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Abstract: In this paper, we use the collocation method together with Chebyshev polynomials to solve
system of Lane–Emden type (SLE) equations. We first transform the given SLE equation to a matrix
equation by means of a truncated Chebyshev series with unknown coefficients. Then, the numerical
method reduces each SLE equation to a nonlinear system of algebraic equations. The solution of this
matrix equation yields the unknown coefficients of the solution function. Hence, an approximate
solution is obtained by means of a truncated Chebyshev series. Also, to show the applicability,
usefulness, and accuracy of the method, some examples are solved numerically and the errors of the
solutions are compared with existing solutions.
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1. Introduction

In this paper, we consider the system of the Lane–Emden type equation,

P(t) d2y1
dt2 + α

t
dy1
dt + yp

2 = g1(t)

H(t) d2y2
dt2 + β

t
dy2
dt + yq

1 = g2(t)
(1)

which are subject to the initial conditions,

y1(0) = λ0, y′1(0) = λ1 y2(0) = γ0, y′2(0) = γ1 (2)

where p, q are positive integers and λ0, λ1, γ0 and γ1 are real constants. Notice that the Lane–Emden
equation is linear for q = 0, 1 and nonlinear otherwise.

There are two basic forms of the the Lane–Emden equation in applied sciences [1–5]. The following
equation, which is called the first type Lane–Emden equation, was used to model the problem of stellar
structure and the thermal behaviour of a spherical cloud of gas acting under mutual attraction of its
molecules [1–5].

y′′ (t) +
2
t

y′(t) + g(y) = 0, x > 0

where g(y) is some given function of y. Among the most popular form of g(y) is g(y) = ym with
the conditions y(0) = 1, y′(0) = 0. The exponent m is called polytropic index and positive radially
symmetric solutions of the above equation are used to describe the structure of the polytropic stars [1–4].

The second kind Lane–Emden equation is defined as follows:

y′′ (t) +
2
t

y′(t)− e−y = 0, y(0) = 1, y′(0) = 0
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which is used to model the star as a gaseous sphere in thermodynamic and hydrostatic equilibrium
with a certain equation of state [2,4].

Several methods for the solution of Lane–Emden equations and the system of Lane–Emden
equations have been presented, such as the sinc-collocation method [6], variational iteration method [7],
Hermite collocation method [8], modified Homotopy analysis method [9], modified Adomian
decomposition method [10], Legendre operational matrix method [11], and Berstein operational
matrix method [12], among other methods [13–17].

Recently, the collocation method has been a very useful method to obtain the approximate
solutions. Chebyshev collocation method has been used to obtain the numerical solutions to many
other equations, such as differential-difference equations, delay-difference equations, pantograph
equations, integro-differential-difference equations, and Abel equation, among others [18–27].

The aim of this study is to get approximate solutions as truncated Chebyshev series defined by

yN
1 (t) =

N

∑
n=0

′anT∗n (t), yN
2 (t) =

N

∑
n=0

′bnT∗n (t) (3)

where T∗n (t) = cos(nθ), 2t− 1 = cos θ, 0 ≤ t ≤ 1, denotes the shifted Chebyshev polynomials of the
first kind; ∑ ′ denotes a sum whose first term is halved; an, bn (0 ≤ n ≤ N) are unknown Chebyshev
coefficients, and N is chosen any positive integer. To obtain a solution of the form Equation (3) of
the problem Equation (1) with boundary conditions given by Equation (2), we can use collocation
points [28,29].

ti−1 =
1
2

(
1 + cos(

(N − i + 3/2)π
N

)

)
, i = 1, 2, . . . , N + 1 (4)

which is the zeroes of the shifted Chebyshev polynomial T∗N+1(t). They are called Chebyshev–Gauss
points. If we take these points in an interpolation problem, the obtained result is convergence into the
given functions [28,29].

2. Fundamental Relations

In this section, we give the matrix form of Equations (1) and (2). Firstly, we convert the solution

yN
1,2(t) defined by Equation (3) and its derivative

(
yN

1,2(t)
)(k)

to matrix forms

yN
1 (t) = T∗(t)A, yN(k)

1 (t) = T∗(k)(t)A, k = 0, 1, 2 (5)

yN
2 (t) = T∗(t)B, yN(k)

2 (t) = T∗(k)(t)B, k = 0, 1, 2 (6)

where
T∗(t) = [T∗0 (t) T∗1 (t) . . . T∗N(t)],

T∗(k)(t) = [T∗(k)0 (t) T∗(k)1 (t) . . . T∗(k)N (t)],

A = [
1
2

a0 a1 . . . aN ]
T ,

B = [
1
2

b0 b1 . . . bN ]
T .

On the other hand, it has been known that the relation between the powers tn and the shifted
Chebyshev polynomials T∗n (t) is [24,25].

tn = 2−2n+1
n

∑
k=0

′
(

2n
k

)
T∗n−k(t), 0 ≤ t ≤ 1 (7)
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Using the expression (7) and taking n = 0, 1, . . . , N, we find the corresponding matrix relation
as follows:

(X(t))T = D(T∗(t))TimplyingthatX(t) = T∗(t)DT (8)

where
X(t) = [1 t . . . tN ]

which is a lower triangular matrix. As all the main diagonals of D are not zero, D is invertible matrix.
Then, taking into account Equation (8), we obtain

T∗(t) = X(t)(D−1)
T

(9)

and
(T∗(t))(k) = X(k)(t)(D−1)

T
, k = 0, 1, 2

We use the following relation to obtain the matrix X(k)(t) in terms of the matrix X(t),

X(1)(t) = X(t)CT ,

X(2)(t) = X(1)(t)CT = X(t)(CT)
2

(10)

where

C =


0 0 0 . . . 0
1 0 0 . . . 0
0 2 0 . . . 0

. . . . . . . . . . . . . . .
0 0 0 N 0

.

Consequently, by substituting the matrix forms Equations (9) and (10) into Equations (5) and (6),
we have the matrix relation

yN(k)
1 (t) = X(t)Ck(DT)

−1
A, k = 0, 1, 2 (11)

yN(k)
2 (t) = X(t)Ck(DT)

−1
B, k = 0, 1, 2 (12)

Now, we construct the matrix form of the nonlinear term
(
yN

1 (t)
)q and

(
yN

2 (t)
)p, substituting the

collocation points into
(
yN

1 (t)
)q, we obtain the following matrix representation

(
yN

1 (t0)
)q(

yN
1 (t1)

)q

...(
yN

1 (tN)
)q

 =


yN

1 (t0) 0 0 0
0 yN

1 (t1) 0 0
...

...
. . .

...
0 0 0 yN

1 (tN)


q−1

yN
1 (t0)

yN
1 (t1)

...
yN

1 (tN)

 =
(
Y1
)q−1Y1 (13)

and
Y1 = TA (14)

where

T =


T(t0) 0 · · · 0

0 T(t1) · · · 0
...

...
. . .

...
0 0 · · · T(tN)

, A =


A 0 · · · 0
0 A · · · 0
...

...
. . .

...
0 0 · · · A





Mathematics 2018, 6, 181 4 of 13

Then, we construct the following matrix relation(
yN

1 (t)
)q

=
(

yN
1 (t)

)q−1(
yN

1 (t)
)

1 = (TA)
q−1X(t)(D T)

−1
A (15)

Similarly,
(
yN

2 (t)
)p can be written as(
yN

2 (t)
)p

=
(

yN
2 (t)

)p−1(
yN

2 (t)
)
= (TB)p−1X(t)(D T)

−1
B (16)

where

B =


B 0 · · · 0
0 B · · · 0
...

...
. . .

...
0 0 · · · B


3. Method of Solution

In this section, the fundamental matrix equation corresponding to Equation (1) with conditions
Equation (2) is constructed, and the solution method is presented. For this purpose, we substitute the
matrix relations Equations (11),(12) and Equations (15),(16) into Equation (1) and obtain the following
matrix relation:

P1(t)X(t)C2(DT)
−1A + α

t X(t)C(DT)
−1A + (TB)p−1X(t)

(
DT)−1B = g1(t)

P2(t)X(t)C2(DT)
−1B + β

t X(t)C(DT)
−1B + (TA)

q−1X(t)
(
DT)−1A = g2(t)

, (17)

We can rewrite the Equation (17) as follows:

P(t)X(t)CDY + H(t)X(t)CDY + T(t)X(t)DY = G(t) (18)

where

P(t) =

[
P1(t) 0

0 P2(t)

]
, X(t) =

[
X(t) 0

0 X(t)

]
, C =

[
C2 0
0 C2

]

D =

[
(DT)

−1 0
0 (DT)

−1

]
, H(t) =

[
α/t 0

0 β/t

]
, C =

[
C 0
0 C

]

T(t) =

[
0 (T(t)B)p−1

(T(t)A)q−1 0

]

X(t) =

[
0 X(t)

X(t) 0

]
, D(t) =

[
0 (DT)

−1

(DT)
−1 0

]
, Y =

[
A
B

]
, G(t) =

[
g1(t)
g2(t)

]
.

Using collocation points, we get the matrix equations(
PXCD + HXCD + TXD

)
Y = G (19)

where

P =



P(t0) 0 0 · · · 0

0 P(t1) 0 · · · 0

0 0 P(t2) · · · 0

...
...

...
. . .

...
0 0 0 · · · P(tN)


, H =



H(t0) 0 0 · · · 0

0 H(t1) 0 · · · 0

0 0 H(t2) · · · 0

...
...

...
. . .

...
0 0 0 · · · H(tN)


, C =



0 0 0 . . . 0

1 0 0 . . . 0

0 2 0 . . . 0

. . . . . . . . . . . . . . .

0 0 0 N 0


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P =



P(t0) 0 0 · · · 0

0 P(t1) 0 · · · 0

0 0 P(t2) · · · 0

...
...

...
. . .

...
0 0 0 · · · P(tN)


, H =



H(t0) 0 0 · · · 0

0 H(t1) 0 · · · 0

0 0 H(t2) · · · 0

...
...

...
. . .

...
0 0 0 · · · H(tN)


, C =



0 0 0 . . . 0

1 0 0 . . . 0

0 2 0 . . . 0

. . . . . . . . . . . . . . .

0 0 0 N 0



D =

[
(DT)

−1 0

0 (DT)
−1

]
, Y =

[
A
B

]
, D =

[
D 0
0 D

]

X =


X(t0) 0 0 · · · 0

0 X(t1) 0 · · · 0
0 0 X(t2) · · · 0
...

...
...

. . .
...

0 0 0 · · · X(tN)

, T =


T(t0) 0 0 · · · 0

0 T(t1) 0 · · · 0
0 0 T(t2) · · · 0
...

...
...

. . .
...

0 0 0 · · · T(tN)



X =



X(t0) 0 0 · · · 0
0 X(t1) 0 · · · 0
0 0 X(t2) · · · 0
...

...
...

. . .
...

0 0 0 · · · X(tN)


, G =


G(t0)

G(t1)

G(t2)
...

G(tN)


and where

X(ti) =

[
X(ti) 0

0 X(ti)

]
, P(ti) =

[
P1(ti) 0

0 P2(ti)

]
, H(ti) =

[
α/ti 0

0 β/ti

]

T(ti) =

[
0 (T(ti)B)

p−1

(T(ti)A)q−1 0

]
, X(ti) =

[
0 X(ti)

X(ti) 0

]
, G(ti) =

[
g1(ti)

g2(ti)

]
.

where the dimension of matrices X, X, C, C, D, D, T are diagonal matrices and the dimension of these
matrices are 2(N + 1)× 2(N + 1) and G is 2(N + 1)× 1.

Hence, the matrix Equation (19) corresponding to Equation (1) can be written in the form

WY = G, (20)

where
W = PXCD + HXCD + TXD

Moreover, the matrix form for conditions can be written as

U0 = X(0)(DT)
−1

A = [λ0],

U1 = X(0)C(DT)
−1

A = [λ1],

U2 = X(0)(DT)
−1

B = [α0],

U3 = X(0)C(DT)
−1

B = [α1],

where
X(0) = [1 0 0 0 0 0]
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Then, we can write the conditions as the following matrix form:

UY = F, (21)

where

U = [ukl ] =


U0 0
U1 0
0 U2

0 U3

, F =


λ0

λ1

α0

α1


By replacing the conditions matrices (20) by the last four rows of the matrix (21), we obtain to

a system of 2(N + 1) × 2(N + 1) linear or nonlinear algebraic equations with 2(N + 1) unknown
Chebyshev coefficients. Thereby, the unknown coefficients matrix A and B are obtained by solving the
system by aid of Maple 13. Consequently, by replacing the obtained coefficients an, bn into Equation
(3), we have the wanted approximate solution of Equation (1).

4. Algorithm

In this section, we give the algorithm of the proposed method (see also [26]).
Step 1. Our input data: P(t), H(t), g1(t), g2(t) and conditions.
Step 2. Select N.
Step 3. Construct the matrices T∗(t),X(t), (D−1)

T , C, A, B, P, X, C, D, H, X, C, D, T, X, D.
Step 4. Determine the collocation points: ti−1 = 1

2

(
1 + cos( (N−i+3/2)π

N )
)

.
Step 5. Compute U, F.
Step 6. Construct the system.
Step 7. On the proposed of finding A, B, solve the obtained system by aid of Maple 13.
Step 8. Put the coefficients of truncated Chebyshev series in the truncated Chebyshev series.
Step 9. Out put data: the approximate solutions y1(t), y2(t).

5. Examples

In this section, several numerical examples are given to illustrate the accuracy and effectiveness
properties of the method and all of them were performed on the computer using a program written in
Maple 13. To study the behavior of the present method, we applied the following laws:

(1) Absolute error (Ne) is defined by the following:

Ne(ti) =
∣∣∣yj(ti)− yN

j (ti)
∣∣∣, ti ∈ [0, 1], j = 1, 2 (22)

where yj(x) are the exact solutions and yN
j (x) denote the approximate solution obtained by the

present method.
(2) Relative error, which is defined by the following:

relN =

∣∣∣yj(ti)− yN
j (ti)

∣∣∣∣∣yj(ti)
∣∣ , ti ∈ [0, 1], j = 1, 2

(3)

EL
N =

 1∫
0

(
yj(t)− yN

j (t)
)2

dt

1/2

, j = 1, 2

where yj(x) are the exact solutions and denote the approximate solution obtained by the
present method.
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Example 1. Let us consider the following linear systems of Lane–Emden equations

y′′1 + 3
t y′1 − 4(y1 + y2) = 0

y′′2 + 2
t y′2 + 3(y1 + y2) = 0

(23)

subject to initial conditions

y1(0) = 1, y2(0) = 1, y′1(0) = 0, y′2(0) = 0

which approximates a fully convective star, that is, a very cool late-type star.

Then,

P(t) =

[
1 0
0 1

]
, H(t) =

[
3/t 0
0 2/t

]
, R(t) =

[
−4 −4
3 3

]
, G(t) =

[
0
0

]

Now, we can apply our technique described in Section 3 for N = 5; that is, we seek the
approximate solution of Equation (23) for N = 5 by the terms of truncated Chebyshev polynomial
series as

y5
1(t) =

5

∑
n=0

′anT∗n (t)y
5
2(t) =

5

∑
n=0

′bnT∗n (t)

For N = 5, the Chebyshev–Gaus grid points are

t0 =
1
2
− 1

2
cos(

π

12
), t1 =

1
2
−
√

2
4

, t2 =
1
2
− 1

2
cos(

5π

12
), t3 =

1
2
+

1
2

cos(
π

12
)

t4 =
1
2
+

√
2

4
, t5 =

1
2
+

1
2

cos(
π

12
)

Then, the matrix form of the problem(
PXCD + HXCD + RXD

)
Y = G (24)

where

P =



P0 0 0 0 0 0
0 P1 0 0 0 0
0 0 P2 0 0 0
0 0 0 P3 0 0
0 0 0 0 P4 0
0 0 0 0 0 P5


, H =



H0 0 0 0 0 0
0 H1 0 0 0 0
0 0 H2 0 0 0
0 0 0 H3 0 0
0 0 0 0 H4 0
0 0 0 0 0 H5


, F =



G0

G1

G2

G3

G4

G5


and where

Pi =

[
1 0
0 1

]
, Hi =

[
3/ti 0

0 2/ti

]
, Ri =

[
−4 −4
3 3

]
, Gi =

[
0
0

]

(DT)
−1

=



1 −1 1 −1 1 −1
0 2 −8 18 −32 50
0 0 8 −48 160 −400
0 0 0 32 −256 1120
0 0 0 0 128 −1280
0 0 0 0 0 512


, C =



0 1 0 0 0 0
0 0 2 0 0 0
0 0 0 3 0 0
0 0 0 0 4 0
0 0 0 0 0 5
0 0 0 0 0 0


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Moreover, the matrix form for conditions can be written as follows:[
y1(0)
y2(0)

]
≡
[

U0 0
0 U1

][
A
B

]
=

[
1
1

]
[

y′1(0)
y′1(0)

]
≡
[

U2 0
0 U3

][
A
B

]
=

[
0
0

]
06×1 is zero matrix.

where
U0 = U1 = X(0)(DT)

−1
=
[

1 −1 1 −1 1 −1
]

U2 = U3 = X(0)(DT)
−1

=
[

0 2 −8 18 −32 50
]

Solving the augmented matrix based on conditions, Chebyshev coefficients matrix is obtained
as follows:

A =



11/8
1/2
1/8

0
0
0


, B =



5/8
−1/2
−1/8

0
0
0


Thereby, the solutions of the problem for N = 5 become

y5
1(t) = 1 + t2 and y5

2(t) = 1− t2

which are the exact solution for Equation (23).

Example 2. Let us consider the linear, non-homogeneous systems of Lane–Emden equations, which describes
polytropes in hydrostatic equilibrium as simple models of a star.

y′′1 (t) +
2
t y′1(t)− (4t2 + 6)y1(t) + y2(t) = t4 − t3

y′′2 (t) +
8
t y′2(t) + ty2(t) + y1(t) = et2

+ t5 − t4 + 44t2 − 30t

subject to conditions,
y1(0) = 1, y′1(0) = 0, y2(0) = 0, y′2(0) = 0

The exact solutions of above equation are y1(t) = t4 − t3 and y2(t) = et2
. The absolute errors

which are defined by
∣∣yi(x)− yN

i (x)
∣∣, i = 1, 2 are shown in Tables 1 and 2. In Table 3, the computational

results of the L2-norm error and truncated errors are summarized. The error in truncating a Chebyshev
series by neglecting all terms of degree N + 1 and higher is bounded by sum of the absolute values of
neglected terms [28,29].

maxt∈[0,1]

∣∣∣yj(t)− yN
j (t)

∣∣∣ ≤ ∞

∑
n=N+1

|an| =ET
N (or bn)
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Table 1. Numerical result for approximate solution of y1(t) in Example 2.

t Exact Solution N = 5 Ne = 5 N = 6 Ne = 6 N = 8 Ne = 8

0.0 1.000000 0.999999 0.800 × 10−8 0.999999 0.500 × 10−9 1 0
0.2 1.040810 1.040834 0.238 × 10−4 1.040810 0.135 × 10−6 1.040810 0.102 × 10−6

0.4 1.173510 1.173384 0.126 × 10−3 1.173517 0.690 × 10−5 1.173510 0.261 × 10−6

0.6 1.433329 1.433539 0.209 × 10−3 1.433298 0.305 × 10−4 1.433329 0.471 × 10-6

0.8 1.896480 1.895792 0.688 × 10−2 1.896583 0.102 × 10−3 1.896481 0.909 × 10−6

1.0 2.718281 2.686791 0.314 × 10−1 2.712165 0.611 × 10−3 2.718083 0.197 × 10−3

Table 2. Numerical result for approximate solution of y2(t) in Example 2.

t Exact Solution N = 5 Ne = 5 N = 6 Ne = 6 N = 8 Ne = 8

0 0 0 0 0 0 0 0
0.2 −0.0064 −0.006400 0.436 × 10−7 −0.006400 0.189 × 10−9 −0.00640 0.122 × 10−9

0.4 −0.0384 −0.038399 0.343 × 10−6 −0.038400 0.358 × 10−7 −0.03840 0.399 × 10−9

0.6 −0.0864 −0.086399 0.770 × 10−5 −0.086399 0.102 × 10−6 −0.08640 0.138 × 10−8

0.8 −0.1024 −0.102400 0.620 × 10−5 −0.102400 0.259 × 10−6 −0.10240 0.455 × 10−8

1.0 0.0000 −0.419×10−4 0.419 × 10−4 −0.722×10−5 0.722 × 10−5 0.168 × 10−6 0.168 × 10−6

Table 3. Numerical result for Example 2.

Present Method EL
N ET

N

- y1(t) y2(t) y1(t) y2(t)
N = 5 0.615773 × 10−2 101474 × 10−4 10−2 10−6

N = 6 0.103500 × 10−2 0.148370 × 10−5 10−3 10−8

N = 8 0.263404 × 10−4 0.256832 × 10−7 10−5 10−10

In Figures 1 and 2, we plot the obtained absolute errors. Figures 3 and 4 give us a comparison
of the relative errors. All numerical results and figures are show us the presented method is very
successful to obtain approximate solutions with small N values. Note that E− n = 10−n.
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Example 3. Lastly, consider the following nonlinear problem [26]:

y′′1 (t) +
1
t y′1(t)− y3

2(t)(y
2
1(t) + 1) = 0

y′′2 (t) +
3
t y′2(t) + y5

2(t)(y
2
1(t) + 3) = 0

subject to conditions
y1(0) = 1, y′1(0) = 1, y2(0) = 0, y′2(0) = 0

with exact solutions
y1 =

√
1 + t2, y2 =

1√
1 + t2

Wazwaz et al. [26] has introduced the systematic Adomian decomposition method, which has
yielded the exact solution of this problem. Applying our method for N = 4, 5, 6, the obtained numerical
results are displayed in Tables 4 and 5. The tables and the figures show that the proposed method is in
good agreement with the analytical solution.

Table 4. Numerical result for approximate solution of y1(t) in Example 3.

t Exact Solution N = 4 Ne = 4 N = 5 Ne = 5 N = 6 Ne = 6

0.0 1.00000 1.000000 0 1.00000 0 1.00000 0
0.2 1.019803 1.020423 0.509 × 10−3 1.019815 0.565 × 10−4 1.019803 0.756 × 10−5

0.4 1.077032 1.077135 0.628 × 10−3 1.077064 0.216 × 10−4 1.077032 0.865 × 10−5

0.6 1.166190 1.166724 0.277 × 10−3 1.166185 0.557 × 10−5 1.166190 0.456 × 10−5

0.8 1.280624 1.280663 0.272 × 10−3 1.280699 0.738 × 10−4 1.280624 0.771 × 10−5

1.0 1.414213 1.414742 0.644 × 10−3 1.414217 0.746 × 10−4 1.414213 0.656 × 10−5

Table 5. Numerical result for approximate solution of y2(t) in Example 3.

t Exact Solution N = 4 Ne = 4 N = 5 Ne = 5 N = 6 Ne = 6

0.0 1.000000 1.000000 0 1.000000 0 1.000000 0
0.2 0.980580 0.980103 0.103 × 10−3 0.980570 0.165 × 10−4 0.980580 0.659 × 10−5

0.4 0.928476 0.928687 0.227 × 10−3 0.928466 0.151 × 10−4 0.928476 0.765 × 10−5

0.6 0.857492 0.858961 0.100 × 10−3 0.857482 0.166 × 10−4 0.857492 0.963 × 10−5

0.8 0.780868 0.781652 0.692 × 10−3 0.780898 0.167 × 10−4 0.780868 0.865 × 10−5

1.0 0.707106 0.706123 0.262 × 10−3 0.707146 0.608 × 10−4 0.707106 0.653 × 10−6
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6. Conclusions

As the system of the Lane–Emden type equations, which are nonlinear equations and singular,
solutions of these types of equation are hardly obtained with the known classical methods.
Herein, useful and effective approximate methods are needed. In this article, we deal with obtaining
numerical solutions. The numerical method reduces the problem into the system of nonlinear algebraic
equations with unknown coefficients. The effectiveness of the method is examined by comparing the
obtained results with the exact solutions.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Fowler, R.H. Further studies of Emden’s and similar differential equations. Q. J. Math. 1931, 2, 259–288.
[CrossRef]

2. Meerson, E.; Megged, E.; Tajima, T. On the quasi-hydrostatic flows of radiatively cooling self-gravitating gas
clouds. Astrophys. J. 1996, 457, 321. [CrossRef]

3. Chandrasekhar, S. Introduction to Study of Stellar Structure. Available online: https://www.amazon.com/
Introduction-Study-Stellar-Structure-Astronomy/dp/0486604136 (accessed on 22 August 2018).

4. Davis, H.T. Introduction to Nonlinear Differential and Integral Equations. J. Lond. Math. Soc. 1962, 16, 556.
[CrossRef]

5. Flockerzi, D.; Sundmacher, K. On coupled Lane-Emden equations arising in dusty fluid models. J. Phys.
Conf. Ser. 2011, 268, 012006. [CrossRef]

6. Parand, K.; Pirkhedri, K. Sinc-collocation method for solving astrophysics equations. New Astron. 2010, 15, 533–537.
[CrossRef]

7. Dehghan, M.; Shakeri, F. Approximate solution of a differential equation arising in astrophysics using the
variational iteration method. New Astron. 2008, 13, 53–59. [CrossRef]

8. Parand, K.; Dehghan, M.; Rezaei, A.R.; Ghaderi, S. An approximation algorithm for the solution of the
nonlinear Lane–Emden type equations arising in astrophysics using Hermite functions collocation method.
Comput. Phys. Commun. 2010, 181, 1096–1108. [CrossRef]

9. Singh, O.P.; Pandey, R.K.; Singh, V.K. An analytic algorithm of Lane–Emden type equations arising in
astrophysics using modified Homotopy analysis method. Comput. Phys. Commun. 2009, 180, 1116–1124.
[CrossRef]

10. Hasan, Y.Q.; Zhu, L.M. Solving singular boundary value problems of higher-order ordinary differential equations
by modified Adomian decomposition method. Commun. Nonlinear Sci. Numer. Simul. 2009, 14, 2592–2596.
[CrossRef]

11. Pandey, R.K.; Kumar, N.; Bhardwaj, A.; Dutta, G. Solution of Lane-Emden type equations using Legendre
operational matrix of differentiation. Appl. Math. Comput. 2012, 218, 7629–7637. [CrossRef]

12. Pandey, R.K.; Kumar, N. Solution of Lane-Emden type equations using Berstein operational matrix of
differentiation. New Astron. 2012, 17, 303–308. [CrossRef]

13. Agarwal, R.P.; O’Regan, D. Second order initial value problems of Lane-Emden type. Appl. Math. Lett.
2007, 20, 1198–1205. [CrossRef]

14. Varani, S.K.; Aminataei, A. On the numerical solution of differential equations of Lane-Emden type. Comput.
Math. Appl. 2010, 59, 2815–2820.

15. Aslanov, A. A generalization of the Lane–Emden equation. Int. J. Comput. Math. 2008, 85, 1709–1725.
[CrossRef]

16. Wazwaz, A.M. A new algorithm for solving differential equations of Lane-Emden type. Appl. Math. Comput.
2001, 118, 287–310. [CrossRef]

17. Wazwaz, A.M.; Rach, R.; Duan, J.S. A study on the systems of the Volterra integral forms of the Lane-Emden
equations by the Adomian decomposition method. Math. Method Appl. Sci. 2013, 37, 10–19. [CrossRef]

18. Marin, M. An approach of a heat-flux dependent theory for micropolar porous media. Meccanica
2016, 51, 1127–1133. [CrossRef]

http://dx.doi.org/10.1093/qmath/os-2.1.259
http://dx.doi.org/10.1086/176731
https://www.amazon.com/Introduction-Study-Stellar-Structure-Astronomy/dp/0486604136
https://www.amazon.com/Introduction-Study-Stellar-Structure-Astronomy/dp/0486604136
http://dx.doi.org/10.1112/jlms/s1-39.1.185
http://dx.doi.org/10.1088/1742-6596/268/1/012006
http://dx.doi.org/10.1016/j.newast.2010.01.001
http://dx.doi.org/10.1016/j.newast.2007.06.012
http://dx.doi.org/10.1016/j.cpc.2010.02.018
http://dx.doi.org/10.1016/j.cpc.2009.01.012
http://dx.doi.org/10.1016/j.cnsns.2008.09.027
http://dx.doi.org/10.1016/j.amc.2012.01.032
http://dx.doi.org/10.1016/j.newast.2011.09.005
http://dx.doi.org/10.1016/j.aml.2006.11.014
http://dx.doi.org/10.1080/00207160701558457
http://dx.doi.org/10.1016/S0096-3003(99)00223-4
http://dx.doi.org/10.1002/mma.2776
http://dx.doi.org/10.1007/s11012-015-0265-2


Mathematics 2018, 6, 181 13 of 13

19. Marin, M. Some estimates on vibrations in Thermoelasticity of dipolar bodies. J. Vib. Control 2010, 16, 33–47.
[CrossRef]

20. Marin, M. A temporally evolutionary equation in elasticity of micropolar bodies with voids. U.P.B. Sci. Bull.
Ser. A-Appl. Math. Phys. 1998, 60, 3–12.

21. Gülsu, M.; Öztürk, Y.; Sezer, M. A new collocation method for solution of mixed linear
integro-differential-difference equations. Appl. Math. Comput. 2010, 216, 2183–2198. [CrossRef]

22. Gülsu, M.; Öztürk, Y.; Sezer, M. On the solution of the Abel equation of the second kind by the shifted
Chebyshev polynomials. Appl. Math. Comput. 2011, 217, 4827–4833. [CrossRef]
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