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Abstract: Using a theorem of Ulam and Hyers, we will prove the Hyers-Ulam stability of
two-dimensional Lagrange’s mean value points (7, ) which satisfy the equation, f(u,v) — f(p,q) =
(u—p)fe(n,¢)+ (v —q)fy(n,¢), where (p,q) and (u,v) are distinct points in the plane. Moreover,
we introduce an efficient algorithm for applying our main result in practical use.
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1. Introduction

The stability problem for functional equations or differential equations began with the well-known
question of Ulam [1]:

Let Gy and Gy be a group and a metric group with a metric d(-, -), respectively. Given ¢ > 0, does there
exist a § > 0 such that if a function h : Gy — G, satisfies the inequality d (h(xy), h(x)h(y)) < &
forall x,y € Gy, then there exists a homomorphism H : Gy — Gy with d(h(x), H(x)) < ¢ for all
x € Gqy?

In short, the Ulam’s question states as follows: Under what conditions does there exist an additive
function near an approximately additive function?

In 1941, Hyers [2] gave a partial solution to the question of Ulam under the assumption that
relevant functions are defined on Banach spaces.

Theorem 1 (Hyers [2]). Given § > 0, assume that f : E; — Ej is a function between Banach spaces such that

If(x+y) = f(x) = fW)l <6

forall x,y € Eq. Then the limit

A(x) := lim 1 (2"x)

n—oo 2N

exists for each x € Ey and A : Ey — E, is the unique additive function such that
1f(x) = A(x)| <6
forany x € Ey.

Based on Theorem 1, we say that the Cauchy additive functional equation, f(x +y) = f(x)+ f(y),
has (or satisfies) the Hyers-Ulam stability or it is stable in the sense of Hyers and Ulam. Since then, the
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stability problems for several functional equations and differential equations have been extensively
investigated by many mathematicians (see [3-15] and the references therein).

Let f : R — R be a function with continuous partial derivatives fx and f, and let L be the
line segment joining the distinct points (p,q) and (u,v) in R2. If a point (1, ¢) on the line segment L
satisfies the equation

flu,0) = f(p,q) = (u—p)fx(n,8) + (v —9)fy(1,8),

then (7, ) is called a two-dimensional Lagrange’s mean value point of f in L.

In Section 3, we prove the Hyers-Ulam stability of two-dimensional Lagrange’s mean value points.
The main result of this paper is an extension and a generalization of the previous work [16] (Theorem
2.2) (or see Theorem 4 below). Moreover, we introduce an efficient method for applying our main
theorem (Theorem 6) in the practical use.

2. Preliminaries

The concept of Hyers-Ulam stability can be applied to the case of other mathematical objects.
Ulam and Hyers [17] seem to be the first mathematicians who applied the concept of Hyers-Ulam
stability to differential expressions.

Theorem 2 (Ulam and Hyers [17]). Assume that f : R — R is n times differentiable in a neighborhood N of
a point tg and ) (tg) = 0and f(")(t) changes sign at to. For any e > 0, there corresponds a § > 0 such that
for every function g : R — R which is n times differentiable in N and satisfies |f(t) — g(t)| < d forallt € N,
there exists a point t; € N such that g (t;) = 0 and |t; — to| < e.

Given an € > 0, if we choose a sufficiently small 6 > 0, Theorem 2 would certainly be true but
the choice of sufficiently small 6 imposes a constraint on practical use of this theorem. Indeed, we are
interested in choosing the J as large as possible. Therefore, we introduce an algorithm for the choice of
¢ strongly based on the proof of ([17], Theorem 1).

Remark 1. Assume that € and t be the quantities given in Theorem 2. The following steps provide us with an
efficient method for choosing the o:

(i)  eis chosen less than the radius of N;

(ii) we choose ty, t3 and w such that |t; —to| < 5, [t3 —to| < 5,0 < a < &, and Ajf(t2)Ayf(t3) <O,
where A f(t) = Aa{ AL f (1)} and A f(t) = f(t+a) — f(t);

(iii) we choose the & as large as possible with 0 < & < rnin{ A |ALF(t2)], 5 |ALf (t5)] }

In 1958, Flett [18] proved a variant of Lagrange’s mean value theorem: If a function f : [a,b] —
R is continuously differentiable and f'(a) = f’(b), then there exists a point € (a,b) such that

fOn) = fa) = f' () (n —a).

A similar problem as the Ulam’s question can be formulated for the mean value points:

If a function f has a mean value point  and g is a function quite near to f, does g have a mean value
point near y?

Indeed, Das, Riedel and Sahoo [19] examined the stability problem for Flett's mean value points.
Unfortunately, there were some errors in the proof of the main theorem of [19]. In 2009, Lee, Xu
and Ye [20] proved the Hyers-Ulam stability of the Sahoo-Riedel’s points. We remind that for a
differentiable function f : [2,b] — R, a point 57 € (a,b) is called a Sahoo-Riedel’s point of f in (a,b)
provided 7 satisfies f (1) — f(a) = f'(n)(y —a) — Jﬂ(;()biij;)(a)(iy — a)2. Moreover, they obtained the

following theorem concerning the stability of Flett’s points as a corollary.



Mathematics 2018, 6, 216 30f8

Theorem 3 (Lee etal. [20]). Assume that f,h : [a,b] — R are differentiable functions and 1 is a Sahoo-Riedel’s
point of f in (a,b). If f is twice differentiable at n and

2(f(n) = f(a))

fHOn) = a) = 2f () + == —

1) 4o,
then for any € > 0 and any neighborhood N C (a, b) of 1, there exists a 6 > 0 with the property that for every
h satisfying |h(x) — h(a) — (f(x) — f(a))| < é forx € Nand I/ (b) — W' (a) = f'(b) — f'(a), there exists a
Sahoo-Riedel’s point { € N of h with |§ — n| < e.

Thereafter, Gavrutd, Jung and Li [16] have proved the stability of the Lagrange’s mean value point
which is a point 7 € (a, b) of a differentiable function f : [a, b] — R satisfying %g(”) = f'(n).
Theorem 4 (Gavrutd et al. [16]). Let a, b,y be real numbers satisfying a < n < b. Assume that f : R — R
is a twice continuously differentiable function and 1 is the unique Lagrange’s mean value point of f in an open
interval (a,b) and moreover that f'' () # 0. Suppose g : R — R is a differentiable function. Then, for any
given € > 0, there exists a § > 0 with the property that if |f(x) — g(x)| < 6 for all x € [a, b], then there is a
Lagrange’s mean value point § € (a,b) of g with | — 1| < .

We can extend the intimate concept of Lagrange’s mean value points to the two-dimensional cases.
We will now introduce the two-dimensional Lagrange’s mean value theorem (see [21] (Theorem 4.1)).
Courant introduced the following theorem in his book [22] (or see Sahoo and Riedel [21] (Theorem 4.1)).

Theorem 5 (Courant [22]). For every function f : R* — R with continuous partial derivatives fx and f, and
for all distinct points (p,q) and (u,v) in R?, there exists an intermediate point (17, &) on the line segment L

joining the points (p, q) and (u,v) such that f(u,v) — f(p,q) = (u —p) fx(1,8) + (v = 4) fy (11, &)

The geometrical interpretation of Theorem 5 is that the difference between values of the function
at points (#,v) and (p, q) is equal to the differential at an intermediate point (7, {) on the line segment
joining those two points.

3. Main Theorem

Assume that f : R? — R is a function with continuous partial derivatives f, and f, and L is the
line segment joining the distinct points (p, ) and (1, v) in R?. We remind that an intermediate point
(n,¢) on L is called a two-dimensional Lagrange’s mean value point of f in L provided that the point
(n,&) satisfies the equation

f(u,0) = f(p,q) = (u—p)fx(n,8) + (0 —q)fy(11,8).

By making use of Theorem 2, we will prove our main theorem concerning the Hyers-Ulam
stability of the two-dimensional Lagrange’s mean value points.

Theorem 6. Assume that L is the line segment joining two distinct points (p,q) and (u,v) and that f :
R? — R is a twice continuously partial differentiable function. Suppose (1o, &o) is the unique two-dimensional
Lagrange’s mean value point of f in L and the point (1o, {o) satisfies

1 frex (110, &0) + 2hk fy (110, E0) + K2 fyy (170, E0) # O, 1)

where h = u — p and k = v —q. Then, for any given € > 0, there corresponds a 6 > 0 such that if a
partial differentiable function g : R? — R satisfies |f(x,y) — ¢(x,y)| < d for all (x,y) € L, then there is a
two-dimensional Lagrange’s mean value point (111, &1) of g in L with |(no,Co) — (11,81)] < &
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Proof. We know that the coordinates of each point on the line segment L are given by (p + ht, g + kt)
for some t € [0, 1]. We define an auxiliary function F : R — Rby F(t) := f(p + ht,q + kt) and calculate
its derivative as

F'(t) = hfx(p + ht,q + kt) + kf, (p + ht, q + kt).

We define another auxiliary function G : R — R by

Gy(t) :=tf(u,0) + (L= )f(p,q) — F(t)

for all t € R. Obviously, Gy is twice continuously differentiable and G¢(0) = G¢(1) = 0. Hence, by the
Rolle’s theorem, there exists an ty € (0,1) with

GF(to) = f(u,0) = f(p,q) — F'(to)

= f(u,0) — f(p,q) — hfx(p+hto,q + kto) — kfy(p + hto,q + kto)
— 0,

which implies that (19, o) := (p + hto, q + kto) is the unique two-dimensional Lagrange’s mean value
point of fin L.
Furthermore, in view of (1), we get

Gf(to) = —F"(to) = —h* frx(10,G0) — 2Nk fry (10, S0) — k2 fyy (10, Go) # O

and G}’ (t) is continuous. Hence, there exists a neighborhood (ty —r,tg +r) C (0,1) of tg such that
either G}’(t) > Oforallt € (g —r,tog+71)or G}’(t) < Oforallt € (tg —r,to+ r). Since G}(to) =0,
G]’c(t) changes sign at f.

We now translate Theorem 2 into the statement (2) below by substituting as we see in the following
table. (The function H will be chosen later.)

HTheoremZ‘f‘n‘t‘to‘tl‘ ‘ N ‘

g e 9]
| @below | Ge[1]t][to |t [H]| (to—rto+r) ][5

[4]

Regarding the table above, Theorem 2 states that

for any & > 0, there corresponds a § > 0 such that for any function
H : R — R differentiable in (to — 1, to + r) with |G(t) — H(t)| <&

)
forall t € (to —r,tg+ 1), there exists a point t1 € (tg —1,tg + 1)
satisfying H'(t1) = 0 and |t; — ty| < &
For any given € > 0, let
€ 5
§:= ——— and J:= -, 3
V2 + k2 3 ®

where § > 0 is chosen such that the statement in (2) holds true. Let ¢ : R> — R be a partial
differentiable function satisfying | f(x,y) — g(x,y)| < é for all (x,y) € L. If we define a differentiable
function G¢ : R — R by

Gg(t) :==tg(u,v) + (1 —t)g(p,q) — g(p + ht, q + kt)
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for all t € R, then it holds that

1Gf(t) = Gg(D)] < |f(u,0) — g(u,0)| +|f(p.9) — g(p,q)l
+ [f(p+ht,q+kt) — g(p+ ht,q + kt)]|
)

A
S W

forallt € (tg —r,tg+7r) C (0,1).
Hence, by the statement in (2) with H = Gy, there exists a point t; € (tg — r,tg + 7) such that
Gg(t1) = 0and [t — to| < & We note that Gg(t1) = 0 implies that

Gy(t1) = g(u,v) — g(p,q) — hgx(p + ht1,q +kt1) —kgy(p + ht1,q + kt1)

=g(uw,0) —g(p,q) — (u—p)g«(n1,61) — (v —9)8y(11,61)
— 0,

where (171,81) = (p + ht1,q + kt1) is the point on the line segment L. Indeed, (71,¢1) is a
two-dimensional Lagrange’s mean value point of ¢ in L. Moreover, it holds that

[(110,80) — (11,61)| = |(p + hto,q + kto) — (p + ht1,q +ktp)|
= | (h(to — 1), k(to — t1)) |
= V2 + K2 |ty — 1]
<Vh2+ k¢

=&

Hence, the point (71,§1) is a two-dimensional Lagrange’s mean value point of ¢ in L with
|(70, o) — (111,81)| < €, which completes the proof. [J

We are now interested in choosing an appropriate ¢ in Theorem 6 because the magnitude of ¢
seems to be important for the practical use of this theorem. We only need to apply the algorithm in
Remark 1 and refer to the statement in (2) for the following algorithm.

Remark 2. For the notations r, to, N = (to — 1,to +r), and Gy, we refer the proof of Theorem 6 and we
introduce an efficient algorithm for choosing the o:
i

) by considering (3), we choose & such that 0 < & < r;
ii

E /) we choose ty, t3 and a such that [t — to| < §, [t3 — to] < 5,0 < a < 5, and Ay Gy (t2) AeGy(t3) < 0;
(iii) we choose the & as large as possible with 0 < § < min{ ] |AGr(t2)], %|A,XGf(t3) | };
(iv) we determine 6 by 6 := 14.

The following two corollaries show that our main result (Theorem 6) is a generalization and an
improvement of [16] (Theorem 2.2). If we put v = g in Theorem 6, then the condition (1) is reduced to
fxx(110, o) # 0. Hence, we get the following corollary.

Corollary 1. Assume that L is the line segment joining two distinct points (p,q) and (u,q) and that f :
R? — R is a twice continuously partial differentiable function. Suppose (o, &o) is the unique two-dimensional
Lagrange’s mean value point of f in L and fyx(n0,80) # 0. Then, for any given € > 0, there exists a
8 > 0 with the property that if a partial differentiable function g : R> — R satisfies |f(x,y) — g(x,y)| < &
for all (x,y) € L, then there is a two-dimensional Lagrange’s mean value point (11,¢1) of g in L with
|(10,G0) — (171, 61)| < e In particular, y = & = & = &1 = q throughout the statement of this corollary.
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If we put u = p in Theorem 6, then the condition (1) is reduced to f,, (170, o) # 0. Thus, we obtain
the following corollary.

Corollary 2. Assume that L is the line segment joining two distinct points (p,q) and (p,v) and that f :
R? — R is a twice continuously partial differentiable function. Suppose (1o, &o) is the unique two-dimensional
Lagrange’s mean value point of f in L and f,,(10,80) # 0. Then, for any given e > 0, there exists a
8 > 0 with the property that if a partial differentiable function g : R? — R satisfies |f(x,y) — g(x,y)| < 6
for all (x,y) € L, then there is a two-dimensional Lagrange’s mean value point (11,81) of g in L with
|(10,E0) — (11, 81)| < e In particular, x = 1 = no = 11 = p throughout the statement of this corollary.

4. Example

Assume that L is the set of all points on the line segment joining the points (—1, —1) and (1,1)
and that f : R — R is a twice continuously partial differentiable function defined by

flx,y) = x>+ yz.

Thenwehavep =g= -1, u=v=1,h=u—p =2,and k = v—g = 2. In addition,
(10, &o) = (0,0) is the unique two-dimensional Lagrange’s mean value point of f in L and

h fax (10, €0) + 21k fry (110, &0) + K fyy (170, G0) = 16 # 0,

i.e., f satisfies the condition (1).

Consulting the proof of Theorem 6, we now define G¢(t) = tf(u,v) + (1 —t)f(p,q) — f(p +
ht,q + kt) = 8t — 8t2. It then follows from the equation G}(to) = 8 — 16t = 0 that t) = 5. Moreover,
GJ’[’(to) = —16 # 0. Thus, we conclude that G}(t) > 0 forall t < tgand Gj’[(t) < Oforallt > tg, ie.,
G}(t) changes sign at ) = 1 and we can choose an arbitrary 0 < & < % (we see (to —r,to +7) C (0,1)
in the proof of Theorem 6 and we take Remark 2 (i) into account).

We now follow Remark 2 (ii) and choose t5, t3, and a with |t — fg] = |t2 — %’ < %, |ts — to| =
|t3 — %} < 5,and 0 < a < § such that

AaGf(tz)AaGf(fg,) = 806(1 - — 2t2)80¢(1 -0 — 2t3> < 0.
If wesett, = % — %,i’g = % + g,and(x = g,thenweget

L& 3.
AaGf<t2)AaGf(t3) =28 X 1 X 28 X <—4€) < 0.

Hence, by considering (3) and Remark 2 (iii), we can choose § = % which is consistent with

1 &2 1 € €2
' 2|AaGf(f3)|} Ry n e R vL

< . 1
0<o< m1n{2|A,fo(t2)

According to Theorem 6 and Remark 2 (iv), for any given € > 0, if a partial differentiable function
¢ : R? — R satisfies |f(x,y) — g(x,y)| < % for all (x,y) € L, then there exists a two-dimensional
Lagrange’s mean value point (11, ¢1) of ¢ in L with (170, 8o) — (11, 81)] < €.

5. Discussions
In this paper, we prove the Hyers-Ulam stability of two-dimensional Lagrange’s mean value point:

Assume that L denote the line segment joining two points in the plane and that f : R? — R is a twice
continuously partial differentiable function. Moreover, suppose (1o, Go) is the unique two-dimensional
Lagrange’s mean value point of f in L and the condition (1) is fulfilled. Then, for any given € > 0,
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there exists a 6 > O with the property that if a partial differentiable function g : R> — R satisfies
|f(x,y) —g(x,y)| <6 forall (x,y) € L, then there exists a two-dimensional Lagrange’s mean value

point (171,61) of g in L with |(170,S0) — (111, ¢1)| < e

The main theorem of this paper is an extension and an improvement of a previous work [16]
(Theorem 2.2). Indeed, even Corollary 1 or 2 is a generalization and an improvement of [16]
(Theorem 2.2).

Moreover, we introduce an algorithm for determining an appropriate constant 5 depending on f
and ¢ only. The larger ¢ is chosen, the more efficiently we apply our main theorem in practical use. This
method helps us to choose a ‘large’ ¢ such that if a partial differentiable function g satisfies inequality
|f(x,y) —g(x,y)| < éforall (x,y) € L, then there exists a two-dimensional Lagrange’s mean value

point (171, &) of g with |(1o,80) — (171, 81)| < &
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