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Abstract: It is shown that the set of all networks of fixed order n form a semigroup that is
isomorphic to the semigroup BX of binary relations on a set X of cardinality n. Consequently,
BX provides for Green’s L, R, H, and D equivalence classifications of all networks of fixed order n.
These classifications reveal that a fixed-order network which evolves within a Green’s equivalence
class maintains certain structural invariants during its evolution. The “Green’s symmetry problem” is
introduced and is defined as the determination of all symmetries (i.e., transformations) that produce
an evolution between an initial and final network within an L or an R class such that each symmetry
preserves the required structural invariants. Such symmetries are shown to be solutions to special
Boolean equations specific to each class. The satisfiability and computational complexity of the
“Green’s symmetry problem” are discussed and it is demonstrated that such symmetries encode
information about which node neighborhoods in the initial network can be joined to form node
neighborhoods in the final network such that the structural invariants required by the evolution are
preserved, i.e., the internal dynamics of the evolution. The notion of “propensity” is also introduced.
It is a measure of the tendency of node neighborhoods to join to form new neighborhoods during a
network evolution and is used to define “energy”, which quantifies the complexity of the internal
dynamics of a network evolution.

Keywords: network classification; network evolution; network symmetries; Green’s symmetry
problem; network invariants; network internal dynamics; symmetry ensembles; propensities; energy

1. Introduction

Symmetry is a principle which has served as a guide for the spectacular advances that have been
made in modern science, especially physics. For example, the continuous translational symmetry of
ordinary space and time guarantees the invariance of the laws of physics under such translations.
Thus, any mathematical expression describing a physical system, whether subatomic or macroscopic,
must be invariant under space and time translations.

Group theory is the mathematical language used to describe symmetry and its associated invariant
properties (recall that an abstract group is a set S of elements together with a law of composition “ ◦ ”
such that for x, y, z ∈ S (i) x ◦ y ∈ S; (ii) x ◦ (y ◦ z) = (x ◦ y) ◦ z; (iii) there is an identity element e ∈ S
such that x ◦ e = e ◦ x = x; and (iv) for x ∈ S there is an inverse x−1 ∈ S such that x ◦ x−1 = x−1 ◦ x = e).
As a simple example, the set S of 0◦, 90◦, 180◦, and 270◦ rotations in the plane of a square about
its fixed center under “composition of rotations” form a symmetry group for the square (0◦ is the
identity element and the inverse of an X◦ ∈ S rotation is a 360◦ − X◦ rotation). Each of these
rotations is a symmetry which brings the square into coincidence with itself, i.e., they preserve the
invariant shape of the square. A much more complicated example are the so called gauge symmetries
of the standard model of physics which classify and describe three fundamental forces of nature
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(i.e., the electromagnetic, weak, and strong forces) in terms of groups (specifically, the unitary group
U(1) of degree 1 and the special unitary groups SU(2) and SU(3) of degree 2 and 3, respectively).

In recent years, the notion of generalized symmetry has been introduced to further describe
graph symmetry [1,2]. The generalized symmetries of a graph are a generalization of the notion of the
automorphism group of a graph and are derived from the application of Green’s equivalence relations
to the endomorphism monoid of the graph (the automorphism group is a subgroup of the graph’s
endomorphism monoid). Since these symmetries and invariant properties are strictly associated with
a single graph, they do not address properties that remain fixed when the connection topology of the
graph changes.

An important problem in network theory is identifying those properties of networks that remain
fixed (invariant) as the network’s connection topology changes with time. It was shown in [3] that
the set of all networks (i.e., all connection topologies) on a fixed number of nodes also forms a
semigroup. There it was also shown that the application of Green’s equivalence relations to this
semigroup partitions the associated set of networks into equivalence classes, each of which contains
many fixed node number networks with various connection topologies, such that all networks within
each class share some identifiable invariant connectivity property. If the connection topology of a
network changes such that its initial and final configurations are in the same equivalence class, then the
initial and final configurations share a common invariant property. It follows that, in this context,
Green’s equivalence classifications can be useful for identifying invariant properties of networks which
evolve within an equivalence class. Such connectivity invariants can be used, for example, to identify
important actors in evolving social networks and to select communication network reconfigurations
that will retain a desired connectivity between specific node sets.

Transformations between networks within an equivalence class which preserve the associated
invariant connectivity properties are called “Green’s symmetries”. Here, in addition to reviewing the
Green’s classification of networks [3], the “Green’s symmetry problem” is introduced and defined.
This problem is to determine (by calculation) the ensemble set of all the Green’s symmetries which
evolve an initial network configuration into a final configuration within a fixed Green’s R equivalence
class or within a fixed Green’s L equivalence class. As discussed below, each such symmetry encodes
information about the internal dynamics of the evolution, i.e., how node neighborhoods in the initial
network configuration are joined to form node neighborhoods in the final configuration such that the
invariant properties are preserved.

Since the cardinality of such ensembles can be large, the statistical notion of propensity is
introduced. This quantity provides measures of the overall tendency of node neighborhoods
in an initial network configuration to associate and form node neighborhoods in the final
network configuration. Propensities are used to define “propensity energies”, which quantify the
overall complexity of the internal dynamics of a network evolution, and “energies of evolution”,
which quantify the complexity of internal dynamical activity for an evolution produced by a specific
ensemble symmetry.

The objective of this paper is to motivate the application of Green’s symmetry principles to
network science by demonstrating how Green’s equivalence relations can be applied to: classify
networks; identify associated structural invariants; determine symmetries that preserve these
invariants; and define associated measures that quantify aspects of the internal dynamics of network
evolutions. The remainder of this paper is organized as follows: To make this paper reasonably
self-contained, the relevant definitions and terminology from semigroup theory are summarized in
the next section (for additional depth and clarification the reader is invited to consult such standard
references as [4,5]). The semigroup BX of all binary relations on a finite set X and the semigroup
Bn of n× n Boolean matrices are defined and shown to be isomorphic to one another in Section 3.
The semigroup of networks NV on a fixed set V of nodes is introduced and is shown to be isomorphic
to BV in Section 4. This isomorphism provides for the Green’s equivalence classifications of NV
given in Section 5. Green’s evolutions of networks and their associated invariant properties are
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discussed in Section 6. The “Green’s symmetry problem” is defined in Section 7 and its satisfiability
and computational complexity are discussed in Section 8. The information encoded in symmetries
as internal dynamics is detailed in Section 9. Symmetry “ensembles” and their “propensities” and
“energies” are introduced in Section 10. A simple example illustrating aspects of the theory is presented
in Section 11. Concluding remarks comprise the final section of this paper.

2. Semigroups

A semigroup S ≡ (S, ◦) is a set S and an associative binary operation “ ◦ ” called multiplication
defined upon the set (contrast this with the above definition of a group and note that a group is a
semigroup endowed with the additional special properties given by items (iii) and (iv)). The one-sided
right (one-sided left) multiplication of x ∈ S by y ∈ S is the product x ◦ y ∈ S (y ◦ x ∈ S). An element
e ∈ S is an identity if x ◦ e = e ◦ x = x for x ∈ S. An identity can be adjoined to S by setting S1 = S∪ {e}
and defining x ◦ e = e ◦ x = x for x ∈ S1. Semigroup S ≡ (S, ◦) and the semigroup T ≡ (T, ∗) on set T
with associative binary operation “ ∗ ” are isomorphic (denoted S ≈ T) when there is a bijective map
(i.e., an isomorphism) θ : S→ T such that θ(x ◦ y) = θ(x) ∗ θ(y) for all x, y ∈ S.

The well-known L, R, H, and D Green’s equivalence relations on a semigroup S partition
S into a highly organized “egg box” structure using their relatively simple algebraic properties.
In particular, the equivalence relation L(R) on S is defined by the rule that xLy (xRy) if and only if
S1x = S1y

(
xS1 = yS1) for x, y ∈ S and the equivalence relation H = L ∩R is similarly defined so

that xHy if and only if xLy and xRy. The relations L and R commute under the composition “•” of
binary relations and D≡ L•R = R•L is the smallest equivalence relation containing L and R.

For x ∈ S and X ∈{L, R, H, D} denote the X class containing x by X(x) where X = L, R, H,
or D when X = L, R, H, or D, respectively. Thus, xXy if and only if X(x) = X(y). If x, y ∈ S and
R(x) = R(y)(L(x) = L(y)), then there exist elements s (t) in S1 such that xs = y (tx = y) (hereafter
the juxtaposition xy will also be used for the multiplication x ◦ y).

3. The Semigroups Bn and BX

The semigroup Bn of Boolean matrices is the set of all n× n matrices over {0, 1} with Boolean
composition γ = α ◦ β defined by

γij = ∨k∈J

(
αik ∧ βkj

)
, (1)

as the semigroup multiplication operation. Here J = {1, 2, · · · , n}, where n ≥ 1 is a counting number,
∧ denotes Boolean multiplication (i.e., 0∧ 0 = 0∧ 1 = 1∧ 0 = 0, 1∧ 1 = 1), and ∨ denotes Boolean
addition (i.e., 0∨ 0 = 0, 0∨ 1 = 1∨ 0 = 1∨ 1 = 1).

The rows (columns) of any α ∈ Bn are Boolean row (column) n, vectors, i.e., row (column) n,
tuples over {0, 1}, and come from the set Vn(Wn) of all Boolean row (column) n-vectors. These vectors
can be added coordinate-wise using Boolean addition. If u, v ∈ Vn(Wn), then u v v when the ith
coordinate ui = 1 implies the ith coordinate vi = 1, 1 ≤ i ≤ n (v is a partial order).

Let 0(1) be either the zero (unit) row or zero (unit) column vector (the context in which 0(1) is
used defines whether it is a row or column vector). The matrix with 0 in every row, i.e., the zero matrix,
is denoted by “Z” and the matrix with 1 in every row is denoted by “ω”. For α ∈ Bn, the row space
Γ(α) of α is the subset of Vn consisting of 0 and all possible Boolean sums of (one or more) nonzero
rows of α. Γ(α) is a lattice (Γ(α),v) under the partial order v. The row (column) basis r(α) (c(α)) of α

is the set of all row (column) vectors in α that are not Boolean sums of other row (column) vectors in α.
Please note that each vector in r(α) (c(α)) must be a row (column) vector of α. The vector 0 is never a
basis vector and the empty set ∅ is the basis for the Z matrix [6,7].

The semigroup BX of binary relations on a set X of cardinality n (denoted |X| = n) is the power
set of X× X with multiplication a = bc being the “composition of binary relations” defined by

a = {(x, y) ∈ X× X : (x, z) ∈ b, (z, y) ∈ c, when z ∈ X}. (2)
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It is easy to see that a bijective index map f : X → J induces an isomorphism λ : BX → Bn

defined by λ(a) = α, where αij = 1 if
(

f−1(i), f−1(j)
)
∈ a and is 0 if

(
f−1(i), f−1(j)

)
/∈ a. Bn is

therefore the Boolean matrix representation of BX [8].

4. The Semigroup NV

A network E of order n is the pair E = (V, C), where V is a nonempty set of nodes with |V| = n,
and the binary relation C ⊆ V×V is the set of directed links connecting the nodes of the network. Thus,
E is both a digraph and a binary relation. If (x, y) ∈ C, then node x(y) is an in(out)-neighbor of node
y(x). The in-neighborhood of x ∈ V is the set I(E; x) of all in-neighbors of x and the out-neighborhood of
x ∈ V is the set O(E; x) of all out-neighbors of x.

Let NV be the set of networks on V and define “multiplication of networks” by EF = G ≡
(
V, C#),

where E = (V, C), F = (V, C′), and

C# =
{
(x, y) ∈ V ×V : (x, z) ∈ C, (z, y) ∈ C′, when z ∈ V

}
. (3)

Lemma 1. NV is a semigroup that is isomorphic to BV .

Proof. The operation “multiplication of networks” is the same as the operation “composition of binary
relations”. Since it is clearly an associative binary operation on NV , then NV is a semigroup under the
operation “multiplication of networks”. Also, the bijective map ϕ : NV → BV defined by ϕ(E) = C
preserves multiplication. Thus, ϕ is a semigroup isomorphism and NV ≈ BV .

Lemma 2. If |V| = n, then NV ≈ Bn.

Proof. This follows from the facts that NV ≈ BV (Lemma 1) and BV ≈ Bn [8].

Thus, Bn is also a Boolean matrix representation of NV .

5. Green’s Equivalence Classifications of NV

Let θ : NV → Bn be the isomorphism of Lemma 2 and f : V → J be an associated index bijection.
If αi∗ is the ith Boolean row vector and α∗j is the jth Boolean column vector in the matrix α = θ(E)
corresponding to network E, then αi∗ encodes the out-neighbors of node f−1(i) in E as the set

O
(

E; f−1(i)
)
=
{

f−1(k) : αik = 1, k ∈ J
}

(4)

and α∗j encodes the in-neighbors of node f−1(j) in E as the set

I
(

E; f−1(j)
)
=
{

f−1(j) : αkj = 1, k ∈ J
}

. (5)

When αi∗ ∈ r(α) and α∗j ∈ c(α), then Or
(
E; f−1(i)

)
≡ O

(
E; f−1(i)

)
is a basis out-neighborhood

and Ic
(
E; f−1(j)

)
≡ I
(
E; f−1(j)

)
is a basis in-neighborhood for network E. Thus, a basis neighborhood

in E is a nonempty neighborhood in E which is not the set union of other neighborhoods in E.
Let Or(E) be the set of basis out-neighborhoods and Ic(E) be the set of basis in-neighborhoods in

network E. Also, define P(E) as the set whose elements are ∅ and the sets generated by the closure
under set union of the out-neighborhoods in E and let (P(E),⊆) be the poset ordered by the set
inclusion relation “ ⊆ ”. Thus, when θ(E) = α, it may be formally stated that:

Lemma 3. (P(E),⊆) is a lattice that is isomorphic to (Γ(α),v).

Proof. The proof for this Lemma is the same as that given as the proof of Lemma 3.3 in [3].
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In what follows, (P(E),⊆) will be referred to as the Π lattice for E.
The following major theorem provides complete L, R, H, and D equivalence classifications of

all fixed-order networks:

Theorem 1. Let E, F ∈ NV . Then

i. L(E) = L(F) if and only if Or(E) = Or(F);
ii. R(E) = R(F) if and only if Ic(E) = Ic(F);
iii. H(E) = H(F) if and only if Or(E) = Or(F) and Ic(E) = Ic(F);
iv. D(E) = D(F) if and only if (P(E),⊆) and (P(F),⊆) are lattice isomorphic.

Proof. The proof of this result is the same as the proof of Theorem 3.4 in [3].

Thus, the Green’s L, R, and H equivalence classifications of the networks in NV
depend entirely upon their having (generally distinct) nodes with identical out-neighborhoods,
identical in-neighborhoods, and both identical out-neighborhoods and in-neighborhoods, respectively,
whereas the D equivalence classification of networks in NV depends entirely upon their having
isomorphic Π lattices which are generated by their out-neighborhoods. As an illustration of this
theorem the reader is invited to consult the simple example given in [3] which corresponds to the
complete Green’s equivalence classification of (and the associated “egg box” structure for) all order
two networks.

6. Green’s Evolutions of Fixed-Order Networks

For E, F ∈ NV , let E→ F denote the evolution of a network during a time interval
[t1, t2], where E is the initial network at t1 and F is the final network at t2 > t1.
If L(E) = L(F)(R(E) = R(F))[H(E) = H(F)] {D(E) = D(F)}, then the evolution E→ F is a Green’s
L(R)[H]{D} evolution. It is important to note that since D = L•R = R•L and H = L ∩R, then L
and R evolutions are also D evolutions, whereas H evolutions are both L and R evolutions, as well
as D evolutions.

Theorem 2. The following statements are true for network evolutions in NV :

i. L evolutions preserve basis out-neighborhood sets and Π lattice isomorphism;
ii. R evolutions preserve basis in-neighborhood sets and Π lattice isomorphism;
iii. H evolutions preserve basis out-neighborhood and in-neighborhood sets and Π lattice isomorphism;
iv. D evolutions preserve Π lattice isomorphism.

Proof. This is a direct and obvious consequence of the definitions of Green’s evolutions and Theorem 1.

To illustrate this theorem, consider the order two networks ψ ≡
(
V, Cψ

)
and µ ≡

(
V, Cµ

)
in the

example in [3], where V = {a, b}, Cψ = {(a, a)}, and Cµ = {(a, a), (b, a)}. As can be seen from the
associated Green’s equivalence classification performed there, since L(ψ) = L(µ) and D(ψ) = D(µ),
the evolution ψ→ µ is both a Green’s L evolution and a Green’s D evolution. Theorem 2 (i) is
satisfied, since, from Table 1 and the discussion in [3], it is also seen that Or(ψ) = {{a}} = Or(µ) and
that the Π lattices are isomorphic undirected paths of length 1.

7. The Green’s Symmetry Problem

In general, a symmetry associated with a “situation” is defined as an “immunity to change” for
some aspect of the “situation”. For a “situation” to have a symmetry: (a) the aspect of the “situation”
remains unchanged when a change is performed; and (b) it must be possible to perform the change,
although the change does not actually have to be performed [9].
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Recall from Section 2 that for an R(L) evolution E→ F in NV , there exists at least one
A ∈ NV (T ∈ NV) such that EA = F (TE = F). Although A(T) does not have to be applied to
E, it can produce the desired evolution when applied as a right (left) multiplication of E. In so
doing, this multiplication not only preserves Ic(E) (Or(E)), but also E’s Π lattice structure. Thus,
(a) and (b) above are satisfied and both Ic(E)(Or(E)) and the associated Π lattice structure can
be considered as the invariant properties associated with the symmetries A (T) which produce the
evolution. Symmetries such as A (T) are Green’s R(L) symmetries.

The “Green’s symmetry problem” is defined here as the determination of all symmetries that produce
an evolution from an initial to a final network within an R or an L class such that each symmetry
preserves the structural invariants required by Theorem 2. As will be discussed below, such symmetries
encode information about which node neighborhoods in the initial network can be joined to form
neighborhoods in the final network such that the structural invariants required by the evolution
are preserved.

8. Satisfiability and Computational Complexity of the Green’s Symmetry Problem

The Green’s symmetry problem for an evolution is m− satisfiable if there are m symmetries which
can produce the evolution.

Theorem 3. The Green’s symmetry problem is at least 1− satisfiable for both Green’s R and L evolutions.

Proof. Semigroup theory guarantees the existence of at least one Green’s symmetry in NV that can
produce a Green’s R evolution and at least one Green’s symmetry in NV that can produce a Green’s
L evolution.

8.1. Green’s R Evolutions

The isomorphism established in Lemma 2 provides for computational solutions to the Green’s
symmetry problem. In particular, if E→ F is a Green’s R evolution, then, since E and F are
known, the equation EA = F can be solved for A for each i, j ∈ J using the disjunctive normal
form logical expression

∨k∈J

(
Eik ∧ Akj

)
= Fij, (6)

where use is now made of the Boolean matrix representations of E, F, and A. This expression for fixed
j and all i ∈ J defines a system of |J| equations for node j.

This system of equations is column-j satisfied if there exists a column vector A∗j ∈Wn for which (1)
is a true statement for each i ∈ J. For each j ∈ J, let G∗j be the set of all A∗j for which the associated
system of equations is satisfied and define γ ≡ ∏j∈J

∣∣G∗j
∣∣. Clearly, if γ > 0, then EA = F is column-j

satisfied for each j ∈ J and the evolution E→ F is γ-satisfiable. Each instantiation of A is represented by
a Boolean matrix in Bn which has an x ∈ G∗j as its jth column.

Let Mi = {k ∈ J : Eik = 1} index the unit valued entries in the row vector Ei∗ ∈ Vn.

Lemma 4. Let Fij = 0 for some i, j ∈ J and Mi 6= ∅. If A∗j ∈ Wn column- j satisfies EA = F, then A∗j has
Akj = 0 when k ∈ Mi.

Proof. Assume for some j ∈ J that A∗j ∈Wn column-j satisfies EA = F. If Fij = 0 and Mi 6= ∅ for some
i ∈ J, then (1) is true and zero valued for A∗j and that i value, and the following implication chain is valid:

∨k∈J

(
Eik ∧ Akj

)
= 0⇒ ∨l∈J−Mi

(
0 ∧ Al j

)
∨k∈Mi

(
1 ∧ Akj

)
= 0⇒ ∨k∈Mi

(
1 ∧ Akj

)
= 0⇒ Akj = 0,

k ∈ Mi. However, since A∗j ∈Wn column-j satisfies EA = F, it must also satisfy (1) for all k ∈ J ⇒ A∗j
has Akj = 0 when k ∈ Mi.

Corollary 1. If E = ω, then A∗j = 0.

Proof. E = ω ⇒ Mi = J ⇒ ∨k∈J

(
1∧ Akj

)
= 0⇒ Akj = 0, k ∈ J ⇒ A∗j = 0.
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The computational complexity CR of the Green’s symmetry problem for Green’s R evolutions
is the number of remaining combinations of Akj ∈ {0, 1} values which must be checked for EA = F
satisfiability after the Akj = 0 assignments specified by Lemma 4 have been made. Assume that
E 6= ω, z and for each j ∈ J let Q(j) =

{
i ∈ J : Fij = 0

}
index the zero valued Boolean equations of

form (1).

Theorem 4. CR = ∑j∈J

[
2n−|∪i∈Q(j) Mi |

]
.

Proof. For each j ∈ J, the set ∪i∈Q(j)Mi (which can possibly be empty) indexes all row locations k ∈ J
in A∗j for which Akj = 0 in every A∗j that column-j satisfies EA = F. The set J −∪i∈Q(j)Mi indexes all
k ∈ J for which Akj must be evaluated to determine the column-j satisfiability of an associated A∗j.

Since there are Zj = 2n−|∪i∈Q(j) Mi | such evaluations for each j ∈ J, then for all j ∈ J there are a total of
CR = ∑j∈J Zj evaluations required to determine all A∗j ∈Wn which column-j satisfy EA = F.

8.2. Green’s L Evolutions

If E→ F is a Green’s L evolution, then, since TE = F, it can be solved for T for each i, j ∈ J using
the disjunctive normal form logical expression

∨k∈J

(
Tik ∧ Ekj

)
= Fij, (7)

which, for fixed i and all j ∈ J, defines a system of |J| equations for node i. This system is row-i satisfied
if there exists a row vector Ti∗ ∈ Vn for which (2) is a true statement for each j ∈ J. For each i ∈ J,
let Hi∗ be the set of all Ti∗ for which the associated system of equations is row-i satisfied and define
δ ≡ ∏i∈J |Hi∗|. If δ > 0, then TE = F is row-i satisfied for each i ∈ J and the evolution E→ F is δ−
satisfiable. Each instantiation of T is represented by a Boolean matrix in Bn which has a y ∈ Hi∗ as its
ith row.

Let Kj =
{

k ∈ J : Ekj = 1
}

index the unit valued entrees in the column vector E∗j ∈Wn.

Lemma 5. Let Fij = 0 for some i, j ∈ J and Kj 6= ∅. If Ti∗ ∈ Vn row-i satisfies TE = F, then Ti∗ has Tik = 0
when k ∈ Kj.

Proof. Assume for some i ∈ J that Ti∗ ∈ Vn row, i satisfies TE = F. If Fij = 0 for some j ∈ J and Kj 6= ∅,
then (2) is true and zero valued for Ti∗ and that j value, and the following implication chain is valid:
∨k∈J

(
Tik ∧ Ekj

)
= 0⇒ ∨l∈J−Kj(Til ∧ 0) ∨k∈Kj (Tik ∧ 1) = 0⇒ ∨k∈Kj(Tik ∧ 1) = 0⇒ Tik = 0, k ∈ Kj.

However, since Ti∗ row-i satisfies TE = F, it must also satisfy (2) for all j ∈ J ⇒ Ti∗ has Tik = 0 when
k ∈ Kj.

Corollary 2. If E = ω, then Ti∗ = 0.

Proof. E = ω ⇒ Kj = J ⇒ ∨k∈J(Tik ∧ 1) = 0⇒ Tik = 0, k ∈ J ⇒ Ti∗ = 0 .

The computational complexity CL of the Green’s symmetry problem for Green’s L evolutions
is the number of remaining combinations of Tik ∈ {0, 1} values which must be checked for TE = F
satisfiability after the Tik = 0 assignments specified by Lemma 5 have been made. Assume that
E 6= ω, z and for each i ∈ J let Y(i) =

{
j ∈ J : Fij = 0

}
index the zero valued Boolean equations of

form (2).

Theorem 5. CL = ∑i∈J

[
2n−|∪j∈Y(i) Kj |

]
.

Proof. For each i ∈ J, the set ∪j∈Y(i)Kj (which can possibly be empty) indexes all column locations
k ∈ J for which Tik = 0 in every Ti∗ that row-i satisfies TE = F. The set J −∪j∈Y(i)Kj indexes all k ∈ J
for which Tik must be evaluated to determine the row-i satisfiability of an associated Ti∗. Since there
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are Zi = 2n−|∪j∈Y(i) Kj | such evaluations for each i ∈ J, then for all i ∈ J there are a total of CL = ∑i∈J Zi
evaluations required in order to determine all Ti∗ ∈ Vn which row-i satisfy TE = F.

9. Symmetries: Instantiations of Internal Dynamics

Since Green’s symmetries are themselves effectively elements of Bn, they correspond to special
binary relations between network nodes that encode aspects of the internal dynamics of a Green’s
evolution E→ F . In particular, they generally identify many-to-one correspondences between
neighborhood sets in E that are joined by set union to produce a neighborhood in F. Each of these
correspondences occurs in such a way as to preserve the structural invariants required by Theorem 2.
These correspondences are the internal dynamics of the evolution.

Consider a Green’s R evolution E→ F where each symmetry A satisfies EA = F and is one
instantiation of a possible set of symmetries which produce the evolution and preserve the required
invariants. If j ∈ J is a column in A with a 1 in each of the rows in the set Ψj = {i1, i2, · · · , ik} and
zeros in every other row location (i.e., there are

∣∣Ψj
∣∣ = k 1’s and n− k 0’s), then this column encodes

an internal dynamic of the evolution where the in-neighborhoods of nodes i1, i2, · · · , ik in E are joined
together as ∪i∈Ψj I(E∗i) and associated with the in-neighborhood I

(
F∗j
)

in F according to

∪i∈Ψj I(E∗i) ⊆ I
(

F∗j
)
. (8)

This expression is called a Ψj internal R dynamic of the evolution and the set Ψj is the associated
motion of the dynamic. Clearly, for the special case where Ψj = {i},

I(E∗i) = I(F∗i).

If E→ F is a Green’s L evolution, a symmetry T which produces the invariant preserving
evolution satisfies TE = F. If i is a row in T with a 1 in each of the column locations in
Φi = {j1, j2, · · · , jl}, then this row encodes an internal dynamic of the evolution where the
out-neighborhoods of nodes j1, j2, · · · , jl in network E are joined by set union and associated with the
out-neighborhood O(Fi∗) in network F according to

∪j∈Φi O
(
Ej∗
)
⊆ O(Fi∗). (9)

This expression is a Φi internal L dynamic of the evolution and the set Φi is the associated motion
of the dynamic. When Φi = {j}, then

O
(
Ej∗
)
= O(Fi∗).

These notions will be clarified below using a simple example.

10. Symmetry Ensembles, Propensities, and Energies

Since the symmetry which produces a Green’s evolution is not necessarily unique, it can be
unclear as to how to assign a specific symmetry to an evolution. However, the collection of symmetries
obtained from Green’s symmetry problem, i.e., the symmetry ensembles, can be used to construct
propensities. Propensities can be viewed as weighted symmetries which, in some sense, represent their
respective ensembles.

Let IR (IL) 6= ∅ index the symmetries which are solutions to the Green’s symmetry problem for
some Green’s R(L) evolution E→ F . The sets

ER =
{

A(i) : i ∈ IR, EA(i) = F
}
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and
EL =

{
T(i) : i ∈ IL, T(i)E = F

}
are the associated symmetry ensembles. The propensities associated with each ensemble are defined as

A ≡ |IR|−1 ∑i∈IR
A(i)

and
T = |IL|−1 ∑i∈IL

T(i).

Thus, A∗j is a measure of the tendency of the nodes in column j in network E to form motions Ψj
that associate in-neighborhoods in E with in-neighborhoods in network F according to the internal
dynamic (3). Similarly, Ti∗ is a measure of the tendency of nodes in row i in E to form motions Φi that
associate out-neighborhoods in E with out-neighborhoods in F according to the internal dynamic (4).

Propensities can be used to associate energies with both ensembles and specific symmetries.
These energies quantify in a directly proportional manner the complexity level of the internal dynamical
activity that is associated with an evolution. The propensity energies provide a representative measure
of the “overall” complexity of internal dynamical activity for an evolution based upon ensemble
propensity. The propensity energies for ensembles ER and EL are defined as

ER ≡∑i,j∈J Aij

and
EL ≡∑i,j∈J Tij,

respectively.
The energies of evolution for the specific symmetries in an ensemble measure the complexity

of internal dynamical activity for an evolution produced by a specific symmetry in an ensemble.
In particular, if A(k) ∈ ER and B(k) ∈ EL, then the associated energies of evolution are defined as

ER
[
A(k)] ≡∑i,j∈J A(k)

ij Aij

and
EL
[
T(k)] ≡∑i,j∈J T(k)

ij Tij.

The following Lemma guarantees that the energy of evolution for a symmetry never exceeds the
propensity energy for the associated ensemble.

Lemma 6. For any Green’s R or L evolution, Ex ≥ Ex[y], where y = A(k) or T(k) when x = R or L .

Proof. A(k)
ij , T(k)

ij ∈ {0, 1} ⇒ Aij ≥ A(k)
ij Aij, Tij ≥ T(k)

ij Tij ⇒ ∑i,j∈J Aij ≥ ∑i,j∈J A(k)
ij Aij, ∑i,j∈J Tij≥

∑i,j∈J T(k)
ij Tij ⇒ ER ≥ ER

[
A(k)], EL ≥ EL

[
T(k)].

Recall that internal R and L dynamics are strictly defined by their motions. These motions also
have energies that provide a measure of the level of internal dynamical activity induced by the motion.
Since the symmetries A and T encode R and L internal dynamics with motions Ψj and Φi, respectively,
then the associated energies of motion are the quantities

ER
[
A; Ψj

]
≡∑i∈Ψj

Aij Aij

and
EL[T; Φi] ≡∑j∈Φi

TijTij.

The energies of motion are related to their energies of evolution by the following theorem:
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Theorem 6 (Conservation of Energy of Evolution). The energy of evolution of a Green’s symmetry is
conserved by the energies of motion of its internal dynamics.

Proof. Let A ∈ ER and set M index all the Ψj internal R dynamics encoded by A. Then
∑j∈M ER

[
A; Ψj

]
= ∑j∈M ∑i∈Ψj

Aij Aij = ∑i,j∈J Aij Aij = ER[A], where use has been made of the
fact that ∑j∈M ∑i∈Ψj

is equivalent to ∑i,j∈J because Aij = 0 when i ∈ J −Ψj and j ∈ J −M. It is similar
for the L dynamics.

11. Example

Let E→ F be a Green’s R evolution in NV , V = {1, 2} (or equivalently in B2), where (in B2)

E =
[ 0 0

1 0

]
, F =

[ 0 0
1 1

]
,

with Ic(E) = {2} = Ic(F) (note that this evolution corresponds to the τ → λ Green’s R evolution
in [3]). Theorem 3 guarantees the existence of at least one A such that

EA =
[ 0 0

1 0

]
◦
[ a11 a12

a21 a22

]
=
[ 0 0

1 1

]
= F.

The disjunctive normal form logical expression (1) for this equation yields the following system
of equations

(0∧ a11) ∨ (0∧ a21) = 0 (0∧ a12) ∨ (0∧ a22) = 0

(1∧ a11) ∨ (0∧ a21) = 1 (1∧ a12) ∨ (0∧ a22) = 1

which can be used to solve the associated Green’s symmetry problem.
For the two equations in the second row of this system to be satisfied requires the assignment

a11 = 1 = a12. By inspection it is seen that the complete system is satisfied when, in addition to these
assignments, a21 and a22 each assume both values from the set {0, 1}. Thus,

G∗1 = G∗2 =
{[ 1

0

]
,
[ 1

1

]}
so that γ = |G∗1||G∗2| = 2·2 = 4 = |IR| and the evolution E→ F is 4-satisfiable. The associated
symmetry ensemble is the set

ER =
{[ 1 1

0 0

]
,
[ 1 1

0 1

]
,
[ 1 1

1 0

]
,
[ 1 1

1 1

]}
≡
{

A(1), A(2), A(3), A(4)}.

To calculate the computational complexity of this Green’s symmetry problem, refer to Section 8.1
and observe that M1 = ∅, M2 = {1}, and Q(1) = {1} = Q(2). Application of Theorem 4 yields
CR = 22−|M1| + 22−|M1| = 22 + 22 = 8, i.e., four combinations of value assignments must be checked
for each j since, according to Lemma 4, aij values cannot be assigned when Fij = 0 because Mi = ∅.

The propensity and propensity energy for the ensemble are

A =
[ 1 1

1⁄2 1⁄2

]
and ER = 3, respectively, and the energies of evolution are ER

[
A(1)] = 2, ER

[
A(2)] = 2 = ER

[
A(3)],

and ER
[
A(4)] = 3. Please note that this validates Lemma 6. These energies also indicate that A(1)

produces the least energy of evolution in the sense that the evolution involves simpler internal
dynamical activity than evolutions produced by the other symmetries in the ensemble.
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To illustrate this further, first observe that I(E∗1) = {2}, I(E∗2) = ∅, and I(F∗1) = {2} = I(F∗2)
(here the jth column vector is set directly equal to the nodes in the in-neighborhood of node j). It is also
easily determined that the motions of the dynamics for: A(1) are Ψ1 = {1} = Ψ2; A(2) are Ψ1 = {1}
and Ψ2 = {1, 2}; A(3) are Ψ1 = {1, 2} and Ψ2 = {1}; and A(4) are Ψ1 = {1, 2} = Ψ2. By inspection it
is found that each of these motions satisfies (3). Using A(4) as an example, it is seen that (3) yields
the correct set theoretic relationship I(E∗1) ∪ I(E∗2) ⊆ I(F∗1) ∪ I(F∗2) or {2} ∪∅ ⊆ {2} ∪ {2} or
{2} ⊆ {2} for both Ψ1 and Ψ2. Also note that the internal dynamics for A(1) are simpler than those
for the other symmetries in the ensemble, in the sense that both of the A(1) motions are singleton sets,
whereas at least one of the motions for the other symmetries is a doubleton set. This is consistent with
the fact mentioned above that A(1) produces the least energy of evolution.

Now consider the energies of motion for each ensemble symmetry. They are easily calculated
from the theory and are found to be:

ER
[
A(1); Ψ1

]
= 1 = ER

[
A(1); Ψ2

]
;

ER
[
A(2); Ψ1

]
= 1, ER

[
A(2); Ψ2

]
= 1;

ER
[
A(3); Ψ1

]
= 1, ER

[
A(3); Ψ2

]
= 1;

and
ER
[
A(4); Ψ1

]
= 1 = ER

[
A(4); Ψ2

]
.

Thus, the motions associated with an A(1) evolution are the least energetic since

ER
[
A(1); Ψj

]
≤ ER

[
A(k); Ψj

]
, k = 2, 3, 4; j = 1, 2.

This is also consistent with the fact that an A(1) induced evolution is the least energetic and
involves the least complex internal dynamics.

Finally, observe that these results validate Theorem 6. In particular,

ER
[
A(1); Ψ1

]
+ ER

[
A(1); Ψ2

]
= 2 = ER

[
A(1)];

ER
[
A(2); Ψ1

]
+ ER

[
A(2); Ψ2

]
= 2 = ER

[
A(2)];

ER
[
A(3); Ψ1

]
+ ER

[
A(3); Ψ2

]
= 2 = ER

[
A(3)];

and
ER
[
A(4); Ψ1

]
+ ER

[
A(4); Ψ2

]
= 3 = ER

[
A(4)].

12. Concluding Remarks

The research documented in [3] was inspired by earlier research performed by Konieczny [6]
and Plemmons et al. [7]. This paper has reviewed the results developed in [3], i.e., that the set of
all networks on a fixed number of nodes can be classified using the Green’s equivalence relations of
semigroup theory and that all networks within a Green’s equivalence class have a common structural
invariant (neighborhoods or poset relationships between node sets generated by neighborhoods).
By extension, it was deduced in this paper from these results that if a network evolves from an initial
network configuration to a final network configuration such that both the initial and final networks are
in the same Green’s equivalence class, then the structural invariants for the class are preserved by the
evolution. In addition, the Green’s symmetry problem was also defined in this paper. This problem is to
determine by computation all symmetries which produce a network evolution within a Green’s R or a
Green’s L equivalence class (i.e., a symmetry ensemble). These symmetries were shown to be solutions
to special Boolean equations whose form is dictated by semigroup theory. Each such symmetry encodes
information about the internal dynamics of the associated evolution and an ensemble associated with
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an evolution was used to define propensities and energies which quantify aspects of the internal
dynamics of the evolution. However, it should be noted that a practical limitation exists for solving
the Green’s symmetry problem. This occurs because the cardinality of symmetry ensembles associated
with large real networks can be quite large, thereby requiring the use of considerable computational
resources to solve such problems (see future research suggestions below).

In conclusion, it is believed that the results of this paper are new and not in general use (perhaps
having the closest resemblance to these results are the applications of Green’s relations to social
networks [10] and automata theory, e.g., [11]). However, the results of this paper are important and
should be of general interest to network science researchers and those working in areas of applied
network theory. In addition to applications similar to those mentioned in Section 1 (actor identification
in social networks and communication network reconfiguration), contemporary areas of frontier
research, such as identifying emerging scientific disciplines, e.g., [12], analyzing brain connectivity,
e.g., [13–15], and finding symmetries in engineering processes [16], could also benefit from the results
of this paper.

Before closing it is worthwhile to mention several directions for related future research. First,
because of the computational resources required to solve the Green’s symmetry problem, it would
be useful to investigate how sampling and statistics can be used to obtain symmetry sub-ensembles
that effectively yield the same information about propensities and energies as the associated full
ensemble. A second research area involves understanding symmetries and their computation for
network evolutions occurring within Green’s H and D equivalence classes. A third and potentially
very interesting research area concerns determining the relationships (if any) between the theory
developed in this paper and the relatively new theory of persistence that is used to analyze large data
sets, e.g., [17].
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