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Abstract: The system of a two-dimensional damped harmonic oscillator is revisited in the extended
phase space. It is an old problem that has already been addressed by many authors that we present
here with some fresh points of view and carry on a whole discussion. We show that the system
is singular. The classical Hamiltonian is proportional to the first-class constraint. We pursue with
the Dirac’s canonical quantization procedure by fixing the gauge and provide a reduced phase
space description of the system. As a result, the quantum system is simply modeled by the original
quantum Hamiltonian.
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1. Introduction

The Hamiltonians of most real physical systems are explicitly time-dependent and do not provide
directly conserved quantities. Succeeding in isolating an invariant helps to gain information about
a fundamental system property. For instance, in the case of an autonomous Hamiltonian system,
the Hamiltonian itself represents an invariant. Many approaches have been developed to identify
conserved quantities for explicitly time-dependent systems. The first one was developed by Emmy
Noether in the context of the Lagrangian formalism [1]. The invariant for the one-dimensional
time-dependent harmonic oscillator was derived by H. R. Lewis [2]. It was demonstrated later that
the Lewis procedure follows from Noether’s theorem [3], and that was extended by Chattopadhyay
to derive invariants for certain one-dimensional non-linear systems [4]. Another approach to finding
conserved quantities for explicitly time-dependent systems was developed by Leach by performing
a finite time-dependent canonical transformation [5]. A third way of finding exact invariants for
time-dependent classical Hamiltonians was derived by Lewis and Leach by using direct Ansätze with
different powers in the canonical momentum [6].

The invariants for time-dependent Hamiltonian systems are still investigated and of interest
in the literature. We were first interested in finding the class of invariants for the two-dimensional
time-dependent Landau problem and harmonic oscillator in a magnetic field [7], where we considered
an isotropic two-dimensional harmonic oscillator with arbitrarily time-dependent mass M(t) and
frequency Ω(t) in an arbitrarily time-dependent magnetic field B(t). Two commuting invariant
observables (in the sense of Lewis and Riesenfeld) L, I were derived in terms of some solutions
of an auxiliary ordinary differential equation and an orthonormal basis of the Hilbert space consisting
of joint eigenvectors ϕλ of L, I.
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Recently, we studied a system of two non-interacting damped oscillators with equal time-
dependent coefficients of friction and equal time-dependent frequencies [8]. The system is described
by the Lagrangian function

L(x1, x2, ẋ1, ẋ2, t) = f−1(t)
(

m
2
(ẋ2

1 + ẋ2
2)−

mω2(t)
2

(x2
1 + x2

2)

)
, (1)

where f is an arbitrary function such that f (t) = e−
∫ t

0 η(t′)dt′ , we assume that the function f is twice
differentiable, and the canonical coordinates are x1, x2. The canonical momenta are respectively given by

p1 =
∂L
∂ẋ1

= m f−1(t)ẋ1, (2)

p2 =
∂L
∂ẋ2

= m f−1(t)ẋ2. (3)

In the canonical formalism, the dynamics of the system is governed by the classical Hamiltonian

H(x1, x2, p1, p2, t) = p1 ẋ1 + p2 ẋ2 − L(x1, x2, ẋ1, ẋ2, t), (4)

which is equivalent to

H(x1, x2, p1, p2, t) =
f (t)
2m

(p2
1 + p2

2) + f−1(t)
mω2(t)

2
(x2

1 + x2
2). (5)

The dynamics of the system are determined by the values of the canonical coordinates and
momenta at any given time t. The coordinates and momenta satisfy a set of Poisson Brackets relations

{x1, p1}PB = 1, {x2, p2}PB = 1, {x1, p2}PB = {x2, p1}PB = 0, (6)

and
{ f , g}PB =

∂ f
∂x1

∂g
∂p1

+
∂ f
∂x2

∂g
∂p2
− ∂ f

∂p1

∂g
∂x1
− ∂ f

∂p2

∂g
∂x2

, (7)

where f and g are any functions of the xi’s and pi’s, i = 1, 2. At the quantum level, the dynamic
invariant method formulated by Lewis and Riesenfeld [9] was used to construct an exact invariant
operator. The exact solutions for the corresponding time-dependent Schrödinger equations are
provided. The solutions were used to derive the generators of the su(1, 1) Lie algebra that enable the
properties of the coherent states to be constructed and studied à la Barut–Girardello and Perelomov.

In this paper we revisit the model in [8] in the extended phase space. The idea is not new in
the literature. For instance, we refer to the following works that we met in the literature: the one
by Struckmeier on Hamiltonian dynamics on the symplectic extended phase space for autonomous
and non-autonomous systems [10], the work done by Baldiotti et al. on the quantization of the
damped harmonic oscillator [11], the work by Menouar and al. entitled the quantization of the
time-dependent singular potential systems: non-central potential in three dimension [12] and the recent
paper by Garcia-Chung et al. entitled Dirac’s method for time-dependent Hamiltonian systems in the
extended phase space [13]. In the extended phase space (i.e., considering the time t as a dynamical
variable with a corresponding conjugate momentum), the Lagrangian of the system is then singularly
characterized by the presence of constraints. We identify the constraints and apply the Dirac method of
quantization. This procedure was presented in the paper by A. Garcia-Chung et al. [13]. An advantage
of extending the phase space is that the symplectic group of the system is also enlarged, giving place
to study the canonical transformation in the extended phase space such that the final dynamical
description of the reduced phase space is no longer time-dependent. An invariant of the system can be
obtained by applying a finite canonical transformation to the initial Hamiltonian of the system in the
extended phase space.
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The quantum Hamiltonian given in [8] is straightforward through canonical quantization, as the
Lagrangian (1) is regular. Let us briefly recall here the procedure of canonical quantization of the
system described in Equations (1), (5), and (6). The Hessian matrix M of the Lagrangian function is
given by

M =

 ∂2L
∂ẋ2

1

∂
∂ẋ1

[ ∂L
∂ẋ2

]

∂
∂ẋ2

[ ∂L
∂ẋ1

] ∂2L
∂ẋ2

2

 =

[
f−1m 0

0 f−1(m)

]
, (8)

and the determinant

det M = det

∣∣∣∣∣
∣∣∣∣∣ f−1m 0

0 f−1(m)

∣∣∣∣∣
∣∣∣∣∣ = m2 f−2(t) 6= 0 . (9)

The Lagrangian in Equation (1) is called regular or standard since its Hessian matrix satisfies
Equation (9). The system described by the Lagrangian in Equation (1) does not involve constraints,
and we assume that the phase space is flat and admits the procedure of canonical quantization which
consists of demanding that to the classical canonical pairs (x1, p1), (x2, p2) that satisfy the Poisson
brackets in Equation (6) we associate the operators x̂1, x̂2, p̂1, p̂2 acting both on the Hilbert space of
the statesH and obey the canonical commutation relations

[x̂1, p̂1] = ih̄; [x̂2, p̂2] = ih̄; [x̂1, p̂2] = 0; [x̂2, p̂1] = 0 , (10)

where the commutator of two operators is given by [ f̂ , ĝ] = f̂ ĝ − ĝ f̂ . We assign to the classical
Hamiltonian H(x1, x2, p1, p2, t) in Equation (5), which is a function of the dynamical variables
x1, x2, p1, p2 and operator Ĥ(x̂1, x̂2, p̂1, p̂2, t) which is obtained by replacing the dynamical variables
with the corresponding operators. Other classical dynamical quantities in quantum mechanics are
similarly associated with quantum operators that act on the Hilbert space of states.

The aim of this paper is to illuminate the Dirac’s method of quantization of the system in the
extended phase space. The subject may be of interest to some readers in the community of mathematical
physics, as it forms some integrity with all needed elements. The organization of the paper is as follows:
in Section 2, we apply Dirac’s method for constrained systems to the model in the extended phase
space. Concluding remarks are given in Section 3.

2. The Model in the Extended Phase Space

In this section we perform the Dirac method of quantization to constrained systems. The reader
interested in knowing more about the method may consult, for example, [14–21]. Here, a constrained
system is one in which there exists a relationship between the system’s degrees of freedom that holds
for all times.

We consider the time integral of the Lagrangian in Equation (1) as the action

S
[

x1(t), x2(t),
dx1(t)

dt
,

dx2(t)
dt

]
=
∫ t2

t1

L(x1, x2, ẋ1, ẋ2)dt. (11)

In order to extend the phase space, we consider the time parameter t as an additional degree of
freedom for the system S described in Equation (11). We consider the arbitrary time scaling transformation
t = tτ(τ), where the parameter τ plays the role of the new time parameter. The function tτ(τ) is chosen
such that it gives a smooth one-to-one correspondence of the domain τ and t. This transformation also
changes the dependency of the coordinates and requires the following redefinitions:

x1(tτ(τ)) = x1,τ(τ), x2(tτ(τ)) = x2,τ(τ). (12)
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Consequently, we have a new functional expression for the action S denoted by

Sτ

[
x1,τ , x2,τ , tτ ,

dx1,τ

dτ
,

dx2,τ

dτ
,

dtτ

dτ

]
=

∫ τ2

τ1

m
2

f−1(tτ)

((
ẋ1,τ

ṫτ

)2
+

(
ẋ2,τ

ṫτ

)2

− mω2(tτ)

2

(
x2

1,τ + x2
2,τ

))
ṫτdτ, (13)

where the notations ẋi,τ , i = 1, 2, and ṫτ are respectively ẋi,τ =
d

dτ
xi,τ , i = 1, 2, and ṫτ =

d
dτ

tτ .
The generalized configuration variables on the extended phase space are given by x1,τ , x2,τ , tτ ,
and their velocities are respectively given by ẋ1,τ , ẋ2,τ , ṫτ . We consider the boundary conditions
x1,τ(t1) = x1, x2,τ(t2) = x2, tτ(τ1) = t1, tτ(τ2) = t2.

The integrand of Equation (13) thus defines the extended Lagrangian Lτ :

Lτ(x1,τ , x2,τ , tτ , ẋ1,τ , ẋ2,τ , ṫτ) =
f−1(tτ)m

2ṫτ

(
ẋ2

1,τ + ẋ2
2,τ

)
− mω2(tτ)ṫτ

2
f−1(tτ)

(
x2

1,τ + x2
2,τ

)
. (14)

Let us first determine the Hessian matrix Mτ of the Lagrangian function Lτ :

Mτ =



∂2L
∂ẋ2

1,τ

∂2L
∂ẋ1,τ∂ẋ2,τ

∂2L
∂ẋ1,τ∂ṫτ

∂2L
∂ẋ2,τ∂ẋ1,τ

∂2L
∂ẋ2

2,τ

∂2L
∂ẋ2,τ∂ṫτ

∂2L
∂ṫτ∂ẋ1,τ

∂2L
∂ṫτ∂ẋ2,τ

∂2L
∂ṫ2

τ


, (15)

which is equivalent to

Mτ =



f−1(tτ)m
ṫτ

0 − f−1(tτ)mẋ1,τ
ṫ2
τ

0 f−1(tτ)m
ṫτ

− f−1(tτ)mẋ2,τ
ṫ2
τ

− f−1(tτ)mẋ1,τ
ṫ2
τ

− f−1(tτ)mẋ2,τ
ṫ2
τ

f−1(tτ)m(ẋ2
1,τ+ẋ2

2,τ)

ṫ3
τ


. (16)

It is easy to show that the determinant (Hessian) of the matrix Mτ is zero, which means that the
Lagrangian Lτ is singular, and a singular Lagrangian theory necessarily involves constraints. Let us
now determine the corresponding conjugate momenta of the configuration variables x1,τ , x2,τ , tτ .
They are respectively given by

p1,τ =
∂Lτ

∂ẋ1,τ
=

f−1(tτ)mẋ1,τ

ṫτ
, (17)

p2,τ =
∂Lτ

∂ẋ2,τ
=

f−1(tτ)mẋ2,τ

ṫτ
, (18)

pτ =
∂Lτ

∂ṫτ
= − f (tτ)

2m
(p2

1,τ + p2
2,τ)−

mω2(tτ) f−1(tτ)

2
(x2

1,τ + x2
2,τ). (19)

The momentum pτ is expressed in terms of the fundamental variables, and a constraint arises as

φ = pτ +
f (tτ)

2m
(p2

1,τ + p2
2,τ) +

mω2(tτ) f−1(tτ)

2
(x2

1,τ + x2
2,τ) ∼ 0. (20)
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We derive the extended Hamiltonian Hτ as the Legendre transform of the extended Lagrangian Lτ

Hτ(x1,τ , x2,τ , tτ , p1,τ , p2,τ , pτ) = p1,τ ẋ1,τ + p2,τ ẋ2,τ + pτ ṫτ − L , (21)

that is explicitly

Hτ =

(
f (tτ)

2m
(p2

1,τ + p2
2,τ) + pτ +

mω2(tτ) f−1(tτ)

2
(x2

1,τ + x2
2,τ)

)
ṫτ . (22)

A first remark is that
Hτ = ṫτφ ∼ 0 . (23)

The use of the ∼ sign instead of the = sign is due to Dirac [14], and has a special meaning:
two quantities related by a ∼ sign are only equal after all constraints have been imposed. Two such
quantities are weakly equal to one another. It is important to note that the Poisson brackets in any
expression must be worked out before any constraints are set to zero.

We now have an extended phase space determined by x1,τ , x2,τ , p1,τ , p2,τ , pτ . The simplectic
structure is determined by the non-vanishing Poisson brackets

{x1,τ , p1,τ}PB = 1, {x2,τ , p2,τ}PB = 1, {tτ , pτ}PB = 1 , (24)

and the Poisson brackets for two arbitrary smooth functions f and g in this extended phase space take
the following form:

{ f , g}PB =
∂ f

∂x1,τ

∂g
∂p1,τ

+
∂ f

∂x2,τ

∂g
∂p2,τ

+
∂ f
∂tτ

∂g
∂pτ
− ∂ f

∂p1,τ

∂g
∂x1,τ

− ∂ f
∂p2,τ

∂g
∂x2,τ

− ∂ f
∂pτ

∂g
∂tτ

. (25)

The constraint φ is a primary constraint, and indeed is the only one, as there are no secondary
constraints generated. We have the presence of a first-class constraint. Recall that a dynamical
variable R is said to be first-class if it has weakly vanishing Poisson brackets with all constraints.
The Hamiltonian Hτ is a first-class Hamiltonian. We set the total Hamiltonian to be

Hτ T = λφ , (26)

where λ is a Lagrange multiplier (note that λ depends only on time). The Hamiltonian equations of
motion derived with this Poisson bracket and the Hamiltonian Hτ T are given by:

ẋ1,τ = {x1,τ , Hτ T}PB = λ
f (tτ)

m
p1,τ , (27)

ẋ2,τ = {x2,τ , Hτ T}PB = λ
f (tτ)

m
p2,τ , (28)

ṗ1,τ = {p1,τ , Hτ T}PB = −λmω2(tτ) f−1(tτ)x1,τ , (29)

ṗ2,τ = {p2,τ , Hτ T}PB = −λmω2(tτ) f−1(tτ)x2,τ , (30)

ṫτ = {tτ , Hτ T}PB = λ, (31)

ṗτ = {pτ , Hτ T}PB,

= λ

(
ḟ (tτ)

2m
(p2

1,τ + p2
2,τ) +

m f−1(tτ)ω(tτ)

2
[2ω̇(tτ)−ω(tτ) ḟ (tτ) f−1(tτ)](x2

1,τ + x2
2,τ)

)
. (32)

The total Hamiltonian is proportional to the constraint φ, and the coefficient of proportionality
is a Lagrange multiplier denoted by λ. The Lagrange multiplier is independent of the phase space
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points. This kind of Lagrange multiplier is referred to as non-canonical gauge. This particular case of
constrained system in which the total Hamiltonian is null when the constraint is strongly set to zero
is usually called a reparametrization-invariant system [22]. The fact that we have only a first-class
constraint implies that all phase space functions will evolve by gauge transformations, and the system
at a given time will gauge equivalent to the system at any other time. To quantize such a theory,
we need to choose between the Dirac and the canonical quantization procedures. If we choose the
canonical quantization, we face the fact that we have no Schrödinger equations because the total
Hamiltonian must necessarily annihilate physical states. The solution is to impose a supplementary
constraint η that depends on the time variable. The process in which a value for the Lagrange multiplier
λ is fixed is usually called fixing the gauge. For instance, the most common gauge fixing is the case in
which λ = t2−t1

τ2−τ1
. This gauge solves the Equation in (31) ṫτ = λ, which means

tτ =
(t2 − t1)(τ − τ1)

τ2 − τ1
+ t1 , (33)

with tτ(τi) = ti, i = 1, 2 holds .
The gauge fixing condition leads to an additional constraint surface

η = tτ −
(t2 − t1)(τ − τ1)

τ2 − τ1
+ t1 ∼ 0 , (34)

and
{φ, η}PB � 0 . (35)

The constraints φ and η are second-class constraints. Recall that a dynamical variable R is said
be second-class if it has weakly non-vanishing Poisson brackets with all the constraints. Let us now
define the Dirac brackets. The matrix of the constraints is given by

∆ =

(
{φ, φ}PB {φ, η}PB
{η, φ}PB {η, η}PB

)
=

(
0 −1
1 0

)
. (36)

The matrix ∆ is obviously invertible, and its inverse is given by

C =

(
0 1
−1 0

)
. (37)

The Dirac brackets of two extended phase space quantities f and g are given by

{ f , g}DB = { f , g}PB − [{ f , φ}PB{η, g}PB − { f , η}PB{φ, g}PB] . (38)

The Poisson bracket (25) is then replaced by the Dirac bracket (38). With respect to that, let us
calculate the Dirac brackets of the fundamental variables in the extended phase space. The non-vanishing
Dirac brackets are as follows:

{x1,τ , p1,τ}DB = 1, (39)

{x2,τ , p2,τ}DB = 1, (40)

{x1,τ , pτ}DB = − f (tτ)

m
p1,τ , (41)

{x2,τ , pτ}DB = − f (tτ)

m
p2,τ , (42)

{p1,τ , pτ}DB = mω2(tτ) f−1(tτ)x1,τ , (43)

{p2,τ , pτ}DB = mω2(tτ) f−1(tτ)x2,τ . (44)
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Comparing the Poisson brackets in Equation (24) and the Dirac brackets in Equations (39)–(44), we
can note the differences that are essentially {tτ , pτ}PB = 1 while {tτ , pτ}DB = 0 and {p1,τ , pτ}PB =

{p2,τ , pτ}PB = 0 while {p1,τ , pτ}DB = mω2(tτ) f−1(tτ)x1,τ and {p2,τ , pτ}DB = mω2(tτ) f−1(tτ)x2,τ .
When the constraints are fulfilled, meaning that φ = 0 and η = 0, we have the coordinates
x1,τ , x2,τ , p1,τ , p2,τ selected as the physical degree of freedom using τ as the time parameter or instead
we can use x1, x2, p1, p2 with t as time parameter in accordance with the initial description. In that
situation, tτ = (t2−t1)(τ−τ1)

τ2−τ1
+ t1 and pτ = −H(x1,τ , x2,τ , p1,τ , p2,τ , τ), where H is the Hamiltonian

in (5). The dynamic of the system is then generated by the Hamiltonian H and the non-vanishing Dirac
brackets {x1,τ , p1,τ}DB = 1; {x2,τ , p2,τ}DB = 1.

The canonical quantization procedure as described in Section (1) for an unconstrained system is
to promote the phase space variable x1, x2, p1, p2 to operators x̂1, x̂2, p̂1, p̂2 that act on elements of a
Hilbert space, which we denote |ψ〉. The commutator between phase space variables

[ f̂ , ĝ] = ih̄{ f , g}DB , (45)

and the quantum level Hamiltonian is given by

Ĥ =
f (t)
2m

( p̂2
1 + p̂2

2) + f−1(t)
mω2(t)

2
(x̂2

1 + x̂2
2), (46)

with
[x̂1, p̂1] = ih̄, [x̂2, p̂2] = ih̄, [x̂1, p̂2] = 0, [x̂2, p̂1] = 0. (47)

3. Concluding Remarks and Perspectives

As we already mentioned in the Introduction, our aim in this paper was to illuminate Dirac’s
quantization procedure for the model in the extended phase space. We focused on the problem of
Dirac’s canonical quantization of a two-dimensional time-dependent harmonic oscillator. As a result,
we showed that after performing all necessary steps, the quantum system is simply modeled by the
original quantum Hamiltonian.

The system can be studied as in [8] by means of the Levis–Riesenfeld procedure of finding
invariant Hermitian operators. The invariant operator in [8] is given by

Î(t) =
1
2

[
(m f−1ρ̇x̂1 − ρ p̂1)

2 +
ν2

ρ2 x̂2
1 + (m f−1ρ̇x̂2 − ρ p̂2)

2 +
ν2

ρ2 x̂2
2

]
, (48)

where the function ρ is the solution of the so-called Ermakov–Pinney Equation [23]:

ρ̈ + ηρ̇ + ω2ρ =
ν2 f 2

m2ρ3 . (49)

An alternative way of finding invariants of the system described in Equations (1) and (5) is
to study the canonical transformation in the extended phase space such that the final dynamical
description of the reduced phase space is no longer time-dependent. This method is discussed in [13].
The canonical transformation is a generalization of the Struckmeier transformation [24]. For the present
case, we consider a coordinate transformation of the form

x1,τ

x2,τ

tτ

p1,τ

p2,τ

pτ


=



A1(Q1, T)
A2(Q2, T)

B(T)
C1(Q1, T)P1 + D1(Q1, T)
C2(Q2, T)P2 + D2(Q2, T)

F(Q1, Q2, T, P1, P2, PT)


. (50)
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The canonical transformation matrix resulting from (50) is given by

M =



∂x1,τ
∂Q1

∂x1,τ
∂Q2

∂x1,τ
∂T

∂x1,τ
∂P1

∂x1,τ
∂P2

∂x1,τ
∂PT

∂x2,τ
∂Q1

∂x2,τ
∂Q2

∂x2,τ
∂T

∂x2,τ
∂P1

∂x2,τ
∂P2

∂x2,τ
∂PT

∂tτ
∂Q1

∂tτ
∂Q2

∂tτ
∂T

∂tτ
∂P1

∂tτ
∂P2

∂tτ
∂PT

∂p1,τ
∂Q1

∂p1,τ
∂Q2

∂p1,τ
∂T

∂p1,τ
∂P1

∂p1,τ
∂P2

∂p1,τ
∂PT

∂p2,τ
∂Q1

∂p2,τ
∂Q2

∂p2,τ
∂T

∂p2,τ
∂P1

∂p2,τ
∂P2

∂p2,τ
∂PT

∂F
∂Q1

∂F
∂Q2

∂F
∂T

∂F
∂P1

∂F
∂P2

∂F
∂PT



, (51)

which is equivalent to

M =



A′1 0 Ȧ1 0 0 0

0 A′2 Ȧ2 0 0 0

0 0 Ḃ 0 0 0

C′1P1 + D′1 0 Ċ1P1 + Ḋ1 C1 0 0

0 C′2P2 + D′2 Ċ2P2 + Ḋ2 0 C2 0

∂F
∂Q1

∂F
∂Q2

∂F
∂T

∂F
∂P1

∂F
∂P2

∂F
∂PT



, (52)

where A′i =
∂Ai
∂Qi

, C′i =
∂Ci
∂Qi

, D′i =
∂Di
∂Qi

, i = 1, 2, and the dot notation is used for the derivative with
respect to T. We would like to solveMT JM = J, where J is the matrix

J =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0


. (53)

SolvingMT JM = J leads to a system of differential equations

Ȧ1(C′1P1 + D′1) + Ḃ
∂F

∂Q1
= (Ċ1P1 + Ḋ1)A′1, (54)

Ȧ2(C′2P2 + D′2) + Ḃ
∂F

∂Q2
= (Ċ2P2 + Ḋ2)A′2, (55)

C1 Ȧ1 + Ḃ
∂F
∂P1

= 0, (56)

C2 Ȧ2 + Ḃ
∂F
∂P2

= 0, (57)
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Ḃ
∂F

∂PT
= 1, (58)

C1 A′1 = 1, (59)

C2 A′2 = 1 , (60)

whose general solution is given by

C1 =
1

A′1
, C2 =

1
A′2

, tτ = B(T), (61)

F =
PT

Ḃ
− Ȧ1

A′1Ḃ
P1 −

Ȧ2

A′2Ḃ
P2 +

1
Ḃ

[∫ (
Ḋ1 A′1 − Ȧ1D′1

)
dQ1 +

∫ (
Ḋ1 A′2 − Ȧ2D′2

)
dQ2

]
, (62)

where the functions Ai(Qi, T), B(T), Di(Qi, T), i = 1, 2 are arbitrary. We can now write
x1,τ , x2,τ , tτ , p1,τ , p2,τ , pτ in terms of the new coordinates as



x1,τ

x2,τ

tτ

p1,τ

p2,τ

pτ


=



A1(Q, T)
A2(Q, T)

B(T)
1

A′1
P1 + D1

1
A′2

P2 + D2

PT
Ḃ −

Ȧ1
A′1 Ḃ P1 − Ȧ2

A′2 Ḃ P2 +
1
Ḃ

[∫ (
Ḋ1 A′1 − Ȧ1D′1

)
dQ1 +

∫ (
Ḋ1 A′2 − Ȧ2D′2

)
dQ2

]


. (63)

The new variables are time-independent, since the time variable is τ. A new Hamiltonian of the
system can be derived in terms of these new variables that is also an invariant of the system since it
is autonomous.
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