∫ y

0

∫ x

0
g(y)h(s) d̃qs d̃px d̃ry

]

+
t
Λ

[ ∫ η

0
g(s) d̃qs · λ

∫ T

0

∫ x

0
h(s) d̃qs d̃px− (1− λ)

∫ η

0

∫ y

0

∫ x

0
g(y)h(s) d̃qs d̃px d̃ry

]
(5)

+
∫ t

0

∫ x

0
h(x) d̃qs d̃px,

where Λ := λT
∫ η

0 g(s) d̃qs + (1− λ)
∫ η

0 sg(s) d̃qs.

Proof. We first take the q-symmetric integral for (2) to obtain

D̃pu(t) = C1 +
∫ t

0
h(s) d̃qs. (6)

Next, taking the p-symmetric integral for (6), we have

u(t) = C2 + C1t +
∫ t

0

∫ x

0
h(s) d̃qs d̃px. (7)

To find C1 and C2, we first take the r-symmetric integral for g(t)u(t). We find that

∫ t

0
g(s)u(s) d̃rs = C2

∫ t

0
g(s) d̃rs + C1

∫ t

0
sg(s) d̃rs +

∫ t

0

∫ y

0

∫ x

0
g(y)h(s) d̃qs d̃px d̃ry. (8)

We apply condition (3) to (7). Then, we have

C1λT − (1− λ)C2 = −λ
∫ T

0

∫ x

0
h(x) d̃qs d̃px. (9)

We next apply condition (4) to (8). Then we have

C1

∫ η

0
sg(s) d̃qs + C2

∫ η

0
g(s) d̃qs = −

∫ η

0

∫ y

0

∫ x

0
g(y)h(s) d̃qs d̃px d̃ry. (10)

Constants C1 and C2 are obtained by solving the system of Equations (9) and (10) as follows

C1 = − 1
Λ

[ ∫ η

0
g(s) d̃qs · λ

∫ T

0

∫ x

0
h(x) d̃qs d̃px− (1− λ)

∫ η

0

∫ y

0

∫ x

0
g(y)h(s) d̃qs d̃px d̃ry

]
,

C2 =
1
Λ

[ ∫ η

0
sg(s) d̃qs · λ

∫ T

0

∫ x

0
h(x) d̃qs d̃px− λT

∫ η

0

∫ y

0

∫ x

0
g(y)h(s) d̃qs d̃px d̃ry

]
.

Employing these results in (7), we get the solution (5). �
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3. Main Results

To study the existence and uniqueness of solution of (1), we transform the boundary value
problem (1) into a fixed point problem. Let C = C(IT

χ ,R) denote the Banach space of all functions u.
The norm is defined by ‖u‖ = sup

t∈IT
χ

|u(t)|. The operator T : C → C is defined by

(T u)(t) =
1
Λ

[ ∫ η

0
sg(s) d̃qs · λ

∫ T

0

∫ x

0
F
(

x, u(x), (Sθu)(x), (Zωu)(x)
)

d̃qs d̃px

− λT
∫ η

0

∫ y

0

∫ x

0
g(y) F

(
s, u(s), (Sθu)(s), (Zωu)(s)

)
d̃qs d̃px d̃ry

]
(11)

+
t
Λ

[ ∫ η

0
g(s) d̃qs · λ

∫ T

0

∫ x

0
F
(

x, u(x), (Sθu)(x), (Zωu)(x)
)

d̃qs d̃px

− (1− λ)
∫ η

0

∫ y

0

∫ x

0
g(y) F

(
s, u(s), (Sθu)(s), (Zωu)(s)

)
d̃qs d̃px d̃ry

]

+
∫ t

0

∫ x

0
F
(

x, u(x), (Sθu)(x), (Zωu)(x)
)

d̃qs d̃px,

where IT
χ := {χkT : k ∈ N} ∪ {0, T}, p, q ∈ (0, 1), p = p1

p2
, q = q1

q2
, r = r1

r2
, ω = ω1

ω2
, θ = θ1

θ2

are the simplest form of proper fractions and χ = 1
LCM

(
p2,q2,r2,ω2,θ2

) ; g ∈ C
(

IT
χ ,R+

)
and F ∈

C
(

IT
χ ×R×R×R,R

)
; and for ϕ, φ ∈ C

(
IT
χ × IT

χ , [0, ∞)
)
, define

Sθu(t) :=
∫ t

0
ϕ(s, t)u(s)d̃θs and Zωu(t) :=

∫ t

0
φ(s, t)u(s)d̃ωs.

We note that problem (1) has solutions if and only if the operator T has fixed points.
To present our results, we establish the following theorem based on Banach’s fixed point theorem.

Theorem 1. Assume F ∈ C
(

IT
χ ×R×R×R,R

)
, g ∈ C

(
IT
χ ,R+

)
and ϕ, φ ∈ C

(
IT
χ × IT

χ , [0, ∞)
)
. Let ϕ0 :=

sup
(t,s)∈IT

χ×IT
χ

{ϕ(t, s)} and φ0 := sup
(t,s)∈IT

χ×IT
χ

{φ(t, s)}. Assume F and g satisfy the following conditions:

(H1) there exist positive constants L1, L2, L3 such that∣∣∣F(t, u, Sθu, Zωu
)
− F

(
t, v, Sθv, Zωv

)∣∣∣
≤ L1|u− v|+ L2

∣∣Sθu− Sθv
∣∣+ L3

∣∣Zθu− Zθv
∣∣,

for all t ∈ IT
χ and u, v, Sθu, Zωu ∈ R,

(H2) 0 < g(t) < G for all t ∈ IT
χ .

If

Ξ =
[
L1 + T (L2 ϕ0 + L3φ0)

]{
Θ +

pT2

1 + p2

}
< 1, (12)

where

Θ :=
1
Λ̂

[
pη2TG
1 + p2

(
q

1 + q2 λT +
r

(1 + r2)(1 + r4)
λη

)
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+
pηTG

Λ̂(1 + p2)

(
λT2 +

r
(1 + r2)(1 + r4)

(1− λ)η2

)]
, (13)

where Λ̂ is given by (15), then the boundary value problem (1) has a unique solution.

Proof. For any u, v ∈ C and for each t ∈ IT
χ , we have∣∣∣F(t, u, Sθu, Zωu

)
− F

(
t, v, Sθv, Zωv

)∣∣∣
≤ L1|u− v|+ L2

∣∣Sθu− Sθv
∣∣+ L3

∣∣Zωu− Zωv
∣∣

= L1|u− v|+ L2

∫ t

0
ϕ(s, t)|u(s)− v(s)|d̃θs + L3

∫ t

0
φ(s, t)|u(s)− v(s)|d̃ωs

≤ ‖u− v‖
{

L1 + T (L2 ϕ0 + L3φ0)
}

, (14)

and

|Λ| ≥ λTg
∫ η

0
d̃qs + |1− λ|g

∫ η

0
s d̃qs = λTgη +

qgη2

1 + q2 |1− λ| =: Λ̂. (15)

From (14) and (15), we have∣∣∣(T u)(t)− (T v)(t)
∣∣∣

≤ ‖u−v‖
Λ̂

{
L1 + T (L2 ϕ0 + L3φ0)

}
×{[

Gλ
∫ η

0 s d̃qs ·
∫ T

0

∫ x
0 d̃qs d̃px + λTG

∫ η
0

∫ y
0

∫ x
0 d̃qs d̃px d̃ry

]

+ T
Λ̂

[
Gλ
∫ η

0 d̃qs ·
∫ T

0

∫ x
0 d̃qs d̃px + (1− λ)G

∫ η
0

∫ y
0

∫ x
0 d̃qs d̃px d̃ry

]
+
∫ T

0

∫ x
0 d̃qs d̃px

}

≤ ‖u− v‖
[
L1 + T (L2 ϕ0 + L3φ0)

]{ 1
Λ̂

[
pη2TG
1+p2

(
q

1+q2 λT + r
(1+r2)(1+r4)

λη

)

+ pηTG
Λ̂(1+p2)

(
λT2 + r

(1+r2)(1+r4)
(1− λ)η2

)]
+ pT2

1+p2

}

= ‖u− v‖
[
L1 + T (L2 ϕ0 + L3φ0)

]{
Θ + pT2

1+p2

}
.

(16)

As Ξ < 1, T is a contraction. Therefore, the proof is done based on Banach’s contraction
mapping principle. �

Furthermore, we prove the existence of a solution to the boundary value problem (1) by using the
Krasnoselskii’s fixed point theorem.

Theorem 2. [14] Let K be a bounded closed convex and nonempty subset of a Banach space X. Let A, B be
operators such that:

(i) Ax + By ∈ K whenever x, y ∈ K,
(ii) A is compact and continuous,
(iii) B is a contraction mapping.

Then there exists z ∈ K such that z = Az + Bz.

Theorem 3. Assume that (H1) and (H2) hold. In addition we suppose that:

(H3)
∣∣∣F(t, u, Sθu, Zωu

)∣∣∣ ≤ µ(t), for all
(

t, u, Sθu, Zωu
)
∈ IT

χ ×R×R×R, with µ ∈ C(IT
χ ,R+).



Mathematics 2018, 6, 218 7 of 9

If
Θ < 1, (17)

where Θ is given by (13), then the boundary value problem (1) has at least one solution on IT
χ .

Proof. We let sup
t∈IT

χ

|µ(t)| = ‖µ‖ and choose a constant

R ≥ ‖µ‖
{

Θ +
pT2

1 + p2

}
, (18)

where BR = {u ∈ C : ‖u‖ ≤ R}.

Based on the results of Lemma 3, we define the operators T1 and T2 on the ball BR as

(T1u)(t) =
∫ t

0

∫ x

0
F
(

x, u(x), (Sθu)(x), (Zωu)(x)
)

d̃qs d̃px,

(T2u)(t) =
1
Λ

[ ∫ η

0
sg(s) d̃qs · λ

∫ T

0

∫ x

0
F
(

x, u(x), (Sθu)(x), (Zωu)(x)
)

d̃qs d̃px

− λT
∫ η

0

∫ y

0

∫ x

0
g(y) F

(
s, u(s), (Sθu)(s), (Zωu)(s)

)
d̃qs d̃px d̃ry

]

+
t
Λ

[ ∫ η

0
g(s) d̃qs · λ

∫ T

0

∫ x

0
F
(

x, u(x), (Sθu)(x), (Zωu)(x)
)

d̃qs d̃px

− (1− λ)
∫ η

0

∫ y

0

∫ x

0
g(y) F

(
s, u(s), (Sθu)(s), (Zωu)(s)

)
d̃qs d̃px d̃ry

]
.

We proceed similarly to Theorem 1 for u, v ∈ BR. Then we have

‖T1x + T2y‖ ≤ ‖µ‖
{

Θ +
pT2

1 + p2

}
≤ R,

which implies that T1x + T2y ∈ BR. Using (17), we find that T2 is a contraction mapping.
From the continuity of F and the assumption (H3), we see that an operator T1 is continuous and

uniformly bounded on BR. For t1, t2 ∈ IT
χ with t1 ≤ t2 and u ∈ BR, we have

|T1x(t2)− T1x(t1)| =

∣∣∣∣∣
∫ t2

0

∫ x

0
F
(

x, u(x), (Sθu)(x), (Zωu)(x)
)

d̃qs d̃px

−
∫ t1

0

∫ x

0
F
(

x, u(x), (Sθu)(x), (Zωu)(x)
)

d̃qs d̃px

∣∣∣∣∣
≤ p

1 + p2 ‖F‖
∣∣t2

2 − t2
1
∣∣.

We observe that the above inequality tends to zero when t2 − t1 → 0. Therefore T1 is relatively
compact on BR. Hence, we can conclude by the Arzelá-Ascoli Theorem that T1 is compact on BR.
We find that the assumptions of Theorem 2 are satisfied implying that the boundary value problem (1)
has at least one solution on IT

χ . The proof is complete. �
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4. Examples

In this section, we provide some examples to illustrate our main results. Consider the following
boundary value problem of sequential q-symetric difference equations

D̃ 1
2

D̃ 3
4
u(t) =

e−1−sin2(πt)|u(t)|
(100 + t)2(1 + |u(t)|) +

1
100e2

(
S 1

3
u
)
(t) +

1
100π2

(
Z 2

5
u
)
(t), t ∈ I10

1
60

,

u (0) =
1
3

u (10) ,
∫ 1

21600

0
[100e + 20 cos2 s]u(s) d̃ 2

3
s = 0,

(19)

where
(

S 1
3
u
)
(t) =

∫ t
0

e−|t−s|u(s)
(t+10)2 d̃ 1

3
s and

(
Z 2

5
u
)
(t) =

∫ t
0

e−2|t−s|u(s)
(t+20)2 d̃ 2

5
s.

Set p = 3
4 , q = 1

2 , r = 2
3 , ω = 2

5 , θ = 1
3 , T = 10, χ = 1

L.C.M(4,2,3,5,3) = 1
60 , η = χ5T = 1

21600 ,

λ = 1
3 , ϕ(s, t) = e−|t−s|

(t+10)2 and φ(s, t) = e−2|t−s|

(t+20)2 ,

(I) If g(t) = 100e + 20 cos2 t. We can show that ϕ0 = 1
100 , φ0 = 1

400 and∣∣∣F (t, u, S 1
3
u, Z 2

3
u
)
− F

(
t, v, S 1

3
v, Z 2

3
v
) ∣∣∣ ≤ 1

1002e
|u− v|+ 1

100e2

∣∣∣S 1
3
u− S 1

3
v
∣∣∣

+
1

100π2

∣∣∣Z 2
5
u− Z 2

5
v
∣∣∣ .

So, (H1) is satisfied with L1 = 1
1002e , L2 = 1

100e2 and L3 = 1
100π2 .

By (H2), we have g = 100e ≤ g(t) ≤ 100e + 20 = G.

Clearly, Λ̂ = 0.0419 and Θ = 1231.332.

Hence, we get [
L1 + T (L2 ϕ0 + L3φ0)

]{
Θ +

pT2

1 + p2

}
= 0.253 < 1.

Therefore, by Theorem 1, problem (19) has a unique solution on I10
1
60

. �

(II) If g(t) = 1003e + 30 cos2 t. We can show that

∣∣∣F (t, u, S 1
3
u, Z 2

3
u
) ∣∣∣ ≤ e−1−sin2πt

(100 + t)2 +
e−t

100e2 ·
t

(t + 10)2 +
e−2t

100π3 ·
t

(t + 20)2

<
1

e(100 + t)2 +
1

100e2+t +
e−2t

100π3 =: µ(t).

So, (H3) is satisfied and (H1) is still satisfied.

By (H2), we have g = 1003e ≤ g(t) ≤ 1003e + 30 = G.

Clearly, Λ̂ = 419.489.

Hence, we get
Θ = 0.123 < 1.

Therefore, by Theorem 3, problem (19) has at least one solution on I10
1
60

. �

5. Conclusions

In this article, we consider a nonlocal q-symmetric integral boundary value problem for sequential
q-symmetric difference-sum equation. We study the condition under which the problem has existence
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and a unique solution by using Banach’s contraction mapping principle. Furthermore, we provide the
condition for the case of at least one solution by using Krasnoselskii’s fixed point theorem. A further
extension of this article is the study of stability, behaviour under perturbation and possible applications
in economics and engineering.
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