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Abstract: Comon’s conjecture on the equality of the rank and the symmetric rank of a symmetric
tensor, and Strassen’s conjecture on the additivity of the rank of tensors are two of the most challenging
and guiding problems in the area of tensor decomposition. We survey the main known results on
these conjectures, and, under suitable bounds on the rank, we prove them, building on classical
techniques used in the case of symmetric tensors, for mixed tensors. Finally, we improve the bound
for Comon’s conjecture given by flattenings by producing new equations for secant varieties of
Veronese and Segre varieties.
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1. Introduction

Let X Ă PN be an irreducible and reduced non-degenerate variety. The rank rankXppqwith respect
to X of a point p P PN is the minimal integer h such that p lies in the linear span of h distinct points of
X. In particular, if Y Ď X we have that rankXppq ď rankYppq.

Since the h-secant variety SechpXq of X is the subvariety of PN obtained as the closure of the
union of all ph´ 1q-planes spanned by h general points of X, for a general point p P SechpXqwe have
rankXppq “ h.

When the ambient projective space is a space parametrizing tensors we enter the area of tensor
decomposition. A tensor rank decomposition expresses a tensor as a linear combination of simpler
tensors. More precisely, given a tensor T, lying in a given tensor space over a field k, a tensor rank-1
decomposition of T is an expression of the form

T “ λ1U1 ` ...` λhUh (1)

where the Ui’s are linearly independent rank one tensors, and λi P k˚. The rank of T is the minimal
positive integer h such that T admits such a decomposition.

Tensor decomposition problems come out naturally in many areas of mathematics and applied
sciences. For instance, in signal processing, numerical linear algebra, computer vision, numerical
analysis, neuroscience, graph analysis, control theory and electrical networks [1–7]. In pure
mathematics tensor decomposition issues arise while studying the additive decompositions of a
general tensor [8–14].

Comon’s conjecture [3], which states the equality of the rank and symmetric rank of a symmetric
tensor, and Strassen’s conjecture on the additivity of the rank of tensors [15] are two of the most
important and guiding problems in the area of tensor decomposition.

Mathematics 2018, 6, 217; doi:10.3390/math6110217 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0002-5309-1001
http://www.mdpi.com/2227-7390/6/11/217?type=check_update&version=1
http://dx.doi.org/10.3390/math6110217
http://www.mdpi.com/journal/mathematics


Mathematics 2018, 6, 217 2 of 13

More precisely, Comon’s conjecture predicts that the rank of a homogeneous polynomial
F P krx0, . . . , xnsd with respect to the Veronese variety Vn

d is equal to its rank with respect to the
Segre variety Sn – pPnqd into which Vn

d is diagonally embedded, that is rankVn
d
pFq “ rankSnpFq.

Strassen’s conjecture was originally stated for triple tensors and then generalized to several
different contexts. For instance, for homogeneous polynomials it says that if F P krx0, . . . , xnsd and
G P kry0, . . . , ymsd are homogeneous polynomials in distinct sets of variables then rankVn`m`1

d
pF`Gq “

rankVn
d
pFq ` rankVm

d
pGq.

In Sections 3 and 4, while surveying the state of the art on Comon’s and Strassen’s conjectures,
we push a bit forward some standard techniques, based on catalecticant matrices and more generally
on flattenings, to extend some results on these conjectures, known in the setting of Veronese and Segre
varieties, for Segre-Veronese and Segre-Grassmann varieties that is to the context of mixed tensors.

In Section 5 we introduce a method to improve a classical result on Comon’s conjecture.
By standard arguments involving catalecticant matrices it is not hard to prove that Comon’s conjecture

holds for the general polynomial in krx0, . . . , xnsd of symmetric rank h as soon as h ă
`n`t d

2 u
n

˘

, see
Proposition 1. We manage to improve this bound looking for equations for the ph´ 1q-secant variety
Sech´1pVn

d q, not coming from catalecticant matrices, that are restrictions to the space of symmetric
tensors of equations of the ph´ 1q-secant variety Sech´1pSnq. We will do so by embedding the space
of degree d polynomials into the space of degree d` 1 polynomials by mapping F to x0F and then
considering suitable catalecticant matrices of x0F rather than those of F itself.

Implementing this method in Macaulay2 we are able to prove for instance that Comon’s conjecture
holds for the general cubic polynomial in n` 1 variables of rank h “ n` 1 as long as n ď 30. Please
note that for cubics the usual flattenings work for h ď n.

2. Notation

Let n “ pn1, . . . , npq and d “ pd1, . . . , dpq be two p-uples of positive integers. Set

d “ d1 ` ¨ ¨ ¨ ` dp, n “ n1 ` ¨ ¨ ¨ ` np, and Npn, dq “
p
ź

i“1

ˆ

ni ` di
ni

˙

Let V1, . . . , Vp be vector spaces of dimensions n1 ` 1 ď n2 ` 1 ď ¨ ¨ ¨ ď np ` 1, and consider
the product

Pn “ PpV˚1 q ˆ ¨ ¨ ¨ ˆ PpV˚p q.

The line bundle
OPnpd1, . . . , dpq “ OPpV˚1 q

pd1qb ¨ ¨ ¨b OPpV˚1 q
pdpq

induces an embedding

σνn
d : PpV˚1 q ˆ ¨ ¨ ¨ ˆ PpV˚p q ÝÑ PpSymd1 V˚1 b ¨ ¨ ¨ b Symdp V˚p q “ PNpn,dq´1,

prv1s, . . . , rvpsq ÞÝÑ rvd1
1 b ¨ ¨ ¨ b v

dp
p s

where vi P Vi. We call the image
SVn

d “ σνn
d pP

nq Ă PNpn,dq´1

a Segre-Veronese variety. It is a smooth variety of dimension n and degree pn1`¨¨¨`npq!
n1!...np ! dn1

1 . . . d
np
p

in PNpn,dq´1.
When p “ 1, SVn

d is a Veronese variety. In this case, we write Vn
d for SVn

d , and νn
d for the Veronese

embedding. When d1 “ ¨ ¨ ¨ “ dp “ 1, SVn
1,...,1 is a Segre variety. In this case, we write Sn for SVn

1,...,1,
and σn for the Segre embedding. Please note that

σνn
d “ σn1 ˝

´

νn1
d1
ˆ ¨ ¨ ¨ ˆ ν

np
dp

¯

,
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where n1 “ pNpn1, d1q ´ 1, . . . , Npnp, dpq ´ 1q.
Similarly, given a p-uple of k-vector spaces pVn1

1 , ..., V
np
p q and p-uple of positive integers d “

pd1, ..., dpqwe may consider the Segre-Plücker embedding

σπn
d : Grpd1, n1q ˆ ¨ ¨ ¨ ˆ Grpdp, npq ÝÑ Pp

Źd1 Vn1
1 b ¨ ¨ ¨ b

Źdp V
np
p q “ PNpn,dq´1,

prH1s, . . . , rHpsq ÞÝÑ rH1 b ¨ ¨ ¨ b Hps

where Npn, dq “
śp

i“1

`ni
di

˘

. We call the image

SGn
d “ σπn

d pGrpd1, n1q ˆ ¨ ¨ ¨ ˆ Grpdp, npqq Ă PNpn,dq

a Segre-Grassmann variety.

2.1. Flattenings

Let V1, ..., Vp be k-vector spaces of finite dimension, and consider the tensor product V1 b ...b
Vp “ pVa1 b ...bVasq b pVb1 b ...bVbp´sq “ VA bVB with AY B “ t1, ..., pu, B “ Ac. Then we may
interpret a tensor

T P V1 b ...bVp “ VA bVB

as a linear map rT : V˚A Ñ VAc . Clearly, if the rank of T is at most r then the rank of rT is at most r as well.
Indeed, a decomposition of T as a linear combination of r rank one tensors yields a linear subspace of
VAc , generated by the corresponding rank one tensors, containing rTpV˚Aq Ď VAc . The matrix associated
with the linear map rT is called an pA, Bq-flattening of T.

In the case of mixed tensors we can consider the embedding

Symd1 V1 b ...b Symdp Vp ãÑ VA bVB

where VA “ Syma1 V1 b ... b Symap Vp, VB “ Symb1 V1 b ... b Symbp Vp, with di “ ai ` bi for any
i “ 1, ..., p. In particular, if n “ 1 we may interpret a tensor F P Symd1 V1 as a degree d1 homogeneous
polynomial on PpV˚1 q. In this case, the matrix associated with the linear map rF : V˚A Ñ VB is nothing
but the a1-th catalecticant matrix of F, that is the matrix whose rows are the coefficient of the partial
derivatives of order a1 of F.

Similarly, by considering the inclusion

d1
ľ

V1 b ...b
dp
ľ

Vp ãÑ VA bVB

where VA “
Źa1 V1 b ...b

Źap Vp, VB “
Źb1 V1 b ...b

Źbp Vp, with di “ ai ` bi for any i “ 1, ..., p, we
get the so called skew-flattenings. We refer to [16] for details on the subject.

Remark 1. The partial derivatives of an homogeneous polynomials are particular flattenings. The partial
derivatives of a polynomial F P krx0, ..., xnsd are

`n`s
n
˘

homogeneous polynomials of degree d´ s spanning a
linear space HBs F Ď Ppkrx0, ..., xnsd´sq.

If F P krx0, ..., xnsd admits a decomposition as in (1) then F P SechpVn
d q, and conversely a general

F P SechpVn
d q can be written as in (1). If F “ λ1Ld

1 ` ...` λhLd
h is a decomposition then the partial derivatives

of order s of F can be decomposed as linear combinations of Ld´s
1 , ..., Ld´s

h as well. Therefore, the linear space
A

Ld´s
1 , . . . , Ld´s

h

E

contains HBs F.
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2.2. Rank and Border Rank

Let X Ă PN be an irreducible and reduced non-degenerate variety. We define the rank rankXppq
with respect to X of a point p P PN as the minimal integer h such that there exist h points in linear
general position x1, . . . , xh P X with p P xx1, . . . , xhy. Clearly, if Y Ď X we have that

rankXppq ď rankYppq (2)

The border rank rankXppq of p P PN with respect to X is the smallest integer r ą 0 such
that p is in the Zariski closure of the set of points q P PN such that rankXpqq “ r. In particular
rankXppq ď rankXppq.

Recall that given an irreducible and reduced non-degenerate variety X Ă PN , and a positive
integer h ď N the h-secant variety SechpXq of X is the subvariety of PN obtained as the Zariski closure
of the union of all ph´ 1q-planes spanned by h general points of X.

In other words rankXppq is computed by the smallest secant variety SechpXq containing p P PN .
Now, let Y, Z be subvarieties of an irreducible projective variety X Ă PN , spanning two linear

subspaces PNY :“ xYy ,PNZ :“ xZy Ď PN . Fix two points pY P PNY , pZ P PNZ , and consider a point
p P xpY, pZy. Clearly

rankXppq ď rankYppYq ` rankZppZq (3)

3. Comon’s Conjecture

It is natural to ask under which assumptions (2) is indeed an equality. Consider the Segre-Veronese
embedding σνn

d : PpV˚1 q ˆ ¨ ¨ ¨ ˆ PpV˚p q Ñ PpSymd1 V˚1 b ¨ ¨ ¨ b Symdp V˚p q “ PNpn,dq´1 with
V1 – ¨ ¨ ¨ – Vp – V k-vector spaces of dimension n` 1. Its composition with the diagonal embedding
i : PpV˚q Ñ PpV˚1 q ˆ ¨ ¨ ¨ ˆ PpV˚p q is the Veronese embedding of νn

d of degree d “ d1 ` ¨ ¨ ¨ ` dp.
Let Vn

d Ď SVn
d be the corresponding Veronese variety. We will denote by Πn,d the linear span of Vn

d

in PNpn,dq´1.
In the notations of Section 2.2 set X “ SVn

d and Y “ Vn
d . For any symmetric tensor T P Πn,d

we may consider its symmetric rank srkpTq :“ rankVn
d
pTq and its rank rankpTq :“ rankSVn

d
pTq as a

mixed tensor. Comon’s conjecture predicts that in this particular setting the inequality (2) is indeed an
equality [3].

Conjecture 1 (Comon’s). Let T be a symmetric tensor. Then rankpTq “ srkpTq.

Conjecture 1 has been generalized in several directions for complex border rank, real rank and
real border rank, see Section 5.7.2 in [16] for a full overview.

Please note that when d “ 2 Comon’s conjecture is true. Indeed, SechpSnq is cut out by the size
ph` 1q ˆ ph` 1qminors of a general square matrix and SechpVn

2 q is cut out by the size ph` 1q ˆ ph` 1q
minors of a general symmetric matrix, that is SechpVn

2 q “ SechpSnq XΠn,2.
Conjecture 1 has been proved in several special cases. For instance, when the symmetric rank

is at most two [3], when the rank is less than or equal to the order [17], for tensors belonging to
tangential varieties to Veronese varieties [18], for tensors in C2 b Cn b Cn [19], when the rank is
at most the flattening rank plus one [20], for the so called Coppersmith–Winograd tensors [21],
for symmetric tensors in C4bC4bC4 and also for symmetric tensors of symmetric rank at most seven
in Cn bCn bCn [22].

On the other hand, a counter-example to Comon’s conjecture has recently been found by
Y. Shitov [23]. The counter-example consists of a symmetric tensor T in C800 ˆC800 ˆC800 which can
be written as a sum of 903 rank one tensors but not as a sum of 903 symmetric rank one tensors. It is
important to stress that for this tensor T rank and border rank are quite different. Comon’s conjecture
for border ranks is still completely open (Problem 25 in [23]).
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Even though it has been recently proven false in full generality, we believe that Comon’s conjecture
is true for a general symmetric tensor, perhaps it is even true for those tensor for which rank T “ rank T.

In what follows we use simple arguments based on flattenings to give sufficient conditions for
Comon’s conjecture, recovering a known result, and its skew-symmetric analogue.

Lemma 1. The tensors T P SechpSV
n
dq such that dimprTpV˚Aqq ď h´ 1 for a given flattening rT form a proper

closed subset of SechpSV
n
dq. Furthermore, the same result holds if we replace the Segre-Veronese variety SVn

d
with the Segre-Grassmann variety SGn

d .

Proof. Let T P SechpSV
n
dq be a general point. Assume that dimprTpV˚Aqq ď h´ 1. This condition forces

the pA, Bq-flattening matrix to have rank at most h´ 1. On the other hand, by Proposition 4.1 in [24]
these minors do not vanish on SechpSV

n
dq, and therefore define a proper closed subset of SechpSV

n
dq.

In the Segre-Grassmann setting we argue in the same way by using skew-flattenings.

Proposition 1. [25] For any integer h ă
`n`t d

2 u
n

˘

there exists an open subset Uh Ď SecpVd
nq such that for any

T P Uh the rank and the symmetric rank of T coincide, that is

rankpTq “ srkpTq

Proof. First of all, note that we always have rankpTq ď srkpTq. Furthermore, Section 2.1 yields that for
any pA, Bq-flattening rT : V˚A Ñ VB the inequality rankpTq ě dimprTpV˚Aqq holds. Since T is symmetric
and its catalecticant matrices are particular flattenings we get that rankpTq ě dimpHBsTq for any s ě 0.

Now, for a general T P SechpVn
d q we have srkpTq “ h, and if h ă

`n`s
n
˘

, where s “ t d
2 u,

then Lemma 1 yields dimpHBsTq “ h. Therefore, under these conditions we have the following
chain of inequalities

dimpHBsTq ď rankpTq ď srkpTq “ dimpHBsTq

and hence rankpTq “ srkpTq.

Now, consider the Segre-Plücker embedding PpV1q ˆ . . .ˆ PpVpq Ñ Pp
Źd1 V1 b ¨ ¨ ¨ b

Źdp Vpq “

PNpn,dq´1 with V1 – . . . – Vp – V k-vector spaces of dimension n`1. Its composition with the diagonal
embedding i : PpVq Ñ PpV1q ˆ ¨ ¨ ¨ ˆPpVpq is the Plücker embedding of Grpd, nqwith d “ d1` . . .` dp.
Let Grpd, nq Ď SGn

d be the corresponding Grassmannian and let us denote by Πn,d its linear span

in PNpn,dq´1.
For any skew-symmetric tensor T P Πn,d we may consider its skew rank skrkpTq that is its rank

with respect to the Grassmannian Grpd, nq Ď Πn,d, and its rank rankpTq as a mixed tensor. Playing the
same game as in Proposition 1 we have the following.

Proposition 2. For any integer h ă
` n

t d
2 u

˘

there exists an open subset Uh Ď SechpGrpd, nqq such that for any
T P Uh the rank and the skew rank of T coincide, that is

rankpTq “ skrkpTq

Proof. As before for any tensor T we have rankpTq ď skrkpTq. For any pA, Bq-skew-flattening rT :
V˚A Ñ VB we have skrkpTq ě dimprTpV˚Aqq. Furthermore, since rT is in particular a flattening also the
inequality rankpTq ě dimprTpV˚Aqq holds.

Now, for a general T P SechpGrpd, nqq we have skrkpTq “ h, and if h ă
`n

s
˘

, where s “ t d
2 u,

Lemma 1 yields skrkpTq “ dimprTspV˚Aqq, where rTs is the skew-flattening corresponding to the partition
ps, d´ sq of d. Therefore, we deduce that

dimprTspV˚Aqq ď rankpTq ď skrkpTq “ dimprTspV˚Aqq
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and hence rankpTq “ skrkpTq.

Remark 2. Propositions 1 and 2 suggest that whenever we are able to write determinantal equations for secant
varieties we are able to verify Comon’s conjecture. We conclude this section suggesting a possible way to
improve the range where the general Comon’s conjecture holds giving a conjectural way to produce determinantal
equations for some secant varieties.

Set n “ pn, . . . , nq, pd` 1q-times, n1 “ pn, . . . , nq, d-times, and consider the corresponding Segre varieties
X :“ Sn, X1 :“ Sn1 and Veronese varieties Y “ Vn

d`1, Y1 :“ Vn
d . Fix the polynomial xd`1

0 P Y and let Π be
the linear space spanned by the polynomials of the form x0F, where F is a polynomial of degree d. This allow us
to see Y1 Ď Π. Please note that polynomials of the form x0Ld

1 lie in the tangent space of Y at Ld`1
1 , and therefore

rankYpx0Lbdq “ 2.
Hence for a polynomial F of degree d we have rankYpx0Fq ď 2 rankY1pFq. Our aim is to understand when

the equality holds.
We may mimic the same construction for the Segre varieties X and X1, and use determinantal equations

for the secant varieties of X1 to give determinantal equations of the secant varieties of X and henceforth conclude
Comon’s conjecture. In particular, as soon as d is odd and d ă n, this produces new determinantal equations for

SechpX1q and SechpY1q with 2h ă
`n` d`1

2
n

˘

. Therefore, this would give new cases in which the general Comon’s
conjecture holds. Unfortunately, we are only able to successfully implement this procedure in very special cases,
see Section 5.

4. Strassen’s Conjecture

Another natural problem consists in giving hypotheses under which in Equation (3) equality
holds. Consider the triple Segre embedding σn : PpV˚1 q ˆ PpV˚2 q ˆ PpV˚3 q “ Pa ˆ Pb ˆ Pc Ñ PpV˚1 b
V˚2 b V˚1 q “ PNpn,dq´1, and let Sn be the corresponding Segre variety. Now, take complementary
subspaces Pa1 ,Pa2 Ă Pa, Pb1 ,Pb2 Ă Pb, Pc1 ,Pc2 Ă Pc, and let Spa1,b1,c1q,Spa2,b2,c2q be the Segre varieties
associated respectively to Pa1 ˆ Pb1 ˆ Pc1 and Pa2 ˆ Pb2 ˆ Pc2 .

In the notations of Section 2.2 set X “ Sn, Y “ Spa1,b1,c1q and Z “ Spa1,b1,c1q. Strassen’s conjecture
states that the additivity of the rank holds for triple tensors, or in onther words that in this setting the
inequality (3) is indeed an equality [15].

Conjecture 2 (Strassen’s). In the above notation let T1 P
A

Spa1,b1,c1q
E

, T2 P
A

Spa2,b2,c2q
E

be two tensors.
Then rankpT1 ‘ T2q “ rankpT1q ` rankpT2q.

Even though Conjecture 2 was originally stated in the context of triple tensors that is bilinear
forms, with particular attention to the complexity of matrix multiplication, several generalizations are
immediate. For instance, we could ask the same question for higher order tensors, symmetric tensors,
mixed tensors and skew-symmetric tensors. It is also natural to ask for the analogue of Conjecture 2
for border rank. This has been answered negatively [26].

Conjecture 2 and its analogues have been proven when either T1 or T2 has dimension at most two,
when rankpT1q can be determined by the so called substitution method [21], when dimpV1q “ 2 both
for the rank and the border rank [27], when T1, T2 are symmetric that is homogeneous polynomials in
disjoint sets of variables, either T1, T2 is a power, or both T1 and T2 have two variables, or either T1 or
T2 has small rank [28], and also for other classes of homogeneous polynomials [29,30].

As for Comon’s conjecture a counterexample to Strassen’s conjecture has recently been given by Y.
Shitov [31]. In this case Y. Shitov proved that over any infinite field there exist tensors T1, T2 such that
the inequality in Conjecture 2 is strict.

In what follows, we give sufficient conditions for Strassen’s conjecture, recovering a known result,
and for its mixed and skew-symmetric analogues.
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Proposition 3. [25] Let V1, V2 be k-vector spaces of dimensions n` 1, m` 1, and consider V “ V1 ‘V2. Let
F P SymdpV1q Ă SymdpVq and G P SymdpV2q Ă SymdpVq be two homogeneous polynomials. If there exists
an integer s ą 0 such that

dimpHBs Fq “ srkpFq, dimpHBsGq “ srkpGq

then srkpF` Gq “ srkpFq ` srkpGq.

Proof. Clearly, srkpF`Gq ď srkpFq ` srkpGq holds in general. On the other hand, our hypothesis yields

srkpFq ` srkpGq “ dimpHBs Fq ` dimpHBs Fq “ dimpHBs F`Gq ď srkpF` Gq

where the last inequality follows from Remark 1.

Remark 3. The argument used in the proof of Proposition 3 works for F P PNpn,dq general only if for the generic

rank we have t

`n`d
d
˘

n`1 u ď
`n`t d

2 u
n

˘

. For instance, when n “ 3, d “ 6 the generic rank is 21 while the maximal
dimension of the spaces spanned by partial derivatives is 20.

Proposition 4. Let V1, . . . , Vp and W1, . . . , Wp be k-vector spaces of dimension n1 ` 1, . . . , np ` 1 and m1 `

1, . . . , mp`1 respectively. Consider Ui “ Vi‘Wi for every 1 ď i ď p. Let T1 P Symd1 V1b¨ ¨ ¨bSymdp Vp Ă

Symd1 U1 b ¨ ¨ ¨ b Symdp Up and T2 P Symd1 W1 b ¨ ¨ ¨ b Symdp Wp Ă Symd1 U1 b ¨ ¨ ¨ b Symdp Up be two
mixed tensors.

If for any i P t1, ..., pu there exists a pair pai, biq with ai ` bi “ di and pA, Bq-flattenings rT1 : V˚A Ñ VB,
rT2 : V˚A Ñ VB as in (Section 2.1) such that

dimprT1pV˚Aqq “ rankpT1q, dimprT2pV˚Aqq “ rankpT2q

then rankpT1 ` T2q “ rankpT1q ` rankpT2q.

Proof. Clearly, rankpT1 ` T2q ď rankpT1q ` rankpT2q. On the other hand, our hypothesis yields

rankpT1q ` rankpT2q “ dimprT1pV˚Aqq ` dimprT2pV˚Aqq “ dimp ČT1 ` T2pV˚Aqq ď rankpT1 ` T2q

where ČT1 ` T2 denotes the pA, Bq-flattening of the mixed tensor T1 ` T2.

Arguing as in the proof of Proposition 4 with skew-symmetric flattenings we have an analogous
statement in the Segre-Grassmann setting.

Proposition 5. Let V1, . . . , Vp and W1, . . . , Wp be k-vector spaces of dimension n1 ` 1, . . . , np ` 1 and m1 `

1, . . . , mp ` 1 respectively. Consider Ui “ Vi ‘Wi for every 1 ď i ď p, and let T1 P
Źd1 V1b ¨ ¨ ¨ b

Źdp Vp Ă
Źd1 U1b ¨ ¨ ¨b

Źdp Up and T2 P
Źd1 W1b ¨ ¨ ¨b

Źdp Wp Ă
Źdp U1b ¨ ¨ ¨b

Źdp Up be two skew-symmetric
tensors with di ď mintni ` 1, mi ` 1u.

If for any i P t1, . . . , pu there exists a pair pai, biq with ai ` bi “ di and pA, Bq-skew-flattenings rT1 :
V˚A Ñ VB, rT2 : V˚A Ñ VB as in (Section 2.1) such that

dimprT1pV˚Aqq “ rankpT1q, dimprT2pV˚Aqq “ rankpT2q

then rankpT1 ` T2q “ rankpT1q ` rankpT2q.

5. On the Rank of x0F

In this section, building on Remark 2, we present new cases in which Comon’s conjecture holds.
Recall, that for a smooth point x P X, the a-osculating space Ta

xX of X at x is roughly the smaller linear
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subspace locally approximating X up to order a at x, and the a-osculating variety TaX of X is defined as
the closure of the union of all the osculating spaces

TaX “
ď

xPX

Ta
xX

For any 1 ď a ď d´ 1 the osculating space Ta
rLds

Vn
d of order a at the point rLds P Vd can be written as

Ta
rLds

Vn
d “

A

Ld´aF | F P krx0, . . . , xnsa

E

Ď PN

Equivalently, Ta
rLds

Vn
d is the space of homogeneous polynomials whose derivatives of order less

than or equal to a in the direction given by the linear form L vanish. Please note that dimpTa
rLds

Vn
d q “

`n`a
n
˘

´ 1 and Tb
rLds

Vn
d Ď Ta

rLds
Vn

d for any b ď a. Moreover, for any 1 ď a ď d and rLds P Vn
d we can

embed a copy of Vn
a into the osculating space Ta

rLds
Vn

d by considering

Vn
a “ tL

d´a Ma | M P krx0, . . . , xns1u Ď Ta
rLds

Vn
d

Remark 4. Let us expand the ideas in Remark 2. We can embed

Vn
d “ tx0Ld | L P krx0, . . . , xns1u Ď Td

rxd
0s
Vn

d`1

and Remark 2 yields that
SechpVn

d q Ď Sec2hpVn
d`1q XTd

rLd`1s
Vn

d`1 (4)

This embedding extends to an embedding at the level of Segre varieties, and, in the notation of Remark 2,
we have that SechpSn1q Ď Sec2hpSnq.

Assume that for a polynomial F P SechpVn
d q we have F P Sech´1pSn1q. Then x0F P Sec2h´2pSnq. Now,

if we find a determinantal equation of Sec2h´2pVn
d`1q coming as the restriction to Π, the space of symmetric

tensors, of a determinantal equation of Sec2h´2pSnq, and not vanishing at x0F then x0F R Sec2h´2pSnq and
hence F R Sech´1pSn1q proving Comon’s conjecture for F.

This will be the leading idea to keep in mind in what follows. The determinantal equations involved will
always come from minors of suitable catalecticant matrices, that can be therefore seen as the restriction to Π of
determinantal equations for the secants of the Segre coming from non symmetric flattenings.

It is easy to give examples where the inequality (4) is strict. When n “ 1 the generic rank is
gd “ r d`1

2 s. Then for d odd we have gd “ gd´1 while for d even we have gd “ gd´1 ` 1. Hence
rankVd x0F ă 2 rankVd´1

F if 2 rankVd´1
F ą gd

2 , where Vd :“ V1
d is the rational normal curve. It is

natural to ask if the inequality is indeed an equality as long as the rank is subgeneric. In the case n “ 1
we have the following result.

Proposition 6. Let Vd :“ V1
d be the degree d rational normal curve. If 2h ă gd`1 then there does not exist

kh ą 0 such that SechpVdq Ď Sec2h´kh
pVd`1q XTd

rxd`1s
Vd`1.

Proof. Clearly, it is enough to prove the statement for kh “ 1. Let p P SechpVdq be a general point.
Then p P

A

rx0Ld
1s, . . . , rx0Ld

hs
E

with Li general linear forms. In particular

p P H :“
A

T
rLd`1

1 s
Vd`1, . . . ,T

rLd`1
h s

Vd`1

E

Please note that dimpHq “ 2h´ 1. Now, assume that p is contained also in Sec2h´1pVd`1q. Then
there exists a linear subspace H1 Ă Pd`1 of dimension 2h´ 2 passing through p intersecting Vd`1 at
2h´ 1 points q1, . . . , qr counted with multiplicity. Let qi1 , . . . , qir be the points among the qi coinciding
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with some of the rLd`1
i s and such that the intersection multiplicity of H1 and Vd`1 at qij is one, and

qj1 , . . . , qjr be the points among the qi coinciding with some of the rLd`1
i s and such that the intersection

multiplicity of H1 and Vd at qjk is greater that or equal to two.
Set Π :“

@

H, H1
D

, then dimpΠq “ 2h´ 1` 2h´ 2´ ir ´ 2jr and Π intersects Vd`1 at 2h`p2h´ 1´
ir ´ 2jrq points counted with multiplicity. Consider general points b1, . . . , bs P Vd`1 with s “ ir ` 2jr,
and the linear space Π1 “ xΠ, b1, . . . , bsy. Therefore, dimpΠ1q “ 4h´ 3 and Π1 intersects Vd`1 at 4h´ 1
points counted with multiplicity. Since 2h ď d`3

2 adding enough general points to Π1 we may construct
a hyperplane in Pd`1 intersecting Vd`1 at d` 2 points counted with multiplicity, a contradiction.

Proposition 6 can be applied to get results on the rank of a special class of matrices called
Hankel matrices.

Let F “ Z0xd
0 ` . . .`

` d
d´i

˘

Zixd´i
0 xi

1 ` . . .` Zdxd
1 be a binary form and consider rZ0, . . . , Zds as

homogeneous coordinates on Ppkrx0, x1sdq. Furthermore, consider the matrices

M2n “

¨

˚

˝

Z0 . . . Zn
...

. . .
...

Zn . . . Zd

˛

‹

‚

, M2n`1 “

¨

˚

˝

Z0 . . . Zn
...

. . .
...

Zn`1 . . . Zd

˛

‹

‚

It is well known that the ideal of SechpVdq is cut out by the minors of Md of size ph` 1qˆ ph` 1q [4].
Now, consider a polynomial F P krx0, x1sd with homogeneous coordinates rZ0, . . . , Zds. Then

F1 :“ x0F P krx0, x1sd`1 has homogeneous coordinates rZ10, . . . , Z1d`1swith

Z1i “
d` 1´ i

d` 1
Zi

To determine the rank of F1 we have to relate the rank of the matrices

N2n “

¨

˚

˚

˚

˚

˚

˚

˝

Z0
d

d`1 Z1 . . . d`1´n
d`1 Zn

d
d`1 Z1 . . . . . . d´n

d`1 Zn`1
...

. . . . . .
...

d´n`2
d`1 Zn´1 . . . . . . 1

d`1 Zd
d´n`1

d`1 Zn . . . 1
d`1 Zd 0

˛

‹

‹

‹

‹

‹

‹

‚

N2n`1 “

¨

˚

˚

˚

˚

˚

˚

˝

Z0
d

d`1 Z1 . . . d´n
d`1 Zn

d
d`1 Z1 . . . . . . d´n´1

d`1 Zn`2
...

. . . . . .
...

d´n`2
d`1 Zn . . . . . . 1

d`1 Zd
d´n`1

d`1 Zn`1 . . . 1
d`1 Zd 0

˛

‹

‹

‹

‹

‹

‹

‚

with the rank of Md.

Definition 1. A matrix A “ pAi,jq P Mpa, bq such that Ai,j “ Ah,k whenever i ` j “ h ` k is called a
Hankel matrix.

In particular all the matrices of the form Md and Nd considered above are Hankel matrices.
Let Mpa, bq be the vector space of aˆ b matrices with coefficients in the base field k. For any

h ď minta, bu let RankrpMpa, bqq Ď Mpa, bq be the subvariety consisting of all matrices of rank at most h.
Now, consider the map β : N ÝÑ N ˆ N given by βp2nq “ pn ` 1, n ` 1q and βp2n ` 1q “

pn` 2, n` 1q. For any d ě 1 we can view the subspace Hd Ď Mpβpdqq formed by matrices of the form
Md as the subspace of Hankel matrices. Now, given any linear morphism f : Mpa, bq Ñ Mpc, dq we
can ask if for some s ď mintc, duwe have f pRankhpMpa, bqqq Ď RankspMpc, dqq.
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Corollary 1. Consider the linear morphism

αd : Mpβpdqq ÝÑ Mpβpd` 1qq

pAi,jq ÞÝÑ

´

d´pi`j´3q
d`1 Ai,j

¯

Then αdpHdq Ď Hd`1 and αdpRankhpMpβpdqq XMdqq Ď Rank2hpMpβpd` 1qqq XMd`1.

Proof. Since αdpAi,jq “ αdpAh,kq when i` j “ h` k we have that αdpHdq Ď Hd`1. By Proposition 6
RankhpMpβpdqq X Hd “ SechpVdq, and by construction αdpMdq is the linear change of coordinates
mapping a binary form F P krx0, x1sd to F1 “ x0F P krx0, x1sd`1.

Since SechpVdq Ď Sec2hpVd`1q XTd
rxd`1s

Vd`1, if an hˆ h minor of a general matrix B in Mpβpdqq
does not vanish, under the assumption that all the ph` 1q ˆ ph` 1qminors of B vanish, then there is a
2hˆ 2h minor of αdpBq that does not vanish.

When n ě 2 we are able to determine, via Macaulay2 [32] aided methods, the rank of x0F in some
special cases.

i pn, dq “ p2, 2q. The variety Sec3pV2
3 q is the hypersurface in P9 cut out by the Aronhold invariant,

see for instance (Section 1.1 in [4]). With a Macaulay2 computation we prove that if F P Sec2pV2
2 q

is general then the Aronhold invariant does not vanish at x0F, hence rank x0F “ 2 rank F.
ii pn, dq “ p2, 3q. The varieties Sec5pV2

4 q and Sec3pV2
3 q are both hypersurfaces, given respectively

by the determinant of the catalecticant matrix of second partial derivatives and the Aronhold
invariant (Section 1.1 in [4]). With Macaulay2 we prove that the determinant of the second
catalecticant matrix does not vanish at x0F for F P Sec3pV2

3 q general, hence rank x0F “ 2 rank F.
iii pn, dq “ p3, 3q. The secant variety Sec9pV3

4 q is the hypersurface cut out by the second catalecticant
matrix (Section 1.1 in [4]) while Sec5pV3

3 q is the entire osculating space. A Macaulay2 computation
shows that T3

rx4
0s
V3

4 Ď Sec9pV3
4 q. This proves that rank x0F ă 2 rank F, for F general.

iv pn, dq “ p4, 3q. In this case Sec8pV4
3 q “ T3

rx4
0s
V4

4 and Sec14pV4
4 q is given by the determinant

of the second catalecticant matrix (Section 1.1 in [4]). Again using Macaulay2 we show that
T3
rx4

0s
V4

4 Ď Sec14pV4
4 q. This proves that rank x0F ă 2 rank F, for F general.

Corollary 2. For the osculating varieties T3V3
4 and T3V4

4 we have

T3V3
4 Ď Sec9pV3

4 q, T3V4
4 Ď Sec14pV4

4 q

Proof. The action of PGLpn`1q on Pn extends naturally to an action on PNpn,dq stabilizing Vn
d and more

generally the secant varieties SechpVn
d q. Since this action is transitive on Vn

d we have Ta
rxd

0s
Vn

d Ď SechpVn
d q

if and only if Ta
rLds

Vn
d Ď SechVn

d for any point rLds P Vn
d that is TaVn

d Ď SechVn
d . Finally, we conclude by

applying iii and iv in the list above.

Macaulay2 Implementation

In the Macaulay2 file Comon-1.0.m2 we provide a function called Comon which operates as follows:

- Comon takes in input three natural numbers n, d, h;

- if h ă
`n`t d

2 u
n

˘

then the function returns that Comon’s conjecture holds for the general degree d
polynomial in n` 1 variables of rank h by the usual flattenings method in Proposition 1. If not,
and d is even then it returns that the method does not apply;

- if d is odd and
`n`k

n
˘

ă 2
`n`k´1

n
˘

, where k “ t d`1
2 u, then again it returns that the method does

not apply;
- if d is odd,

`n`k
n
˘

ě 2
`n`k´1

n
˘

and 2h´ 1 ą
`n`k

n
˘

then it returns that the method does not apply
since 2h´ 2 must be smaller than the number of order k partial derivatives;
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- if d is odd,
`n`k

n
˘

ě 2
`n`k´1

n
˘

and 2h´ 1 ď
`n`k

n
˘

then Comon, in the spirit of Remark 4, produces a
polynomial of the form

F “
h
ÿ

i“1

pai,0x0 ` ¨ ¨ ¨ ` ai,nxnq
d

then substitutes random rational values to the ai,j, computes the polynomial G “ x0F, the
catalecticant matrix D of order k partial derivatives of G, extracts the most up left 2h´ 1ˆ 2h´ 1
minor P of D, and compute the determinant detpPq of P;

- if detpPq “ 0 then Comon returns that the method does not apply, otherwise it returns that Comon’s
conjecture holds for the general degree d polynomial in n` 1 variables of rank h.

Please note that since the function random is involved Comon may return that the method does not
apply even though it does. Clearly, this event is extremely unlikely. Thanks to this function we are
able to prove that Comon’s conjecture holds in some new cases that are not covered by Proposition 1.
Since the case n “ 1 is covered by Proposition 6 in the following we assume that n ě 2.

Theorem 1. Assume n ě 2 and set h “
`n`t d

2 u
n

˘

. Then Comon’s conjecture holds for the general degree d
homogeneous polynomial in n` 1 variables of rank h in the following cases:

- d “ 3 and 2 ď n ď 30;
- d “ 5 and 3 ď n ď 8;
- d “ 7 and n “ 4.

Proof. The proof is based on Macaualy2 computations using the function Comon exactly as shown in
Example 1 below.

Example 1. We apply the function Comon in a few interesting cases:

Macaulay2, version 1.12
with packages: ConwayPolynomials, Elimination, IntegralClosure, InverseSystems,
LLLBases, PrimaryDecomposition, ReesAlgebra, TangentCone
i1 : loadPackage "Comon-1.0.m2";
i2 : Comon(5,3,4)
Lowest rank for which the usual flattenings method does not work = 6
o2 = Comon’s conjecture holds for the general degree 3 homogeneous polynomial
in 6 variables of rank 4 by the usual flattenings method
i3 : Comon(5,3,6)
Lowest rank for which the usual flattenings method does not work = 6
o3 = Comon’s conjecture holds for the general degree 3 homogeneous polynomial
in 6 variables of rank 6
i4 : Comon(5,3,7)
Lowest rank for which the usual flattenings method does not work = 6
o4 = The method does not apply --- The determinant vanishes
i5 : Comon(5,5,21)
Lowest rank for which the usual flattenings method does not work = 21
o5 = Comon’s conjecture holds for the general degree 5 homogeneous polynomial
in 6 variables of rank 21
i6 : Comon(4,7,35)
Lowest rank for which the usual flattenings method does not work = 35
o6 = Comon’s conjecture holds for the general degree 7 homogeneous polynomial
in 5 variables of rank 35
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