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Abstract: In this paper, a reliable method for solving fractional Sturm–Liouville problem based on
the operational matrix method is presented. Some of our numerical examples are presented.
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1. Introduction

The Sturm–Liouville theory plays an important role for the development of spectral methods and
the theory of self-adjoint operators [1]. Several applications on SLPs are studied as boundary-value
problems [2]. The Sturm–Liouville eigenvalue problem has played an important role in modeling many
physical problems. The theory of the problem is well developed and many results have been obtained
concerning the eigenvalues and corresponding eigenfunctions. It should be noted that, since finding
analytical solutions for this problem is an extremely difficult task, several numerical algorithms have
been developed to seek approximate solutions. However, to date, mostly integer-order differential
operators in SLPs have been used, and such operators do not include any fractional differential
operators. Fractional calculus is a theory which unifies and generalizes the notions of integer-order
differentiation and integration to any real order [3–5].

Recently, the fractional Sturm–Liouville problems were formulated in [6,7]. Authors in these
papers considered several types of the fractional Sturm–Liouville equations and they investigated the
eigenvalues and eigenfunctions properties of the fractional Sturm–Liouville operators.

Djrbashian [8] studied the existence of a solution to the fractional boundary value problem.
In [9], authors discussed the aforementioned relation between eigenvalues and zeros of Mittag–Leffler
function. In [10], they used the Homotopy Analysis method while, in [11], they used the fractional
differential transform method to compute the eigenvalues. In [12], researchers used the Fourier series
to solve this problem while, in [13,14], they used the method of Haar wavelet operational matrix.
In [15–19], researchers extended the scope of some spectral properties of fractional Sturm–Liouville
problems. Variational methods and Inverse Laplace transform method were applied in [20,21],
respectively. Recently, in [22], authors constructed numerical schemes using radial basis functions
while, in [23], they used Galerkin finite element method for such problems. Greenberg and
Marletta [24,25] developed their own code using Theta Matrices (SLEUTH). In [26], researchers
implemented the iterated variation method.

In this article, we present a numerical technique for solving class of FSLPs of the form

Dγ[ f (t)Dγy(t)] + µg(t)y(t) = h(t), 0 ≤ t ≤ 1,
1
2
< γ ≤ 1 (1)
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subject to

c0y(0) + c1 Dγy(0) = 0, c2
0 + c2

1 > 0, (2)

c2y(1) + c3 Dγy(1) = 0, c2
2 + c2

3 > 0, (3)

where c0, c1, c2 and c3 are constants such that det

(
c0 c1

c2 c3

)
6= 0, f (t), g(t), h(t) are continuous

functions with f (t), g(t) > 0 for all t ∈ [0, 1], and Dγ is the Caputo derivative.
Next, we present some results related to the Caputo fractional derivative, as well as the definition

of the fractional-order functions.

Definition 1. The Rimann–Liouville fractional integral operator Iγ of order γ > 0 on L1[0, 1] is given by

Iαy(t) =
1

Γ(γ)

t∫
0

y(s)
(t− s)1−γ

ds,

I0y(t) = y(t),

where Γ(γ) is the Euler Gamma functionv (see [5,27]).

For any γ, ζ ≥ 0, and ζ > −1, Iα existsfor any t ∈ [0, 1] and

Iγtζ =
Γ(ζ + 1)

Γ(ζ + γ + 1)
tζ+γ. (4)

Definition 2. The Caputo fractional derivative of order γ is defined by

Dγy(t) = In−γDly(t) =
1

Γ(l − γ)

t∫
0

y(l)(s)
(t− s)γ−l+1 ds,

provided that the integral exists, where l = [γ] + 1, [γ] is the integer part of the positive real number γ, t > 0.

For y ∈ L1[0, 1] and γ ≥ 0:

IγDγy(t) = y(t)−
l−1

∑
r=0

y(r)(0+)
tr

r!
, (5)

Let ∆n be defined by
∆n = Span{1, tγ, t2γ, ..., tnγ}.

The inner product on the set ∆n is given by

( f (t), g(t)) = 1
0 f (t)g(t)dt.

Theorem 1. The sequence of functions defined as follows are orthogonal:

yi(t) = (tγ − ai)yi−1(t)− biyi−2(t), i = 2, 3, ... (6)

with y0(t) = 1, y1(t) = tγ − a1, and

ai =
(tγyi−1(t), g(t))
(yi−1(t), yi−1(t))

, bi =
(tγyi−1(t), yi−2(t))
(yi−2(t), yi−2(t))

.
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Proof. For i = 1,

(y1(t), y0(t)) = (tγ − a1, y0(t))

= (tα, 1)− (tα, 1)
(1, 1)

(1, 1) = 0.

Assume the result of the theorem is true for i > 1. Then, for any j ∈ {0, 1, ..., i− 2}, we have(
yi+1(t), yj(t)

)
=

(
(tγ − ai+1)yi(t)− bi+1yi−1(t), yj(t)

)
=

(
tγyi(t), yj(t)

)
− ai+1

(
yi(t), yj(t)

)
− bi+1

(
yi−1(t), yj(t)

)
=

(
tγyi(t), yj(t)

)
=

(
yi(t), tγyj(t)

)
=

(
yi(t), yj+1(t) + aj+1yj(t) + bj+1yj−1(t)

)
=

(
yi(t), yj+1(t)

)
+ aj+1

(
yi(t), yj(t)

)
+ bj+1

(
yi(t), yj−1(t)

)
= 0.

For j = i− 1,

(yi+1(t), yi−1(t)) = ((tγ − ai+1)yi(t)− bi+1yi−1(t), yi−1(t))

= (tγyi(t), yi−1(t))− ai+1 (yi(t), yi−1(t))− bi+1(yi−1(t), yi−1(t))

= (tγyi(t), yi−1(t))− bi+1(yi−1(t), yi−1(t))

= (tγyi(t), yi−1(t))−
(tγyi(t), yi−1(t))
(yi−1(t), yi−1(t))

(yi−1(t), yi−1(t))

= 0.

2. Operational Matrices of Fractional Integration

A set of l Block Pulse Functions (BPFs) in the interval [0, 1) are given by {b0(t), b1(t), ..., bl−1(t)}
such that

bi(t) =

{
1, i

l ≤ t < i+1
l

0, otherwise

}
(7)

for i = 0, 1, .., l − 1. The following are some of the BPFs properties

bi(t) bj(t) =

{
bi(t), i = j
0, i 6= j

}
(8)

and
1
0bi(t)bj(t)dt =

{
1
l , i = j
0, i 6= j

}
. (9)

If y ∈ L2[0, 1], then
y(t) = YT

l−1Bl−1(t) (10)

where

Yl−1 =


y0

y1
...

yl−1

 , Bl−1(t) =


b0(t)
b1(t)

...
bl−1(t)

 ,
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and
yi = l

i+1
l

i
l

y(t)dt, i = 0, 1, ...l − 1. (11)

Theorem 2. Let Iγ be the Rimann–Liouville functional operator. Then,

Iγ Bl−1(t) = Pγ
l Bl−1(t) (12)

where

Pγ
l =

1
lγ

1
Γ(γ + 2)


1 ε1 ε2 ... ε l−1
0 1 ε1. . . . ε l−2
0 0 1 . . . ε l−3
0 0 0 .. :
0 0 0 0 1


and εr = (r + 1)γ+1 − 2rγ+1 + (r− 1)γ+1, r = 1 : l − 1.

Proof. For each i = 0, 1, ..., l − 1, we can write Iγbi as

Iγbi =
l−1
j=0 cij bj(t).

Multiply both sides by br(t), for 0 ≤ r ≤ l − 1, then integrate both sides to get

cir = r
r+1

l
r
l

Iγbi(t)dt =
r

Γ(γ)

r+1
l

r
l

t∫
0

bi(t)
(t− t)1−γ

dtdt.

=


0, i > r ≥ 0
1, i = r

(r + 1)γ+1 − 2rγ+1 + (r− 1)γ+1 i < r ≤ l − 1

 .

For more details, see [28,29].

Theorem 3. Let YM−1(t) =


y0(t)
y1(t)

...
yM−1(t)

 . Then, there exists an M× l matrix Qγsuch that

YM−1(t) = Qγ
M×l Bl−1(t) (13)

where
(Qγ

M×l)i,k = l
k+1

l
k
l

yi(t)dt

for i = 0 : M− 1 and k = 0 : l − 1.

Proof. It is easy to see that yi(t) ∈ L2[0, 1), for each i = 0 : M − 1. Using Equations (10) and (11),
we get

YM−1(t) = Qγ
M×l Bl−1(t)

where
(Qγ

M×l)i,k = l
k+1

l
k
l

yi(t)dt.

for i = 0 : M− 1 and k = 0 : l − 1 which ends the proof.
From now on, let M = l.
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Theorem 4. If 0 < γ < 1, then Qγ
l×l is nonsingular matrix.

Proof. Theorem 3 implies that

Yl−1(t)Yl−1(t)T = Qγ
l×l Bl−1(t)Bl−1(t)TQγT

l×l .

Integrate both sides with respect to t on (0,1) to get

1
0Yl−1(t)Yl−1(t)Tdt = Qγ

l×l

(
1
0Bl−1(t)Bl−1(t)Tdt

)
QγT

l×l .

Theorem 1 and Equation (9) yield

D1 = Qγ
l×l D2 QγT

l×l (14)

where

D1 =


1
0y0(t)y0(t)dt 0 · · · 0

0 1
0y1(t)y1(t)dt

. . .
...

...
. . . . . . 0

0 · · · 0 1
0yl−1(t)yl−1(t)dt


and

D2 =
1
γ


1
lγ 0 · · · 0

0 2γ−1
lγ

. . .
...

...
. . . . . . 0

0 · · · 0 lγ−(l−1)γ

lγ

 .

Then, det(D1) > 0 and det(D2) > 0. Equation (14) gives(
det(Qγ

l×l)
)2

=
det(D1)

det(D2)
> 0.

Thus, Qγ
l×l is nonsingular.

Operational Matrix of Fractional Integration

If y ∈ C1[0, 1], then
y(t) =∞

k=0 ukyk(t)

where

uk =
1
0u(t)yk(t)dt
1
0 fk(t)yk(t)dt

.

Approximate the function y(t) by

Ul−1(t) =l−1
k=0 u yk(t) = UTYl−1(t), (15)

where

U =


u0

u1
...

ul−1

 and Yl−1(t) =


y0(t)
y1(t)

...
yl−1(t)

 . (16)
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Theorem 5. IγYl−1(t) = Hγ
l Yl−1(t)

where
Hγ

l = Qγ
l×l P

γ
l (Q

γ
l×l)

−1

Proof. Let Hγ
l be given by

IγYl−1(t) = Hγ
l Yl−1(t). (17)

From Equations (13) and (17), we get

IγYl−1(t) = Hγ
l Yl−1(t) = Hγ

l Qγ
l×l Bl−1(t) (18)

and

IγYl−1(t) = IγQγ
l×l Bl−1(t) (19)

= Qγ
l×l I

γBl−1(t)

= Qγ
l×l P

γ
l Bl−1(t).

Combining Equations (18) and (19), we get

Hγ
l Qγ

l×l Bl−1(t) = Qγ
l×l P

γ
l Bl−1(t). (20)

Therefore,
Hγ

l = Qγ
l×l P

γ
l (Q

γ
l×l)

−1.

3. Method of Solution

Using Equations (10) and (13), we get

Dγ[ f (t)Dγy(t)] = UTYl−1(t) = UTQγ
l×l Bl−1(t).

Thus,
f (t)Dγy(t)− f (0)v = IγUTYl−1(t)

where v = Dγy(0). Theorem 5 and Equations (10) and (13) imply that

Dγy(t) =
1

f (t)

(
UT IγYl−1(t) + f (0)v

)
=

1
f (t)

(
UT Hγ

l Yl−1(t) + f (0)v
)

= UT Hγ
l Qγ

l×l
Bml−1(t)

f (t)
+

f (0)v
f (t)

= UT Hγ
l Qγ

l×l


b0(t)/ f (t)
b1(t)/ f (t)

...
bl−1(t)/ f (t)

+ f (0)v


1/ f (t)
1/ f (t)

...
1/ f (t)

 .

Hence,
Dγy(t) =

(
UT Hγ

l Qγ
l×l PF1 + f (0)vF2

)
Bl−1(t)

Thus,
y(t) =

(
UT Hγ

l Qγ
l×l F1 + f (0)vF2

)
IγBl−1(t) + ψ
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where ψ = y(0). Therefore,

y(t) =
(

UT Hγ
l Qγ

l×l F1 + f (0)vF2

)
Yγ

l Bl−1(t) + ψ. (21)

Hence,

UTQγ
l×l Bm−1(t) + µg(t)

((
UT Hγ

l Qγ
l×l F1 + f (0)vF2

)
FYγ

l Bl−1(t) + ψ
)
= h(t)

or
UT(Qγ

l×l + µq(t)Hγ
l Qγ

l×l F1Yγ
l )Bl−1(t) = h(t)− µg(t) f (0)vF2Yγ

l Bl−1(t)− µψg(t). (22)

Using the boundary conditions in Equations (2) and (3), we get the following cases

• if c0 = 0, v = 0, c1 6= 0, c2 6= 0, and

ψ = −c2UT Hγ
l Qγ

l×mF1Yγ
l Bl−1(1)−

c3

c2
UT Hγ

l Qγ
l×l PF1Bl−1(1)

• if c0 6= 0, ψ = − c1
c0

v and

v =
−c2UT Hγ

l Qγ
l×l F1Yγ

l Bl−1(1)− c3UT Hγ
l Qγ

l×lY1Bl−1(1)

f (0)F2Yγ
l Bl−1(1)− c1c2

c0
+ c3 f (0)Y2Bl−1(1)

.

Thus,

UT

 Qγ
l×l + µg(t)Hγ

l Qγ
l×l F1Yγ

l Bl−1(t)+(
µg(t) f (0)F2Yγ

l Bl−1(t)− c1
c0

µg(t)
)(−c2 Hγ

l Qγ
l×l F1Yγ

l Bl−1(1)−c3 Hγ
l Qγ

l×l F1Bl−1(1)

f (0)F2Fγ
l Bl−1(1)−

c1c2
c0

+c3 f (0)F2Bl−1(1)

)  = h(t). (23)

We use the collocation points

ti =
r + 1
l + 1

, i = 0 : l − 1.

Substitute these values into Equation (23) and take the transpose of both sides to get a system of
linear equations in terms of U of the form

G(µ)U = R. (24)

To have a nonzero solution to the system in Equation (24), G(µ) must be nonsingular. Thus,

det(G(µ)) = 0. (25)

Therefore, we find the eigenvalues from Equation (25) and we find the corresponding
eigenfunctions from Equation (21).

4. Numerical Results

We present two examples for l = 16. In this paper, we focus only on the eigenvalues.

Example 1. Consider
Dγ[Dγy(t)] + µy(t) = 0, t ∈ [0, 1], γ ∈ (0.5, 1],

y(0) = 0, y(1) = 0.
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Using the procedure described in the previous section, the generated eigenvalues are reported
in Table 1.

Table 1. Eigenvalues for different values of γ.

γ = 0.75 γ = 0.95 γ = 0.99

8.7825905605957 8.2711826449023 9.6635258705797
14.0844503539395 58.990163159836 38.044080578817

96.673652759078 84.971438095925
148.295350243613 150.13372170205
199.571402506686 233.59863572826
277.107135647923 335.09777723091
295.450149615306 454.76440655382

590.93089519416

For γ = 1, the exact eigenvalues are well-known and they are given by

µn = n2π2, n = 1, 2, 3, ....

It is worth mentioning that the eigenvalues of the problem in this example approach to n2π2

when γ approaches to 1. Let
δi,j =

∣∣∣10yi(t) yj(t) dt
∣∣∣ .

For γ = 0.75, δ1,2 = 5.7× 10−16. Sample of these values for γ = 0.95 are given as

δ1,2 = 5.7× 10−16, δ4,6 = 2.6× 10−16, δ1,6 = 8.3× 10−16.

Similarly, for γ = 0.99,

δ1,2 = 3.1× 10−16, δ4,6 = 4.2× 10−16, δ1,7 = 2.0× 10−16.

This means the orthogonality relation holds. We notice that the eigenvalues satisfy the
increasing property.

Example 2. Consider

Dα[Dαy(t)] + λ(1 + tα)y(t) = 0, t ∈ [0, 1], γ ∈ (0.5, 1],

u(0) = 0, u(1) = 0.

Using the procedure described in the previous section, the generated eigenvalues are reported
in Table 2.

Table 2. Eigenvalues for different values of γ.

γ = 0.501 γ = 0.75 γ = 0.95

3.74496847027704 4.90596508821842 5.82711926402061
5.59359607314814 9.95423834570763 21.8630977993855

25.47511927569108 14.2468657217155 100.868795211963
151.8458499360075 25.8797084072818 234.225682145921

124.475138197374 439.200912754629
721.009344587213
984.124781340994
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Let
δi,j =

∣∣∣10yi(t) yj(t) g(t)dt
∣∣∣ .

For γ = 0.502, δ1,2 = 3.3× 10−16 and δ2,4 = 4.9× 10−16 . Samples of these values for γ = 0.75 are
given as

δ1,2 = 2.2× 10−16, δ4,5 = 4.1× 10−16, δ1,5 = 6.9× 10−16.

Similarly, for γ = 0.95,

δ1,2 = 1.2× 10−16, δ4,6 = 2.1× 10−16, δ1,7 = 4.6× 10−16.

This means the orthogonality relation holds. We notice that the eigenvalues satisfy the property

µ1 ≤ µ2 ≤ ....

5. Conclusions

In this article, a reliable method for solving fractional Sturm–Liouville problem based on the
operational matrix method is presented. Two of our numerical examples are presented. From the
previous discussion, we notice the following.

• From previous section, we can find the eigenvalues with the following property

λ1 < λ2 < λ3 < ... < λn < ....

• From previous section, the orthogonality property

1
0yi(t) yj(t) q(t) = 0, i 6= j

holds.
• The proposed method can be generalized to other applications in Physics and Engineering.
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