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Abstract: Mathematical models have played an essential role in interface design. This study focused
on “mindsets”—people’s tacit beliefs about attributes—and investigated the extent to which: (1)
mindsets can be extracted in a motion trajectory in target selection, and (2) a dynamic state-space
model, such as the Kalman filter, helps quantify mindsets. Participants were experimentally
manipulated to hold fixed or growth mindsets in a “mock” memory test, and later performed
a concept-learning task in which the movement of the computer cursor was recorded in every trial.
By inspecting motion trajectories of the cursor, we observed clear disparities in the impact of mindsets;
participants who were induced with a fixed mindset moved the cursor faster as compared to those
who were induced with a growth mindset. To examine further the mechanism of this influence,
we fitted a Kalman filter model to the trajectory data; we found that system-level error-covariance in
the Kalman filter model could effectively separate motion trajectories gleaned from the two mindset
conditions. Taken together, results from the experiment suggest that people’s mindsets can be
captured in motor trajectories in target selection and the Kalman filter helps quantify mindsets. It is
argued that people’s personality, attitude, and mindset are embodied in motor behavior underlying
target selection and these psychological variables can be studied mathematically with a feedback
control system.
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1. Introduction

Mathematical models have played a critical role in human–computer interaction research for
decades. For example, Fitts’s law, which quantifies the difficulty in target selection, has played a
pivotal role for the development of input devices, such as a keyboard, a mouse, a joystick, and many
other graphical user interfaces (e.g., menu, taskbar) [1–5]. To model human psychology, such as
personality, attitude, and mindset, what mathematical model can be applied? This study focuses on
“mindsets”—people’s tacit beliefs about attributes [6]—and investigates whether (1) mindsets can be
extracted from a motion trajectory in target selection and (2) a dynamic state-space model, such as a
Kalman filter [7], helps quantify mindsets.

1.1. Mental State Assessment

Much research in mental state assessment has been conducted under the banner of passive
Brain Computer Interface and Affective Computing [8,9]. Among the most well studied is mental
workload. Mental workload (or cognitive load) refers to the mental costs of carrying out a task;
it is determined by external (task difficulty, priority) and internal factors, attention, memory, stress,
motivation and mindsets [10–13]. Mental workload is often measured by task performance (accuracy
and response time), self-report (questionnaires, e.g., NASA Task Load Index—NASA-TLX [13]) and
physiology (heart rate and heart rate variability, pupil dilation, eye movement, and brain activity
electroencephalography/event-related potential (EEG/ERP)). Task performance and self-report cannot
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deliver continuous monitoring. Physiological measures, especially brain activity, provide the most
viable continuous assessment [11].

Among many brain activity measures, the most well studied and realistic measures are EEG
and ERP. Studies have shown that spectral powers of the alpha (7–14 Hz), theta (4–7 Hz) and beta
(12.5–30 Hz) bands are related to cognitive load. Sterman and Mann [14] showed that when aircraft
pilots were maneuvering a difficult task, the power of the alpha band decreased. Sterman and
Mann demonstrated that task difficulty in U.S. airline pilot and spectral power of the alpha wave
is inversely related. Brookings et al. also showed that air traffic controller’s control responsiveness
was inversely related to the power of the alpha band. Hoogendoorm et al. [15] further showed
that high workload (high attention) is correlated with high beta (12–30 Hz), low alpha (8–12 Hz),
and low theta (5–8 Hz) spectral power, although the interpretation of theta is not unequivocal. Another
important measure of mental workload is ERP (event related potential). Among many ERP components,
P300 and ERN (error-related negativity) provide the most reliable biomarkers for mental workload
assessment [16–19]. Recently, more sophisticated algorithms, such as adaptive neural network [20] and
sparse representation-based EEG signal analysis [21,22] have proved effective for mental assessment
involving cognitive workload, emotional states, as well as brain impairments.

Despite the recent developments in mental state assessment, nearly all the aforementioned
EEG/ERP studies have been conducted in tightly controlled laboratory settings with multiple
electrodes (32 or more) wired to a heavy device. These EEG systems are not always practical in
real world situations in which people interact constantly. Moreover, few studies have investigated
the mental state analysis beyond cognitive workload and emotional states. Some other psychological
variables, such as mindsets, can be studied with other means beyond EEG.

1.2. Mindsets in Motor Control

Mindsets here refer to individuals’ conceptualization of attributes, specifically the extent to which
individuals view abilities as fixed or malleable. Dweck and colleagues show that mindsets influence
a wide range of goal-directed behaviors including adolescents learning advanced math, athletes
training for competition, business managers honing managerial skill, or college students developing
interpersonal competence [23–29]. In a computer-assisted collaborative working environment,
evidence shows that growth- or fixed-mindsets affect learners’ product-acceptance and usability
ratings [30].

Mindsets modify goal-setting, task engagement, planning, feedback seeking and outcome
attribution [6]. For example, if one believes that math talent is fixed (e.g., a person was born with a
“math gene” and the talent remains fixed throughout), she strives to “show off” her competence if she
believes she has it, or hide it if she thinks she does not have any. In contrast, if one believes that math
talent is malleable (e.g., a “math talent” can be developed through practice), then she is more likely to
nurture it. In this manner, mindsets—beliefs about abilities—influence our behavior profoundly.

People’s mindsets can be reflected even in a simple motor task, such as selecting and pressing a
button on the computer screen. In cognitive science, research has shown that trajectories of a computer
cursor in a choice-reaching task reveal the performer’s uncertainly and ambivalence in perceptual
and numerical judgment [31–34], linguistic judgment [35], social categorization [36], reasoning [37],
and economic choices [38]. Mouse-cursor trajectories in choice reaching are also shown to reflect
people’s emotion [39] and attention deficit profiles [40].

To investigate the impact of mindsets on target selection behavior, we employed a concept-learning
task in which participants learned to classify probabilistically arranged geometric cards by trial and
error (150 trials). In this task, participants had to move the cursor and select to click one of the
two buttons to respond. In each trial, we tracked the movement of the computer cursor every
20 milliseconds and analyzed whether different motion patterns would emerge as a function of
experimentally induced mindsets.
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Our concept learning task was a modified version of the neuropsychological test developed by
Knowlton and colleagues [41]. Participants received 14 combinations of cards one at a time (150 trials
in total) and learned to predict whether each combination belonged to “shine” or “rain” categories
on the basis of feedback that was provided after each response (Figure 1). Prior to the experiment,
no information about card combinations and their outcomes (“shine” or “rain”) was given; thus,
participants had to learn the concepts of “shine” or “rain” by trial and error. Each card was linked to
the outcome of “shine” approximately 75, 57, 43, and 25% of the time.
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Figure 1. (a) A screen shot of a concept learning trial. The red line, which was not shown in the actual
experiment, illustrates a trajectory of the computer cursor. In each trial, a new card combination appears
as the participant clicks the “Next” button and the participant judges whether the combination is “shine”
or “rain” by clicking the “Shine” or “Rain” button placed top corners of the screen. The movement of
the computer cursor is recorded from the onset of a trial (the Next button is pressed) to the end (either
the Shine or Rain button is pressed). (b) Examples of card combinations.

To start a trial, the participant first pressed the Next button, the cursor was then placed
automatically at the center of the button, and the stimulus picture (card combination) was presented
on the monitor (Figure 1). To indicate a selection, participants pressed a target button (either the left or
right button shown at the top left/right corner of the screen). Soon after pressing the target button,
the stimulus disappeared and feedback was presented (e.g., “Yes. It’s shine”). This cycle was repeated
150 times. For the entire experiment, our program recorded the x–y coordinate location of the cursor
every 20 milliseconds.

Manipulating mindsets. To manipulate participants’ mindsets, we experimentally induced
participants to believe, temporally, that people’s ability is fixed or malleable. First, participants
(N = 255) were randomly assigned to one of two conditions—growth-mindset condition or
fixed-mindset condition—and read and memorized one of two vignettes as a part of a mock “memory
test” [42]. One vignette (growth-mindset condition) described the human intelligence as a malleable
quality, and training and experience modifies one’s ability. The other vignette (fixed-mindset condition)
characterized one’s intelligence as a fixed quality: it is inherited from parents and largely determined
by genes (Appendix A). After this mock “memory” test, all participants performed the concept learning
task for about 20 min.

1.3. Modeling Mindsets by Kalman Filter

The Kalman filter, which has been applied widely for navigation control and robotic motion
planning systems [43], offers an ideal tool to quantify choice-reaching behavior in human computer
interaction. To reach a target by the hand, the sensorimotor system needs to know the final
location of the target, the current location of the hand, and motor procedures (muscle activity) to
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reach the next step in real time. But, sensory feedback is necessarily delayed by conduction and
transmission lags (a monosynaptic stretch reflect requires 40~80 ms delay) [44]. To compensate this
lag, the neural system employs a hybrid of feedback and feedforward controllers, just as the Kalman
filter coordinates [44,45]. In neuroscience, this algorithm has been adopted to model action potentials
in neurons (e.g., Hodgkin–Huxley model, and see [44]). In the current study, a Kalman filter to model
mindsets revealed in trajectories of target selection was applied.

A system model of a Kalman filter is shown in (1). Here, xk+1 (state variable) represents the
unknown position of the computer cursor at time k + 1 and is linearly related to the previous state xk
by transition matrix A with Gaussian white noise wk ~N (0, Q), where Q is the covariance matrix of wk;
zk is a measurement/observation of the state variable xk. Roughly, zk corresponds to output from a
sensory systems that track the cursor position; zk is linearly related to state variable xk by matrix H and
mired by noise vk ~N (0, R). Thus, Q corresponds to the degree of precision (i.e., 1/Q) of the actuator,
whereas R corresponds to the degree of precision (i.e., 1/R) of the sensory feedback system. In our
formulation, the true state xk is unknown, and is estimated (x̂k) by sensory output zk.

xk+1 = Axk + wk, wk ~N(0, Q) (1)

zk = Hxk + vk, vk ~N(0, R) (2)

The computational algorithm of a Kalman filter is shown in Figure 2. Here, the overhead notation
“ˆ” stands for an estimated value and “-“ represents a predicted value. For example, in (3) (x̂−k = Ax̂k−1),
the predicted estimate of the state at time k (i.e., x̂−k ) is obtained by multiplying the estimate of the
state at k − 1 (x̂k−1) by transition matrix A.

The algorithm starts with pre-specified initial values, x̂0 and P0, which represent an initial estimate
of the state (locations) of the system (x̂0) and error covariance P0, the degree of error of the initial
estimate (Step 0 in Figure 2). From here, the algorithm iteratively estimates state x̂k (e.g., x–y coordinate
locations and velocity of the cursor) in each time step by coordinating sensory observation zk and
its estimate (Hx̂−k ), which are weighted by Kk (Kalman gain at time k) (Step 3). Both Kalman gain
K and error covariance Pk are computed iteratively in Steps 2 and 4. In this process, pre-specified
system-specific error covariance Q (Step 1) and observation-specific error covariance R are internalized.
The system receives observation (input or recorded cursor positions) zk at each time step and corrects
an estimate of the “true” unknown state x̂k based on the forward estimate (x̂−k = Ax̂k−1) and feedback
(posterior) estimate weighted by Kalman gain K (Kk

(
zk − Hx̂−k

)
).

In our formulation, we define state variable x with a four-dimensional vector representing x–y
coordinate locations (Υx, Υy) of the cursor and their velocity (vx, vy) ([Υx, vx, Υy, vy]T). Observation
variable z only has a x–y coordinate location; [input_x, input_y]T and the velocity associated with the
x–y coordinate is assumed to be unobservable for the sensory system. Furthermore, the transition
matrix A corresponds to a default motor plan that the system possesses. Following the empirical
findings in [46], I assume that two competing motor plans (Aleft and Aright) are simultaneously formed
(A = αAleft + (1 − α) Aright).

A = αAleft + (1 − α)Aright; 0 < α ≤ 1 (3)
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Figure 2. (a) An illustration of the Kalman filter algorithm and (b) a computational procedure based
on [31]. In each time step, the algorithm estimates state x̂k by combining forward (prior) estimate
(x̂−k = Ax̂k−1) and feedback (posterior) estimate (Kk

(
zk − Hx̂−k

)
), which is weighted by Kalman gain

K [47].

Assuming that subjects have no a priori inclination to move to the left or right, I set α = 0.5
(A = (Aleft + Aright)/2) (3). Thus, transition matrix A is analogous to a constant motion model (p. 20, [43]),
in which x–y coordinate locations at state xk+1 are estimated from xk by adding a multiple of velocity and
time increment dt (we defined dt = 20 ms) (e.g., xk+1 = Axk + wk). In our experiment, every cursor motion
starts with the same starting position (x, y) = (0, 0) (10) and all other cursor locations are specified with
respect to the original starting position. To capture individual differences in sensorimotor capacity of the
participants, the initial value of error covariance P0 was set randomly with Gaussian white noise (P0 ~N
(mu = 40, sigma = 10) (11). For each participant, actuator error Q is set randomly with Gaussian noise (Q
~N(10, 2)) (12) and feedback error R is set randomly with Gaussian noise (R ~N(50, 5)) (13):

x0 =


γx

vx

γy

vy

 =


0
0
0
0

, (10)

P0 = 4 × 4 ~N(40, 10), (11)

Q = 4 × 4 ~N(10, 2), (12)

R = 2 × 2 ~N(50, 5), (13)

A =


0
0
0
0

0
1
0
0

dt
0
1
0

0
0
dt
1

, (14)

Ale f t =


−1
0
0
0

0
1
0
0

dt
0
1
0

0
0
dt
1

, (15)
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Aright =


1
0
0
0

0
1
0
0

dt
0
1
0

0
0
dt
1

, (16)

z =

[
inputx

inputy

]
, (17)

H =

[
1 0 0 0
0 0 1 0

]
, (18)

In our Kalman filter model analysis, A (14), H (18), Q (12), and R (13) were initially preset.
For model fitting, I treated one of these variables as free parameters and sought appropriate values
using an expectation maximization (EM) algorithm. For example, in one set of model fitting, we treated
A, H, and Q as fixed (as specified in (14), (18), (12)) and R as free parameters and the values of R were
specified by the expectation maximization (EM) algorithm. In another set of model fitting, we treated
A, H, R as fixed and Q as free parameters, and so on.

The critical questions addressed in this study were to identify the extent to which (a)
experimentally induced mindsets would influence mouse motion trajectories in target selection
and (b) our Kalman filter models would effectively separate motion trajectory patterns elicited
in the two mindset conditions. Specifically, we seek the extent to which system-specific error
covariance Q (Equation (1)) and observation-specific error covariance R (Equation (2)) separate
the two mindset conditions. Q and R correspond to variance (error) pertaining to the prediction
and estimation of the state and observation (Equations (1) and (2)). Thus, when the trajectory is
straightforward (e.g., little variability in x–y coordinate location), Q and R will be small. In contrast,
if the trajectory is unpredictable/unstable and highly variable (e.g., zigzag), then Q and R will
be large. Individual elements of Q and R matrices indicate specific dimensions of instability
(variability). For example, the trajectory is unstable along the x location, then Q[1, 1] will be large.
If the trajectory is unstable along the y location, then Q[3, 3] will be large. Relative magnitudes
of Q and R (large/small Q or large/small R) are also associated with the size of K (Kalman gain,
Equation (7)), which in turn determines relative weight given to system-based or observation-based
prediction/estimation (Equations (1) and (2)).

Research shows that mindsets influence the level of task engagement [6]. Those who have growth
mindsets have an elevated level of task engagement while those with fixed mindsets tend to engage in
the task less. We think that the level of engagement is reflected in the stability of cursor trajectories.
Those who are more engaged show more stable and consistent trajectories, while those who are
less engaged in the task show unstable and highly erratic trajectories. On this basis, we think that
participants induced with growth mindsets will show more stable and ordinary trajectories (smaller Q
and R), as compared to those induced with fixed mindsets.

2. Materials and Methods

2.1. Participants

Participants were undergraduate students participating in the experiment for course credit.
Among 255 participants recruited for the experiment, 253 participants completed the entire experiment.
The data from four participants in the fixed-mindset condition were not analyzed because their
“growth” mindset scores (obtained from the Implicit Belief questionnaire [6]) exceeded two standard
deviations above the mean. The data from seven participants in the growth-mindset condition were not
analyzed because their “growth” mindset scores exceeded two standard deviations below the mean.
We reasoned that our mindset induction method was ineffective for these participants or they did not
conduct the induction task as expected. Thus, the data from 242 participants (141 female; 101 male)
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in the fixed (n = 124) or growth (n = 118) mindset condition were analyzed. This study was carried
out in accordance with the recommendations of Texas A&M University Institutional Review Board.
The protocol was approved by Texas A&M University Institutional Review Board. All participants
gave written informed consent in accordance with the Declaration of Helsinki.

2.2. Material and Procedures

Figure 3 summarizes the time course of the experiment and data analysis. All participants
carried out the mindset induction, concept learning, and mindset evaluation tasks in sequence. First,
participants were randomly assigned to the fixed-mindset or the growth-mindset conditions and
performed a mock memory test (the mindset induction phase). Following the induction phase,
all participants conducted the concept learning task. In this phase, participants’ cursor motions were
recorded in every trial. After initial data analysis, a Kalman filter was applied to every trial to find
appropriate covariance matrices Q and R (see Equations (1) and (2)) for each trajectory. After identifying
parameters Q and R for every trajectory (approximately 15,360 trajectories), linear mixed-effect models
are applied to verify if estimated Q and R values are statistically different in participants in the
fixed-mindset condition and participants in the growth-mindset condition. In the mindset induction
task, participants read one-page vignettes for six minutes as part of a mock “memory test.” In the
concept learning task, participants learned new “concepts” by trial and error. In the mindset evaluation
task, participants completed the Implicit Belief questionnaire [6].
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The details of the mindset induction task, the concept learning task, and the mindset evaluation
task are described below.

Mindset induction. Two mock one-page vignettes (229 words for the fixed mindset induction condition
and 267 words for the growth mindset induction condition) that describe the development of human traits
as based primarily on experience and training or on biological predisposition were used to induce growth
or fixed mindsets of attributes, respectively, in a presumed “memory test” (Appendix A). Participants
were told that the article was from a journal called Psychology in Review, and there was empirical evidence
provided in the article supporting the proposition that human attributes are fixed and unalterable (fixed
mindset induction) or are malleable (growth mindset induction). Participants were instructed to read the
assigned article carefully for 6 min for a disguised “memory test” [42].

Concept-learning task. The concept-learning task was a modified version of a neuropsychological
test developed by Knowlton and colleagues [26]. Participants received 14 combinations of cards one at
a time (150 trials in total) and learned to predict whether each combination belonged to “shine” or
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“rain” categories on the basis of feedback that was provided after each response (Figure 1). Prior to
the experiment, no information about card combinations and their outcomes (“shine” or “rain”) was
given; thus participants had to learn the concepts of “shine” or “rain” by trial and error. Each card
was linked to the outcome of “shine” approximately 75, 57, 43, 25% of the time. Unlike the original
probabilistic concept learning task developed by Knowlton et al., individual cards appeared at one of
the four locations randomly in each trial in order to make this task challenging.

To start a trial, the participant first pressed the Next button, the cursor was then placed automatically
at the center of the button, and the stimulus picture (card combination) was presented on the monitor
(Figure 1). To indicate a selection, participants pressed a target button (either the left or right button shown
at the top left/right corner of the screen). Soon after pressing the target button, the stimulus disappeared
and feedback was presented (e.g., “Yes. It’s shine”). This cycle was repeated 150 times.

To display on-going accuracy, a horizontal bar shown at the top center of the screen displayed the
accuracy of prediction in the last 20 trials that preceded a given trial. The order of presenting each card
combination was determined randomly for each participant. Altogether, participants received 150 trials,
which were divided by two short breaks given after 50th and 100th trials. The task was self-paced.

Mindset evaluation. Participants’ mindsets were assessed by the Implicit Belief questionnaire [6]
given at the end of the experiment. The questionnaire has 9 items and examines the extent to which
individuals conceptualize intelligence, morality, or the world as a dynamic and growth-oriented
construct. A factor analysis indicated that the three belief measures (intelligence, morality, and world)
were not associated with respondents’ gender, political attitudes, cognitive ability, confidence in
intellectual ability, self-esteem, or morality. The questionnaire also had high internal reliability
(α = 0.84–0.96) and test-retest reliability of the measures over a 2-week period was 0.8 or higher [4].

2.3. Research Design and Data Analysis

The experiment had two (mindset induction; fixed, growth; between-subjects) between-subjects
conditions. The trials that took more than 16 s to complete were not analyzed and approximately 3% of
the trials were lost due to a data coding error. Overall, the data from 35,150 out of 36,300 trials (96.8%
of the total trials) were analyzed. Our computer program recorded the x–y coordinate locations of
the cursor approximately every 20 milliseconds from the beginning of a trial (the Next button was
pressed) to the end of a trial (either the left or right target button was pressed) throughout the concept
learning phase.

2.4. Apparatus and Data Collection

We used six desktop computers (HP de 7900 systems with an E8400 Core 2 Duo 3.0 GHZ processor
with HP 19 inch Wide Flat Panel Display) for data collection. All participants used the same Dell
Optical Mouse with USB connection. The pointer speed of the mice was set as medium.

3. Results

3.1. Manipulation Check and Basic Behavioral Response

The data from the Implicit Belief questionnaire [6] administered at the end of the experiment
showed that the mindset induction procedure was effective; participants in the fixed mindset condition
showed a lower mean growth-mindset score (mean (M) = 3.85, standard deviation (SD) = 0.86) than those
in the growth mindset condition (M = 4.08, SD = 0.83); t-test t(240) = 2.12, probability-value (p) = 0.04,
Cohen’s effect size (d) = 0.27, 95% confidence interval for d (CId) = [0.02, 0.53].

In both conditions, their overall concept-learning performance was significantly above chance
level; fixed mindset, M = 0.58, SD = 0.07; t(123) = 12.7, p < 0.001; growth mindset, M = 0.59, SD = 0.06,
t(117) = 15.7, p < 0.001. Participants in the two conditions were statistically indistinguishable in their
concept-learning performance; t(240) = 0.41, p > 0.45, Cohen’s d = 0.10, CId = [−0.15, 0.36].
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3.2. Basic Behavioral Analysis

On average, participants induced with fixed-mindsets spent less time in each trial than those induced
with growth-mindsets; response time, F-tests F(1, 238) = 8.62, Mean Squared Error (MSE) = 150,020.6,
p = 0.004, partial eta-squared, a measure of effect size for group mean differences in F-test, (ηp

2)= 0.04
(Table 1). Those in the fixed-mindset condition started moving their cursors earlier than those in the
growth-mindset condition; inception time F(1, 238) = 3.95, MSE = 33654.2, p = 0.05, ηp

2 = 0.02, implying
that those in the fixed-mindset condition were more likely to reach a judgment quickly. Average movement
time (movement time = response time – inception time) was also shorter in the fixed-mindset condition
than in the growth-mindset condition; movement time, F(1, 238) = 5.47, MSE = 109360.9, p = 0.02,
ηp

2 =0.02.

Table 1. Inception, move and response times.

Mindset
Inception Time Movement Time Response Time

M (SD) M (SD) M (SD)

Fixed-mindset 386 (154) * 1474 (308) * 1860 (359) **
Growth-mindset 435 (209) 1573 (357) 2010 (416)

1 Measurement unit = millisecond; M = mean, SD = standard deviation; ** p < 0.01, 0.01 ≤ * p < 0.05.

3.3. Trajectory Analysis

In analyzing cursor trajectories, the trajectories associated with the left button choice (i.e., selecting
the “Shine” button) were flipped to the right along a vertical axis and all trajectories were standardized
in the x–y coordinate locations starting from the initial cursor position (0, 0) on the “Next” button to
the end point of the participant clicking the “right” button. For each participant, trajectories obtained
from 150 trials were averaged along each time-bin (Figure 4a), and these average trajectories were used
to measure the means and standard errors of trajectories in the two mindset conditions (Figure 4b–d).
Both x–y coordinate locations and velocity (pixel per millisecond) were analyzed with respect to 100
time-bins ranging from 30 to 3000 milliseconds (ms).

On average, participants in the fixed-mindset condition moved the cursor faster than those in
the growth-mindset condition. The velocity profiles of the two conditions (Figure 4d) reveal that
the difference between the two conditions were significant in 19 out of 100 time-bins with p-values
ranging 0.01 ≤ p < 0.05 (Table 2). X- and Y- coordinate positions of the cursor were also different in the
growth- and fixed-mindset conditions (Figure 4b,c) in a majority of time-bins with p-values ranging
0.01 ≤ p < 0.05 (Table 2). Overall, participants in the fixed-mindset condition tended to direct their
cursors toward the final response position earlier and more as compared to those in the growth-mindset
condition. In nearly 50% of the time-bins, the difference between the two conditions was significant
with a p-value below 0.01 (Table 2). Taken together, these results suggest that experimentally induced
mindsets influence the trajectories of the mouse cursor motion in a goal-directed concept learning task.

Table 2. P-values comparing fixed- and growth-mindset conditions.

Features 0.01 ≤ p <0.05 0.001 ≤ p <0.01 p < 0.001

Velocity 19 24 4
x-position 26 21 21
y-position 34 23 18 1

1 The number of time-bins (out of 100) in which fixed- and growth-mindset conditions were significantly different.
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Figure 4. (a) Average x-coordinate positions that were collapsed over 150 trials were calculated for
individual participants, and (b–d) mean trajectories obtained in the two mindset conditions were
shown separately together with 2 standard error confidence intervals (shaded areas). X–Y coordinate
positions (b,c), and velocity (d) of the two mindset conditions were contrasted by red (fixed-mindset)
and green (growth-mindset) lines. Shaded areas represent confidence intervals measured by two
standard error (SE) units.

The next analysis examined whether our Kalman filter model could capture participants’ mindsets:
specifically, we investigated whether our Kalman filter model could systematically separate the two
mindset conditions and if so, which free parameters, A, H, Q, and R, were able to separate the two
mindset conditions.

3.4. Kalman Filter Analysis

If the Kalman filter provides a feasible platform to quantify mindsets, then different motion
trajectories observed in the two mindset conditions should be revealed in the model’s free parameters.
Here, four Kalman filter models were fitted to all trajectory data (approximately 35,150 trajectories)
to examine which parameters, A, H, Q, or R, could separate the experimentally induced mindset
conditions (fixed- and growth conditions). Individual trajectory data consisted of time-stamped x–y
coordinate locations and we employed Python package pykalman (https://pykalman.github.io/#) for
model fitting.

To statistically verify the validity of the models, I applied linear mixed-effects analysis with
individual participants and individual trials as random factors and the mindset conditions (growth
mindset and fixed mindset) as a fixed factor. This statistical analysis assesses the dependent
measure yijk(e.g., parameter value of R identified in the k-th stimulus of subject j with condition
i (1: fixed-mindset; 2: growth-mindset). Thus, the overall intercept of the model β0 was adjusted
by the condition i (β11 = fixed-mindset; β12 = growth-mindset induction) and additional random

https://pykalman.github.io/#
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intercepts of subjects u0j and stimulus w0k—(9). This linear model was compared to a null model,
in which the impact of the condition β1i was removed—(8). The main interest of our analysis
was whether an inclusion of the fixed factor β1i would improve the model’s accountability of the
data. This analysis used R packages lme4 (https://pykalman.github.io/#) and lmerTest (https:
//cran.r-project.org/web/packages/lmerTest/index.html).

Null Model: yijk = β0 + u0j + w0k + εijk (18)

Extended Model: yijk = β0 + β1i + u0j + w0k + εijk (19)

Figure 5 summarizes the results from model fitting. Parameters that were separated in the two
mindset conditions are shown in red (0.05 ≤ p < 0.1) and green (0.01 ≤ p < 0.05) (see Appendix B
for the details of likelihood ratio tests comparing the Null and Extended models). In effect, different
trajectories observed in the two mindset conditions (Figure 5) are captured nearly exclusively in the
error covariance matrix Q, suggesting that the mindset manipulation influenced primarily system-level
motion actuation, rather than sensory feedback.
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Figure 5. Summary results from likelihood ratio tests comparing the null and extended models.
Parameters that were separated in the two mindset conditions are shown in red (0.05 ≤ p < 0.1),
and green (0.01 ≤ p < 0.05). See Appendix B for the details of the test results.

As shown in Figure 6, individual elements of Q are in the main larger in the fixed mindset
condition and in the growth mindset condition, suggesting that, as expected, trajectories observed in
participants in the fixed mindset condition were more heterogamous in their motion patterns.
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4. Discussion

Mathematical models are critical for formalizing human behavior. We found that the Kalman
filter could provide a platform to quantify mindsets.

In one experiment, we measured participants’ mouse-cursor motion trajectories in a concept
learning task and examined whether experimentally induced mindsets would influence motion
trajectories in target selection. Participants were induced to hold fixed or growth mindsets in a “mock”
memory test, and they performed a concept-learning task, in which the movement of the cursor was
traced in every trial. By inspecting cursor motion trajectories in the two mindset conditions, we
observed clear disparities in the impact of the mindset manipulation; participants who were induced
with a fixed mindset tended to move the cursor earlier and faster as compared to those who were
induced with a growth mindset. Our Kalman filter analysis further showed that this disparity could be
captured by the parameters related to system-level error covariance Q, suggesting that mindsets most
likely influenced the actuator of motor commands, rather than the sensory feedback system. A larger
variance/covariance matrix Q observed in the fixed mindset condition indicates that the fixed mindset
produced erratic and unpredictable motor behavior.

Taken together, results from this study suggest that human psychology such as mindsets can
be monitored by the motion of the computer cursor and the Kalman filter provides a framework to
quantify mindsets.

Much research has investigated physiological signals (EEG, EDA (electrodermal activity), heart
rate), and behavioral cues (facial expressions and speech sound) for automated mental state assessment
in human computer interaction. Our method—tracking trajectories of the mouse in target selection—is
unique and significant because our method is unobtrusive, economical and practical. Traditional
methods—EEG, EDA, heart-rate, facial expression measures—have limited applicability. Wearing
a large EEG head-gear is untenable in everyday human-computer interaction and recording facial
expressions is also impractical in our mundane interactions with a computer. Our mouse-cursor
trajectory measure is unobtrusive and economical: nearly all computers are equipped with a mouse
and a mouse is an indispensable tool for everyday interactions with computers. For this reason,
our method is suitable for naturalistic situations such as e-learning or on-line shopping where the
adoption of extraneous gears, such as EEG headsets or high-definition cameras, is nearly impossible.

Limitations and future studies. Applying a Kalman filter to human–computer interaction is
relatively straightforward when the interaction involves simple motor behavior. In the present
experiment, the task of participants was merely to select one of two buttons that were placed on the top
left/right corner of the screen. Motor trajectories observed in this setting were relatively homogeneous
and repetitive. More complex tasks, such as selecting a menu from a toolbar or navigating the cursor
in hierarchically organized directories, require heterogeneous motor behaviors. In these situations,
the variability among individual participants will be much greater and it is unknown how well the
Kalman filter can tease apart psychological variables as observed in the current study. Future studies
should investigate the applicability of the Kalman filter analysis in these complex situations.



Mathematics 2018, 6, 205 13 of 18

In the same vein, future studies should examine the extent to which our Kalman analysis is
applicable in a task that does not involve lengthy learning. In the current study, we used a probabilistic
learning task in which participants were to learn the arrangement of cards. It is unknown how this
framework can be extended to a task that requires little learning. Similarly, it is important to investigate
whether this framework can be applied for other psychological variables, such as personality. Future
studies should shed light on these issues.

5. Conclusions

Quantifying human psychology, such as personality, attitudes, and mindsets, is an important
first step for the development of sentient agents that can read people’s minds. A critical hurdle is to
measure human psychology computationally so that the implementation can be studied and evaluated
quantitatively. This study suggests that a choice reaching motion trajectory analysis has the potential
to uncover this feat and trajectory-tracking algorithms, such as the Kalman filter, offer a framework to
model human behavior.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Two vignettes used for the mindset induction procedure.
Fixed Mindset Condition

Origin of Traits

By David Barum, Published on 15 June 2010

Psychologists have long debated the role of nature vs. nurture on human development, morals,
and beliefs alike. The big question has been whether upbringing and environmental factors or genetic
predispositions cause differences in human traits. Finally, the mystery has been solved by Jerome Hart,
the head of the Brain and Behavior Research at Princeton University. After extensive research over the
course of nearly a decade, Hart and colleagues conclude that biological factors, one’s genetics, are the
main predictor of abilities, including intelligence, as well as more abstract traits, such as the direction of
a person’s moral compass. Hart describes a gene located on chromosome 15, GAB4, has been strongly
linked the ability to adaptation and the ability to learn new information, a key property of intelligence.
Other genes have been linked to alcoholism (GABRG3), as well as how one will define the boundaries
between “good” and “bad” (SV40). These genes, and more that have been pinpointed, are consistent
predictors of traits and attitudes regardless of personal experiences, upbringing, and environment.
It appears that our capabilities and our outlook on the world is largely determined even before we
are born.

David Barum is the author of “Where the Mind Begins” and the paragraph you have just read is
an excerpt from one of his articles published in Psychology in Review.

Growth Mindset Condition

Origin of Traits

By David Barum, Published on 15 June 2010

Psychologists have long debated the role of nature vs. nurture on human development, morals,
and beliefs alike. The big question has been whether upbringing and environmental factors or genetic
predispositions cause differences in human traits. Finally, the mystery has been solved by Jerome Hart,
the head of the Brain and Behavior Research at Princeton University. After extensive research over the
course of nearly a decade, Hart and colleagues conclude that environmental factors, not biological
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ones, are the main predictor of abilities, including intelligence, as well as more abstract traits, such as
the direction of a person’s moral compass. Previous studies have claimed that a gene, known as GAB4,
has been strongly linked to the ability to adapt and the ability to learn new information, GABRG3
has been linked to alcoholism, and SV40 determines how one defines “good” and “bad.” However,
studies by Hart have determined that when accounting for environmental influences, these outweigh
any genes a person has. Genes were not predictive abilities, such as intelligence, or even more abstract
traits, such as morality. When social factors, such as environmental and parental influences were
accounted for, genes had little to no influence of any trait studied by in the Brain and Behavior Research
lab. In the long run, what we are capable of and our outlook on the world is largely determined by
upbringing and what is currently surrounding us.

David Barum is the author of “Where the Mind Begins” and the paragraph you have just read is
an excerpt from one of his articles published in Psychology in Review.

Appendix B

Table A1. Likelihood ratio tests for the null and extended models applied to free parameters in
transition matrix A.

a1 1 df AIC 2 BIC 3 χ2 df (χ2) p

Null Model 4 104,105 104,137
Extended Model 5 104,106 104,147 0.56 1 0.45

a2
Null Model 4 90,326 90,358

Extended Model 5 90,328 90,367 0.31 1 0.58

a3
Null Model 4 74,488 74,819

Extended Model 5 74,786 784,824 4.6 1 0.03

a4
Null Model 4 79,372 79,403

Extended Model 5 79,374 79,412 0.54 1 0.462

a5 df
Null Model 4 78,934 78,965

Extended Model 5 78,934 78,973 1.38 1 0.24

a6
Null Model 4 768,813 76,844

Extended Model 5 76,813 76,853 1.31 1 0.25

a7
Null Model 4 79,305 79,336

Extended Model 5 79,305 79,344 1.75 1 0.19

a8
Null Model 4 68,122 68,153

Extended Model 5 68,124 68,153 0.009 1 0.92

a9 df
Null Model 4 71,240 71,271

Extended Model 5 71,242 71,280 0.029 1 0.864

a10
Null Model 4 85,097 85,128

Extended Model 5 85,099 85,138 0.23 1 0.64

a11
Null Model 4 106,357 106,390

Extended Model 5 106,359 106,400 0.37 1 0.54

a12
Null Model 4 86,784 86,915

Extended Model 5 86,786 86,825 0.004 1 0.95

a13 df
Null Model 4 75,543 75,574

Extended Model 5 75,544 75,583 1.05 1 0.3
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Table A1. Cont.

a14
Null Model 4 68,653 68,684

Extended Model 5 68,652 68,691 2.68 1 0.1

a15
Null Model 4 78,150 78,181

Extended Model 5 78,151 78,190 1.24 1 0.26

a16
Null Model 4 72,316 72,347

Extended Model 5 72,317 72,356 1.14 1 0.29
1 a1–a16 are indices for the cells in A (see Figure 5). 2 Akaike Information Criterion. 3 Bayesian Information Criterion.

Table A2. Likelihood ratio tests for the null and extended models applied to free parameters in
covariance matrix Q.

q1 1 df AIC BIC χ2 df (χ2) p

Null Model 4 288,521 288,521
Extended Model 5 288,520 288,562 3.42 1 0.062

q2
Null Model 4 266,757 266,791

Extended Model 5 2,667,576 266,798 3.12 1 0.08

q3
Null Model 4 146,769 146,799

Extended Model 5 146,765 146,804 5.4 1 0.02

q4
Null Model 4 192,609 192,641

Extended Model 5 192,607 192,641 3.63 1 0.06

q5
Null Model 4 266,747 266,780

Extended Model 5 266,745 266,787 3.12 1 0.08

q6
Null Model 4 288,933 288,967

Extended Model 5 288,932 288,974 3.5 1 0.06

q7
Null Model 4 156,905 156,937

Extended Model 5 156,903 156,942 4.62 1 0.03

q8
Null Model 4 184,692 184,724

Extended Model 5 184,690 184,730 3.58 1 0.058

q9
Null Model 4 146,729 146,759

Extended Model 5 146,725 146,763 5.59 1 0.02

q10
Null Model 4 156,786 156,817

Extended Model 5 156,783 156,822 4.52 1 0.03

q11
Null Model 4 288,744 288,778

Extended Model 5 288,743 288,785 3.33 1 0.07

q12
Null Model 4 263,043 2,633,076

Extended Model 5 26,041 263,083 3.44 1 0.06

q13 df
Null Model 4 192,728 192,759

Extended Model 5 192,726 192,766 3.6 1 0.06

q14
Null Model 4 184,818 184,850

Extended Model 5 184,818 184,956 3.56 1 0.06

q15
Null Model 4 283,110 263,143

Extended Model 5 263,109 263,150 3.45 1 0.06

q16
Null Model 4 289,273 289,307

Extended Model 5 289,271 289,314 3.63 1 0.057
1 q1–q16 are indices for the cells in Q (see Figure 5).
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Table A3. Likelihood ratio tests for the null and extended models applied to free parameters in
transition matrix H.

h1 1 df AIC BIC χ2 df (χ2) p

Null Model 4 86,585 86,614
Extended Model 5 86,584 86,624 0.1 1 0.76

h2
Null Model 4 22,286 22,312

Extended Model 5 22,287 22320 0.45 1 0.49

h3
Null Model 4 11,187 11,210

Extended Model 5 11,188 11217 0.27 1 0.6

h4
Null Model 4 3440.2 34,595

Extended Model 5 3441.9 3466 0.37 1 0.54

h5
Null Model 4 1719.6 1736

Extended Model 5 1720 1740.5 1.66 1 0.2

h6
Null Model 4 1351.7 1367.3

Extended Model 5 1350.1 1369.6 3.65 1 0.06

h7
Null Model 4 1336.3 1351.9

Extended Model 5 1338.2 1357.7 0.08 1 0.77

h8
Null Model 4 1259.4 1274.9

Extended Model 5 1260.8 1280.1 0.65 1 0.42
1 h1–h8 are indices for the cells in H (see Figure 5).

Table A4. Likelihood ratio tests for the null and extended models applied to free parameters in
covariance matrix R.

r1 1 df AIC BIC χ2 df (χ2) p

Null Model 4 162,569 162,602
Extended Model 5 162,570 162,611 0.946 1 0.33

r2
Null Model 4 163,485 163,518

Extended Model 5 163,486 163,528 0.623 1 0.43

r3
Null Model 4 163,367 163,400

Extended Model 5 163,368 163,410 0.629 1 0.42

r4
Null Model 4 166,482 166,515

Extended Model 5 166,483 166,525 0.558 1 0.46
1 r1–r4 are indices for the cells in R (see Figure 5).
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