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Abstract: Since industrial control systems are usually integrated with numerous physical devices,
the security of control systems plays an important role in safe operation of industrial chemical
processes. However, due to the use of a large number of control actuators and measurement
sensors and the increasing use of wireless communication, control systems are becoming increasingly
vulnerable to cyber-attacks, which may spread rapidly and may cause severe industrial incidents.
To mitigate the impact of cyber-attacks in chemical processes, this work integrates a neural network
(NN)-based detection method and a Lyapunov-based model predictive controller for a class of
nonlinear systems. A chemical process example is used to illustrate the application of the proposed
NN-based detection and LMPC methods to handle cyber-attacks.

Keywords: industrial cyber-physical systems; cyber-attacks; neural network; model predictive
control; nonlinear chemical processes

1. Introduction

Recently, the security of process control systems has become crucially important since control
systems are vulnerable to cyber-attacks, which are a series of computer actions to compromise the
security of control systems (e.g., integrity, stability and safety) [1,2]. Since cyber-physical systems (CPS)
or supervisory control and data acquisition (SCADA) systems are usually large-scale, geographically
dispersed and life-critical systems where embedded sensors and actuators are connected into a network
to sense and control the physical devices [3], the failure of cybersecurity can lead to unsafe process
operation, and potentially to catastrophic consequences in the chemical process industries, causing
environmental damage, capital loss and human injuries. Among cyber-attacks, targeted attacks are
severe threats for control systems because of their specific designs with the aim of modifying the
control actions applied to a chemical process (for example, the Stuxnet worm aims to modify the data
sent to a Programmable Logic Controller [4]). Additionally, targeted attacks are usually stealthy and
difficult to detect using classical detection methods since they are designed based on some known
information of control systems (e.g., the process state measurement). Therefore, designing an advanced
detection system (e.g., machine learning-based detection methods [5,6]) and a suitable optimal control
scheme for nonlinear processes in the presence of targeted cyber-attacks is an important open issue.
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Due to the rapid development of computer networks of CPS in the past two to three decades,
the components (e.g., sensors, actuators, and controllers) in a large-scale process control system are
now connected through wired/wireless networks, which makes these systems more vulnerable to
cyber-attacks that can damage the operation of physical layers besides cyber layers. Additionally,
since the development of most of the existing detection methods still depends partly on human
analysis, the increased use of data and the designs of stealthy cyber-attacks pose challenges to the
development of timely detection methods with high detection accuracy. In this direction, the design
of cyber-attacks, the anomaly detection methods focusing on physical layers, and the corresponding
resilient control methods have received a lot of attention. A typical method of detection [4] is using
a model of the process and comparing the model output predictions with the actual measured outputs.
In [7], a dynamic watermarking method was proposed to detect cyber-attacks via a technique of
injecting private excitation into the system. Moreover, four representative detection methods were
summarized in [3] as Bayesian detection with binary hypothesis, weighted least squares, χ2-detector
based on Kalman filters and quasi-fault detection and isolation methods.

Besides the detection of cyber-attacks, the design of resilient control schemes also plays an
important role in operating a chemical process reliably under cyber-attacks. To guarantee the process
performance (e.g., robustness, stability, safety, etc.) and mitigate the impact of cyber-attacks, resilient
state estimation and resilient control strategies have attracted considerable research interest. In [2,8],
resilient estimators were designed to reconstruct the system states accurately. An event-triggered
control system was proposed in [9] to tolerate Denial-of-service (DoS) attacks without jeopardizing the
stability of the closed-loop system.

On the other hand, as a widely-used advanced control methodology in industrial chemical plants,
model predictive control (MPC) achieves optimal performance of multiple-input multiple-output
processes while accounting for state and input constraints [10]. Based on Lyapunov methods
(e.g., a Lyapunov-based control law), the Lyapunov-based model predictive control (LMPC) method
was developed to ensure stability and feasibility in an explicitly-defined subset of the region of
attraction of the closed-loop system [11,12]. Additionally, process operational safety can also be
guaranteed via control Lyapunov-barrier function-based constraints in the framework of LMPC [13].
At this stage, however, the potential safety/stability problem in MPC caused by cyber-attacks has
not been studied with the exception of a recent work that provides a quantitative framework for the
evaluation of resilience of control systems with respect to various types of cyber-attacks [14].

Motivated by this, we develop an integrated data-based cyber-attack detection and model
predictive control method for nonlinear systems subject to cyber-attacks. Specifically, a cyber-attack
(e.g., a min-max cyber-attack) that aims to destabilize the closed-loop system via a sensor tamper is
considered and applied to the closed-loop process. Under such a cyber-attack, the closed-loop system
under the MPC without accounting for the cyber-attack cannot ensure closed-loop stability. To detect
potential cyber-attacks, we take advantage of machine learning methods, which are widely-used in
clustering, regression, and other applications such as model order reduction [15–17], to build a neural
network (NN)-based detection system. First, the NN training dataset was obtained for three conditions:
(1) The system without disturbances and cyber-attacks (i.e., nominal system); (2) The system with
only process disturbances considered; (3) The system with only cyber-attacks considered. Then, a NN
detection method is trained off-line to derive a model that can be used on-line to predict cyber-attacks.
In addition, considering the classification accuracy of the NN, a sliding detection window is employed
to reduce false cyber-attack alarms. Finally, a Lyapunov-based model predictive control (LMPC)
method that utilizes the state measurement from secure, redundant sensors is developed to reduce the
impact of cyber-attacks and re-stabilize the closed-loop system in finite time.

The rest of the paper is organized as follows: in Section 2, the class of nonlinear systems considered
and the stabilizability assumptions are given. In Section 3, we introduce the min-max cyber-attack,
develop a NN-based detection system and a Lyapunov-based model predictive controller (LMPC) that
guarantees recursive feasibility and closed-loop stability under sample-and-hold implementation
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within an explicitly characterized set of initial conditions. In Section 4, a nonlinear chemical
process example is used to demonstrate the applicability of the proposed cyber-attack detection
and control method.

2. Preliminaries

2.1. Notation

Throughout the paper, the notation |·| is used to denote the Euclidean norm of a vector,
the notation |·|Q denotes a weighted Euclidean norm of a vector (i.e., |x|2Q = xTQx where Q is
a positive definite matrix). xT denotes the transpose of x. R+ denotes the set [0, ∞). The notation
L f V(x) denotes the standard Lie derivative L f V(x) := ∂V(x)

∂x f (x). For given positive real numbers β

and ε, Bβ(ε) := {x ∈ Rn | |x− ε| < β} is an open ball around ε with a radius of β. Set subtraction is
denoted by "\", i.e., A\B := {x ∈ Rn | x ∈ A, x /∈ B}. dxemaps x to the least integer greater than or
equal to x and bxcmaps x to the greatest integer less than or equal to x. The function f (·) is of class C1

if it is continuously differentiable in its domain. A continuous function α : [0, a) → [0, ∞) is said to
belong to class K if it is strictly increasing and is zero only when evaluated at zero.

2.2. Class of Systems

The class of continuous-time nonlinear systems considered is described by the following
state-space form:

ẋ = f (x) + g(x)u + d(x)w, x(t0) = x0 (1)

where x ∈ Rn is the state vector, u ∈ Rm is the manipulated input vector, and w ∈ W is the
disturbance vector, where W := {w ∈ Rq | |w| ≤ θ, θ ≥ 0}. The control action constraint is
defined by u ∈ U = {umin ≤ u ≤ umax} ⊂ Rm, where umin and umax represent the minimum and the
maximum value vectors of inputs allowed, respectively. f (·), g(·) and d(·) are sufficiently smooth
vector and matrix functions of dimensions n × 1, n × m and n × q, respectively. Without loss of
generality, the initial time t0 is taken to be zero (t0 = 0), and it is assumed that f (0) = 0, and thus,
the origin is a steady-state of the system of Equation (1) with w(t) ≡ 0, (i.e., (x∗s , u∗s ) = (0, 0)). In the
manuscript, we assume that every measured state is measured by multiple sensors that are isolated
from one another such that if one sensor measurement is tampered by cyber-attacks, a secure network
or some secure way can still be used to send the correct sensor measurements of x(t) to the controller.
This can also be viewed as secure, redundant sensors or just having an alternative, secure network
to send the sensor measurements to the controller. However, if this assumption does not hold, i.e.,
no secure sensors are available, then the system has to be shut down after the detection of cyber-attacks,
or to be operated in an open-loop manner thereafter with an accurate process model.

2.3. Stabilizability Assumptions and Lyapunov-Based Control

Consider the nominal system of Equation (1) with w(t) ≡ 0. We first assume that there exists
a stabilizing feedback control law u = Φ(x) ∈ U such that the origin of the nominal system of
Equation (1) can be rendered asymptotically stable for all x ∈ D1 ⊂ Rn, where D1 is an open
neighborhood of the origin, in the sense that there exists a positive definite C1 control Lyapunov
function V that satisfies the small control property and the following inequalities:

α1(|x|) ≤ V(x) ≤ α2(|x|), (2a)

∂V(x)
∂x

F(x, Φ(x), 0) ≤ −α3(|x|), (2b)∣∣∣∣∂V(x)
∂x

∣∣∣∣ ≤ α4(|x|) (2c)
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where αj(·), j = 1, 2, 3, 4 are classK functions. F(x, u, w) is used to represent the system of Equation (1)
(i.e., F(x, u, w) = f (x) + g(x)u + d(x)w).

An example of a feedback control law that is continuous for all x in a neighborhood of the origin
and renders the origin asymptotically stable is the following control law [18]:

ϕi(x) =

 − p +
√

p2 + |q|4
|q|2 q, if q 6= 0

0, if q = 0
(3a)

Φi(x) =


umin

i , if ϕi(x) < umin
i

ϕi(x), if umin
i ≤ ϕi(x) ≤ umax

i
umax

i , if ϕi(x) > umax
i

(3b)

where p denotes L f V(x) and q denotes (LgV(x))T = [Lg1 V(x) · · · Lgm V(x)]T . ϕi(x) of Equation (3a)
represents the ith component of the control law Φ(x) before considering saturation of the
control action at the input bounds. Φi(x) of Equation (3b) represents the ith component of
the saturated control law Φ(x) that accounts for the input constraints u ∈ U. Based on the
controller Φ(x) that satisfies Equation (2), the set of initial conditions from which the controller
Φ(x) can stabilize the origin of the input-constrained system of Equation (1) is characterized as:
φn = {x ∈ Rn | V̇ + κV(x) ≤ 0, u = Φ(x) ∈ U, κ > 0}. Additionally, we define a level set of V(x)
inside φn as Ωρ := {x ∈ φn | V(x) ≤ ρ}, which represents a stability region of the closed-loop system
of Equation (1).

3. Cyber-Attack and Detection Methodology

From the perspective of process control systems, cyber-attacks are malicious signals that
can compromise actuators, sensors or their communication networks. Specifically, among sensor
cyber-attacks, DoS attacks, replay attacks and deception attacks are the three most common and easily
implementable ones by attackers [5]. On the other hand, since stealthy cyber-attacks are designed to
damage the performance of CPS (e.g., stability and safety), developing more reliable detection and
control methods that can detect, locate and mitigate cyber-attacks in a timely fashion and control the
damage within a tolerable limit is imperative.

In this section, the min-max cyber-attack designed to damage closed-loop stability of the system
of Equation (1) is first introduced. Subsequently, a general model-based detection method [4] and the
corresponding stealthy cyber-attacks that can evade such detection are presented. Therefore, to better
detect different types of cyber-attacks, the data-based detection scheme that utilizes machine learning
methods is finally developed with a sliding detection window.

3.1. Min-Max Cyber-Attack

In this subsection, we first consider a deception sensor cyber-attack, in which the minimum
or maximum allowable sensor measurement values are fed into process control systems
(e.g., a Lyapunov-based control system with a stability region Ωρ defined by a level set of Lyapunov
function V(x)) to drive the closed-loop states away from their expected values and finally ruin the
stability of the closed-loop system. Since ∀x ∈ Ωρ, there exists a feasible control action u = Φ(x) such
that V̇ < 0, closed-loop stability is maintained within the stability region Ωρ under Φ(x). Assuming
that attackers know the stability region of the system of Equation (1) in advance and have access to some
of the sensors (but not all), to remain undetectable by a simple stability region-based detection method
(i.e., the cyber-attack is detected if the state is out of the stability region), the min-max cyber-attack is
designed with the following form such that the fake sensor measurements are still inside Ωρ:

x̄ = arg max
x∈R

{V(x) ≤ ρ} (4)
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where x̄ is the tampered sensor measurement. Since the controller needs to get access to true state
measurements to maintain closed-loop stability in a state feedback control system, wrong state
measurements under cyber-attacks can affect control actions and eventually drive the state away
from its set-point. In the section “Application to a chemical process example”, it is shown that
if attackers apply a min-max cyber-attack to safety-critical sensors (e.g., temperature or pressure
sensors in a chemical reactor) in process control systems, closed-loop stability may not be maintained
(i.e., the closed-loop state goes out of Ωρ) and the system may have to be shut down.

3.2. Model-Based Detection and Stealthy Cyber-Attack

Based on the known process model of Equation (1), a cumulative sum (CUSUM) statistic detection
method [4] can be developed to minimize the detection time when a cyber-attack occurs. Specifically,
the CUSUM statistic method detects cyber-attacks by calculating the cumulative sum of the deviation
between expected and measured states. The method is developed by the following equations:

S(k) = (S(k− 1) + z(k))+, S(0) = 0 (5a)

D(S(k)) =

{
1, if S(k) > STH
0, otherwise

(5b)

where S(k) is the nonparametric CUSUM statistic and STH is the threshold of the detection of
cyber-attacks. (S)+ = S, if S ≥ 0 and (S)+ = 0 otherwise. D is the detection indicator where D = 1
indicates that the cyber-attack is confirmed or there is no cyber-attack if D = 0. z(k) is the deviation
between expected states x̃(tk) and measured states x(tk) at time t = tk: z(k) := |x̃(tk)− x(tk)| − b
where x̃(tk) is derived using the known process model, the state and the control action at t = tk−1,
and b is a small positive constant to reduce the false alarm rate due to disturbances.

With a carefully selected STH , the model-based detection method can detect many sensor
cyber-attacks efficiently. However, the above model-based method may be evaded and becomes
invalid for stealthy cyber-attacks if attackers know more about the system (e.g., the system model
and the principles of the detection method). For example, three advanced stealthy cyber-attacks were
proposed in [4] to damage the system without triggering the threshold of the model-based detection
method. Specifically, a surge cyber-attack is designed to maximize the damage for the first few steps
(similar to min-max cyber-attacks) and switch to cyber-attacks with small perturbations for the rest of
time when S(k) reaches STH . The form of a surge cyber-attack is given by the following equations:

x(tk) =

{
x(tk)

min, if S(k) ≤ STH
x̃(tk)− |STH + b− S(k− 1)|, otherwise

(6)

The above surge cyber-attack is able to maintain S(k) within its threshold and therefore is
undetectable by the above detection method. In this case, the defenders should either develop more
advanced detection methods for stealthy cyber-attacks (i.e., it becomes an interactive decision-making
process between an attacker and a defender [19]), or develop a detection method from another
perspective, for example, a data-based method. Since the purpose of any type of stealthy cyber-attack is
to change the normal operation and destroy the performance of the system of Equation (1), the dynamic
operation of the system of Equation (1) (e.g., dynamic trajectories in state-space) under cyber-attacks
becomes different from that of the nominal system of Equation (1). The deviation of the data can
be regarded as an intrinsic indicator for detection of cyber-attacks. In this direction, a data-based
detection system is developed via machine learning methods in the next subsection.

3.3. Detection via Machine Learning Techniques

Machine learning has a wide range of applications in classification, regression, and clustering
problems. To detect cyber-attacks, classification methods can be utilized to determine whether there
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is a cyber-attack on the system of Equation (1) or not. The data-based learning problems are usually
categorized into unsupervised learning and supervised learning.

Unsupervised learning (e.g., k-means clustering) uses unlabeled data to derive a model that
can split the data into different categories. On the other hand, supervised learning aims to develop
a function that maps an input to an output based on labeled dataset (input-output pairs). There are
two types of supervised learning tools, (1) classification tools (e.g., k-nearest neighbor (k-NN), support
vector machine (SVM), random forest, neural networks) are used to develop a function based on
labeled training datasets to predict the class of a new set of data that was not used in the training
stage; (2) regression tools (e.g., linear regression, support vector regression, etc.) aim to predict
the outcome of an event based on the relationship between variables obtained from the training
datasets (labeled input-output pairs) [20]. Since supervised learning concerns labeled training data,
we utilize a neural network (NN) algorithm to predict whether the system of Equation (1) is nominally
operating, under disturbances or under cyber-attacks. Subsequently, a Lyapunov-based model
predictive controller is proposed to stabilize the closed-loop system during the absence and presence
of cyber-attacks.

3.4. NN-Based Detection System

Since the evolution of the closed-loop state from the initial condition x(0) = x0 ∈ Ωρ is determined
by both the nonlinear system model of Equation (1) and the design of process control systems, it is
difficult to distinguish normal operation from the operation under cyber-attacks. Moreover, even if
a detection method is developed for a specific cyber-attack (e.g., min-max cyber-attack), the detection
strategy is not guaranteed to identify a different type of cyber-attack. Motivated by these concerns,
this work proposes a data-based detection system for different types of cyber-attacks by using machine
learning methods.

As a widely-used machine learning method, neural networks build a general class of
nonlinear functions from input variables to output variables. The basic structure of a feed-forward
multiple-input-single-output neural network with one hidden layer is given in Figure 1, where Nuj,
j = 1, 2,. . . , n denotes the input variables in the input layer, θ1i, i = 1, 2,. . . , h denotes the neurons in the
hidden layer and Ny denotes the output in the output layer. Specifically, the hidden neurons θ1i and
the output Ny (i.e., the classification result) are obtained by the following equations, respectively [21]:

θ1i = σ1(
n

∑
j=1

N(1)
wij Nuj + N(1)

wi0) (7)

Ny = σ2(
h

∑
j=1

N(2)
wj θ1j + N(2)

w0 ) (8)

where σ1, σ2 are nonlinear activation functions, N(1)
wij and N(2)

wj are weights, and N(1)
wi0, N(2)

w0 are biases.
For simplicity, the input vector Nu will be used to denote all the inputs Nuj, and the weight matrix
Nw will be used to represent all the weights and biases in Equations (7) and (8). The neurons in the
hidden layer receive the weighted sum of inputs and use activation functions σ1 (e.g., ReLu function
σ(x) = max(0, x) or sigmoid function σ(x) = 1/(1 + e−x)) to bring in the nonlinearity such that the
NN is not a simple linear combination of the inputs. The output neuron generates the class label via
a linear combination of hidden neurons and an activation function σ2 (e.g., sigmoid function for two
classes or softmax function σi(x) = exi / ∑K

k=1 exk for multiple classes where K is the number of classes).
Given a set of training data including the input vectors Ni

u, i = 1, 2,. . . NT and the corresponding
classified labels (i.e., target vectors Ni

t), the NN model is trained by minimizing the following error
function (i.e., loss function):

E(Nw) =
1
2

NT

∑
i=1
|Ni

y(N
i
u, Nw)−Ni

t|2 (9)
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where Ni
y(Ni

u, Nw) is the predicted class for the input Ni
u under Nw. The above nonlinear optimization

problem is solved using the stochastic gradient descent (SGD) method, in which the backpropagation
method is utilized to calculate the gradient of E(Nw). Meanwhile, the weight matrix Nw is updated
by the following equation:

Nw := Nw − η∇E(Nw) (10)

where η is the learning rate to control the speed of convergence. Additionally, to avoid over-fitting
during the training process, k-fold cross-validation is employed to randomly partition the original
dataset into k − 1 subsets of training data and 1 subset of validation data, and early-stopping is
activated once the error on the validation set stops decreasing.

Finally, the classification accuracy of the validation dataset is utilized to demonstrate the
performance of the neural network since the validation dataset is independent of the training dataset
and is not used in training the NN model. Specifically, the classification accuracy (i.e., the test accuracy)
of the trained NN model is obtained by the following equation:

Nacc =
nc

nval
(11)

where nc is the number of data samples with correct predicted classes, and nval is the total number
of data samples in the validation dataset. In general, the NN performance depends on many factors,
e.g., the size of dataset, the number of hidden layers and nodes, and the intensity and the amount of
disturbance applied [22–24]. In Remark 1, the method of determining the number of layers and nodes
is introduced.
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Figure 1. Basic structure of a feed-forward neural network used for cyber-attack detection.

In this paper, the NN is developed to derive a model M to classify three classes: the nominal
closed-loop system, the closed-loop system with disturbances, and the closed-loop system under
cyber-attacks. A large dataset of time-varying states for various initial conditions (i.e., dynamic
trajectories) of the above three cases is used as the input to the neural network. The output of the
neural network is the classified class. Since the feed-forward NN is a static model with a fixed input
dimension (i.e., fixed time length) but the detection method should be applied during the dynamic
operation of the system of Equation (1), multiple NN models with various sizes of input datasets
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(i.e., various time lengths) are used for the detection of cyber-attacks in real time until the time length
corresponding to the available data since the beginning of the time of operation becomes equal to
the time length that is preferred to be utilized for the remainder of the operating time. Specifically,
given a training dataset of time-series state vectors (i.e., closed-loop trajectories): Nu ∈ Rn×T where
n is the number of states and T is the number of sampling steps of each trajectory, the NN model is
obtained and applied as follows: (1) the NN is trained with data corresponding to time lengths from
the initial time to T sampling steps in intervals of Na sampling steps, i.e., the ith NN model Mi is
trained using data from t = 0 to t = iNa, where i = 1, 2,. . . , T/Na and T is a multiple integer of Na;
(2) when incorporating the NN-based detection system in MPC, real-time state measurement data can
be readily utilized in the corresponding NN model Mi to check if there is a cyber-attack so far.

Remark 1. With an appropriate structure (i.e., number of layers and hidden neurons) of the neural network,
the weight matrix Nw is calculated by Equation (10) and will be utilized to derive the classification accuracy of
Equation (11). However, in general, there is no systematic method to determine the structure of a neural network
since it highly depends on the number of training data samples and also the complexity of the model needed for
classification. Therefore, in practice, the neural network is initiated with one hidden layer with a few hidden
neurons. If the classification result is unsatisfactory, we increase the hidden neurons number and further layers
with appropriate regularization are added to improve the performance.

Remark 2. It is noted that the above classification accuracy of the NN model represents the ratio of the number
of correct predictions to the total number of predictions for all classes. If we only consider the case of binary
classification (i.e., whether the system is under cyber-attacks or not), sensitivity (also called recall or true positive
rate) and specificity (also called true negative rate) are also useful measures. Specifically, sensitivity measures the
proportion of actual cyber-attacks that are correctly identified as such, while specificity measures the proportion
of actual non-cyber-attacks that are correctly identified as such. Therefore, in the presence of multiple types of
cyber-attacks or disturbances, it becomes straightforward to learn the performance of the NN-based method to
detect true cyber-attacks via sensitivity and specificity.

3.5. Sliding Detection Window

Since the classification accuracy of a NN is not perfect, false alarms may be triggered based on
a one-time detection (i.e., non-cyber-attack case may be identified as cyber-attack). In order to reduce
the false alarm rates, a detection indicator Di generated by each sub-model Mi and a sliding detection
window with length Ns are proposed as follows:

Di =

{
1, if attack is detected by Mi
0, if no attack is detected by Mi

(12)

Based on the detection indicator Di at every Na sampling steps, the weighted sum of detection
indicators within the sliding detection window DI shown in Figure 2 at t = tk = k∆ is calculated
as follows:

DI =
bk/Nac

∑
j=d(k−Ns+1)/Nae

γb
k

Na c−jDj (13)

where γ is a detection factor that gives more weight to recent detections within the sliding window
because the classification accuracy of the NN increases as more data is used for training. If DI ≥ DTH ,
where DTH is a threshold that indicates a real cyber-attack in the closed-loop system, then the
cyber-attack is confirmed and reported by the NN-based detection system; otherwise, the detection
system remains silent and the sliding window will be rolled one sampling time. To balance false alarms
and missed detections, the threshold DTH is determined via extensive closed-loop simulations under
cyber-attacks to derive a desired detection rate.
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Additionally, since there is no guaranteed feasible control action that can drive the state back
towards the origin once the state of the system of Equation (1) is outside the stability region Ωρ due to
the way of characterizing φn and Ωρ, it is also necessary to check whether the state is in Ωρ, especially
when cyber-attacks occur but have not been detected yet. Therefore, to prevent the system state from
entering a region in state-space where closed-loop stability is not guaranteed, the boundedness of the
state vector within the stability region is also checked using the state measurement from redundant,
secure sensors at the time when Di = 1. If the state x has already left Ωρ, closed-loop stability is no
longer guaranteed and in this case further safety system components (e.g., physical safety devices)
need to be activated to avoid dangerous operations [25]. However, if x ∈ Ωρ, the state measurement
will be read from redundant, secure sensors instead of the original sensors to avoid deterioration of
stability under the potential cyber-attack indicated by Di = 1.
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Figure 2. The sliding detection window with detection activated every Na sampling steps,
where triangles represent the detection indicator Di and the box with length Ns represents the sliding
detection window.

Remark 3. The sliding window with length Ns is employed to reduce false alarm rates. Considering that the
classification accuracy derived is not perfect, the idea behind the sliding detection window is that a cyber-attack
is confirmed only if it has been detected for a few times continuously instead of a one-time detection. The length
of sliding window Ns will balance the efficiency of detection and false alarm rates. Specifically, a larger Ns and
a higher detection threshold DTH (DI ≥ DTH within the sliding detection window represents the confirmation
of a cyber-attack) lead to longer detection time but a lower false alarm rate, while a smaller Ns and a lower DTH
have the opposite effect. Therefore, Ns and DTH should be determined well to achieve a balanced performance
between detection efficiency and false alarm rate.

Remark 4. The above supervised learning-based cyber-attack detection method is able to distinguish the normal
operation of the system of Equation (1) from the abnormal operation under cyber-attacks, provided that there
is a large amount of labeled data available for training. However, for those unknown cyber-attacks which are
never used for training, the detection is not guaranteed. Specifically, if there exists an unknown cyber-attack
that is distinct from the trained cyber-attacks, the NN-based detection method may not be able to identify it as
a cyber-attack. In this case, an unsupervised learning-based detection method may achieve better performance by
clustering unknown cyber-attack data into a new class. However, if the unknown cyber-attack shares similar



Mathematics 2018, 6, 173 10 of 22

properties (e.g., similar attack mechanism) with a trained cyber-attack, the NN method may still be able to detect
it and classify it as one of the available classes. For example, it is demonstrated in the section “Application to
a chemical process example” that the unknown surge cyber-attack can still be detected by the NN-based detection
system that is trained for min-max cyber-attacks because of the similarity between these two cyber-attacks.

Remark 5. Since different types of cyber-attacks may have various purposes, targeted sensors and attack
duration, the dynamic behavior of a closed-loop system varies with different cyber-attacks, which can be
eventually reflected by the data of states. Besides the detection of cyber-attacks, the above NN-based detection
method is also able to recognize the types of cyber-attacks by training the NN model with data of various types
of cyber-attacks labeled as different classes. As a result, the NN model can not only detect the occurrence of
cyber-attacks, but also can identify the type of a cyber-attack if the data of that particular cyber-attack has been
utilized for training.

4. Lyapunov-Based MPC (LMPC)

To cope with the threats of the above sensor cyber-attacks, a feedback control method that accounts
for the corruption of some sensor measurements should be designed by defenders to mitigate the
impact of cyber-attacks and still stabilize the system of Equation (1) at its steady-state. Based on
the assumption of the existence of a Lyapunov function V(x) and a controller u = Φ(x) that satisfy
Equation (2), the LMPC that utilizes the accurate measurement from redundant, secure sensors is
proposed as the following optimization problem:

J = min
u∈S(∆)

∫ tk+N

tk

Lt(x̃(t), u(t))dt (14a)

s.t ˙̃x(t) = f (x̃(t)) + g(x̃(t))u(t) (14b)

x̃(tk) = x(tk) (14c)

u(t) ∈ U, ∀ t ∈ [tk, tk+N) (14d)

V̇(x(tk), u(tk)) ≤ V̇(x(tk), Φ(x(tk))),

if V(x(tk)) > ρmin, (14e)

V(x̃(t)) ≤ ρmin, ∀ t ∈ [tk, tk+N)

if V(x(tk)) ≤ ρmin (14f)

where x̃(t) is the predicted state trajectory, S(∆) is the set of piecewise constant functions with period
∆, and N is the number of sampling periods in the prediction horizon. V̇(x(tk), u(tk)) represents the
time derivative of V(x), i.e., ∂V

∂x ( f (x̃(t)) + g(x̃(t))u(t)). We assume that the states of the closed-loop
system are measured at each sampling time instance, and will be used as the initial condition in the
optimization problem of LMPC in the next sampling step. Specifically, based on the measured state
x(tk) at t = tk, the above optimization problem is solved to obtain the optimal solution u∗(t) over
the prediction horizon t ∈ [tk, tk+N). The first control action of u∗(t), i.e., u∗(tk), is sent to the control
actuators to be applied over the next sampling period. Then, at the next sampling time tk+1 := tk + ∆,
the optimization problem is solved again, and the horizon will be rolled one sampling time.

In the optimization problem of Equation (14), the objective function of Equation (14a) that is
minimized is the integral of Lt(x̃(t), u(t)) over the prediction horizon, where the function Lt(x, u)
is usually in a quadratic form (i.e., Lt(x, u) = xT Rx + uTQu, where R and Q are positive definite
matrices). The constraint of Equation (14b) is the nominal system of Equation (1) (i.e., w(t) ≡ 0)
to predict the evolution of the closed-loop state. Equation (14c) defines the initial condition of the
nominal process system of Equation (14b,14d) defines the input constraints over the prediction horizon.
The constraint of Equation (14e) requires that V(x̃) for the system decreases at least at the rate under
Φ(x) at tk when V(x(tk)) > ρmin. However, if x(tk) enters a small neighborhood around the origin
Ωρmin := {x ∈ φn | V(x) ≤ ρmin}, in which V̇ is not required to be negative due to the sample-and-hold
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implementation of the LMPC, the constraint of Equation (14f) is activated to maintain the state inside
Ωρmin afterwards.

When the cyber-attack is detected by Di = 1 but not confirmed by DI ≥ DTH yet, the optimization
problem of the LMPC of Equation (14) uses the state measurement from redundant, secure sensors
instead of the original sensors as the initial condition x(tk) for the optimization problem of Equation (14)
until the next instance of detection. However, if the cyber-attack is finally confirmed by DI ≥ DTH ,
the misbehaving sensor will be isolated, and the optimization problem of the LMPC of Equation (14)
starts to use the state measurement from secure sensors instead of the compromised state measurement
as the initial condition x(tk) for the optimization problem of Equation (14) for the remaining time
of process operation. The structure of the entire cyber-attack-detection-control system is shown in
Figure 3.
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Figure 3. Basic structure of the proposed integrated NN-based detection and LMPC control method.

If the cyber-attack is detected and confirmed before the closed-loop state is driven out of the
stability region, it follows that the closed-loop state is always bounded in the stability region Ωρ

thereafter and ultimately converges to a small neighborhood Ωρmin around the origin for any x0 ∈ Ωρ
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under the LMPC of Equation (14). The detailed proof can be found in [11]. An example trajectory is
shown in Figure 4.
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Figure 4. A schematic representing the stability region Ωρ and the small neighborhood Ωρmin around the
origin. The trajectory first moves away from the origin due to the cyber-attack and finally re-converges
to Ωρmin under the LMPC of Equation (14) after the detection of the cyber-attack by the proposed
detection scheme.

Remark 6. It is noted that the speed of detection (which depends heavily on the size of the input data to the
NN, the number of hidden layers and the type of activation functions) plays an important role in stabilizing the
closed-loop system of Equation (1) since the operation of the closed-loop system under the LMPC of Equation (14)
becomes unreliable after cyber-attacks occur. In other words, if we can detect cyber-attacks in a short time,
the LMPC can switch to redundant, secure sensors and still be able to stabilize the system at the origin before it
leaves the stability region Ωρ. Additionally, the probability of closed-loop stability can be derived based on the
classification accuracy of the NN-based detection method and its activation frequency Na. Specifically, given the
classification accuracy pnn ∈ [0, 1], if the NN-based detection system is activated every Na = 1 sampling step,
the probability of the cyber-attack being detected at each sampling step (i.e., Di = 1) is equal to pnn, which implies
that the probability of closed-loop stability ∀x0 ∈ Ωρ is no less than pnn. Moreover, for safety reasons,
the region of initial conditions can be chosen as a conservative sub-region (i.e., Ωρe := {x ∈ φn | V(x) ≤ ρe},
where ρe < ρ) inside the stability region to avoid the rapid divergence of states under cyber-attacks and
improve closed-loop stability. For example, let ρe = max{V(x(t)) | V(x(t + ∆)) ≤ ρ, u ∈ U} such that
∀x(tk) ∈ Ωρe , x(tk+1) still stays in Ωρ despite a miss of detection of cyber-attacks. Therefore, the probability of
closed-loop stability ∀x0 ∈ Ωρe under the LMPC of Equation (14) reaches 1− (1− pnn)2 (i.e., the probability
of cyber-attacks being detected within two sampling periods).

Remark 7. It is demonstrated in [11] that in the presence of sufficiently small bounded disturbances
(i.e., |w(t)| ≤ θ), closed-loop stability is still guaranteed for the system of Equation (1) under the sample-and-hold
implementation of the LMPC of Equation (14) with a sufficiently small sampling period ∆. In this case, it is
undesirable to treat the disturbance as a cyber-attack and trigger the false alarm. Therefore, the detection system
should account for the disturbance case and have the capability to distinguish cyber-attacks from disturbances
(i.e., the system with disturbances should be classified as a distinct class or treated as the nominal system).
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5. Application to a Chemical Process Example

In this section, we utilize a chemical process example to illustrate the application of the proposed
detection and control methods for potential cyber-attacks. Consider a well-mixed, non-isothermal
continuous stirred tank reactor (CSTR) where an irreversible first-order exothermic reaction takes place.
The reaction converts the reactant A to the product B via the chemical reaction A → B. A heating
jacket that supplies or removes heat from the reactor is used. The CSTR dynamic model derived from
material and energy balances is given below:

dCA
dt

=
F

VL
(CA0 − CA)− k0e−E/RTCA (15a)

dT
dt

=
F

VL
(T0 − T)− ∆Hk0

ρCp
e−E/RTCA +

Q
ρCpVL

(15b)

where CA is the concentration of reactant A in the reactor, T is the temperature of the reactor, Q denotes
the heat supply/removal rate, and VL is the volume of the reacting liquid in the reactor. The feed
to the reactor contains the reactant A at a concentration CA0, temperature T0, and volumetric flow
rate F. The liquid has a constant density of ρ and a heat capacity of Cp. k0, E and ∆H are the
reaction pre-exponential factor, activation energy and the enthalpy of the reaction, respectively.
Process parameter values are listed in Table 1. The control objective is to operate the CSTR at
the equilibrium point (CAs, Ts) = (0.57 kmol/m3, 395.3 K) by manipulating the heat input rate
∆Q = Q−Qs, and the inlet concentration of species A, ∆CA0 = CA0 − CA0s . The input constraints for
∆Q and ∆CA0 are |∆Q| ≤ 0.0167 kJ/min and |∆CA0| ≤ 1 kmol/m3, respectively.

Table 1. Parameter values of the CSTR.

T0 = 310 K F = 100× 10−3 m3/min
VL = 0.1 m3 E = 8.314× 104 kJ/kmol
k0 = 72× 109 min−1 ∆H = −4.78× 104 kJ/kmol
Cp = 0.239 kJ/(kg K) R = 8.314 kJ/(kmol K)
ρ = 1000 kg/m3 CA0s = 1.0 kmol/m3

Qs = 0.0 kJ/min CAs = 0.57 kmol/m3

Ts = 395.3 K

To place Equation (15) in the form of the class of nonlinear systems of Equation (1), deviation
variables are used in this example, such that the equilibrium point of the system is at the origin
of the state-space. xT = [CA − CAs T − Ts] represents the state vector in deviation variable form,
and uT = [∆CA0 ∆Q] represents the manipulated input vector in deviation variable form.

The explicit Euler method with an integration time step of hc = 10−5 min is applied to numerically
simulate the dynamic model of Equation (15). The nonlinear optimization problem of the LMPC of
Equation (14) is solved using the IPOPT software package [26] with the sampling period ∆ = 10−3 min.

We construct a Control Lyapunov Function using the standard quadratic form V(x) = xT Px,
with the following positive definite P matrix:

P =

[
9.35 0.41
0.41 0.02

]
(16)

Under the LMPC of Equation (14) without cyber-attacks, closed-loop stability is achieved for
the nominal system of Equation (15) in the sense that the closed-loop state is always bounded in the
stability region Ωρ with ρ = 0.2 and ultimately converges to Ωρmin with ρmin = 0.002 around the origin.
However, if a min-max cyber-attack is added to tamper the sensor measurement of temperature of
the system of Equation (15), closed-loop stability is no longer guaranteed. Specifically, the min-max
cyber-attack is designed to be of the following form:
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x̄1 = x1 (17a)

x̄2 = min{arg max
x2∈R

{xT Px ≤ ρ}} (17b)

where x1 = CA − CAs, x2 = T − Ts, and x̄1, x̄2 are the corresponding state measurements under
min-max cyber-attacks. In this example, the min-max cyber-attack of Equation (17) is designed such
that the measurement of concentration remains unchanged, and the measurement of temperature is
tampered to be the minimum value that keeps the state at the boundary of the stability region Ωρ.

In Figures 5 and 6, the temperature sensor measurement is intruded by a min-max cyber-attack at
time t = 0.067 min. Without any cyber-attack detection system, it is shown in Figure 5 that the LMPC
of Equation (14) keeps operating the system of Equation (15) using false sensor measurements blindly
and finally drives the closed-loop state out of the stability region Ωρ.
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Sensor measurement x̄
T rue state x

Figure 5. The state-space profile for the CSTR of Equation (15) under the LMPC of Equation (14) and
under a min-max cyber-attack for the initial condition (−0.25, 3).
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Figure 6. The true state profile (x2 = T − Ts) and the sensor measurements (x̄2 = T̄ − Ts) of the
closed-loop system under the LMPC of Equation (14) and under a min-max cyber-attack for the initial
condition (−0.25, 3), where the vertical dotted line shows the time the cyber-attack is added.

To handle the min-max cyber-attack, the model-based detection system of Equation (5) and
the NN-based detection method are applied to the system of Equation (15). The simulation results
are shown in Figures 7–13. Subsequently, the application of the NN-based detection method to the
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system under other cyber-attacks and the presence of disturbances is demonstrated in Figures 14–16.
Specifically, we first demonstrate the application of the model-based detection system of Equation (5)
and of the LMPC of Equation (14), where STH = 1 and b = −0.5 are chosen through closed-loop
simulations. In Figure 7, the min-max cyber-attack of Equation (17) is added at 0.06 min and is detected
at 0.1 min before the closed-loop state comes out of Ωρ. The variation of the CUSUM statistic S(k) is
shown in Figure 8, in which S(k) remains at b when there is no cyber-attack and exceeds STH at 0.1 min.
After the min-max cyber-attack is detected, the true states are obtained from redundant, secure sensors
and the LMPC of Equation (14) drives the closed-loop state into Ωρmin .
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Figure 7. Closed-loop state profiles (x2 = T− Ts, x̄2 = T̄− Ts) for the initial condition (−0.25, 3) under
the LMPC of Equation (14) and the model-based detection system.
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Figure 8. The variation of S(k) for the initial condition (−0.25, 3) under the LMPC of Equation (14) and
the model-based detection system.

Next, the NN-based detection system and the LMPC of Equation (14) are implemented to mitigate
the impact of cyber-attacks. The feed-forward NN model with two hidden layers is built in Python
using the Keras library. Specifically, 3000 time-series balanced data samples of the closed-loop states of
the nominal system, the system with disturbances, and the system under min-max cyber-attacks from
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t = 0 to t = 1 min are used to train the neural network to generate the classification of three classes,
where class 0, 1, and 2 stand for the system under min-max cyber-attacks, the nominal system and the
system with disturbances, respectively. It is demonstrated that 3000 time-series data is sufficient to
build the NN for the CSTR example because dataset size smaller than 3000 leads to lower classification
accuracy while the increase of dataset size over 3000 does not significantly improve the classification
accuracy but brings more computation time as found in our calculations. 3000 data samples are split
into 2000 training data, 500 validation data and 500 test data, respectively. V(x) = xT Px is utilized as
the input vector to the NN model. The structure of the NN model is listed in Table 2. Additionally,
to improve the performance of the NN model, batch normalization is utilized after each hidden layer
to improve the performance of the NN algorithm.

Table 2. Feed-forward NN model.

Neurons Activation Functions

First Hidden Layer 120 ReLu
Second Hidden Layer 100 ReLu

Output Layer 1 Softmax

To apply the NN-based detection method, we first investigate the relationship of the classification
accuracy of the NN with respect to the size of the dataset. Specifically, assuming that the min-max
cyber-attack occurs at a random sampling step before 0.1 min, the first NN model M0.1 is trained at
t = 0.1 min using the data of states from t = 0 to 0.1 min. As shown in Figure 9, early-stopping
is activated at the 8th iteration (epoch) of training when validation accuracy ceases to increase.
The averaged classification accuracy at t = 0.1 min is obtained by training the same model Mt=0.1 for
10 times independently. The above process is repeated by increasing the size of the dataset by 0.02 min
every time to derive the models for different time instances (i.e., Mt=0.12, Mt=0.14, . . .). The minimum,
the maximum and the averaged classification accuracy at each detection time instance are shown in
Figure 10.

0 5 10 15 20 25 30
Epoch

0.5

0.6

0.7

0.8

0.9

1 Training accuracy

Validation accuracy

Early-stopping

Figure 9. The variation of training accuracy and validation accuracy for the NN model M0.1,
where early-stopping is activated at the 8th epoch of training.

Figure 10 shows that the averaged test accuracy increases as more state measurements are
collected after the cyber-attack occurs, and is up to 95% with state measurements for a long period of
time. This suggests that the detection based on recent models is more reliable and deserves higher
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weights in the sliding window. The confusion matrix of the above NN for three classes: the system
under min-max cyber-attack, the nominal system, and the system with disturbances is given in
Table 3. Additionally, besides the NN method, other supervised learning-based classification methods
including k-NN, SVM and random forests are also applied to the same dataset and obtained the
averaged test accuracies, sensitivities and specificities within 0.28 min as listed in Table 4.
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Figure 10. The test accuracy of neural network with respect to the size of training and test data.

Table 3. Confusion matrix of the neural network.

Actual Class 0: Actual Class 1: Actual Class 2:
Min-Max Cyber-Attack Nominal System The System with Disturbances

Predicted Class 0: 198 1 3
Predicted Class 1: 0 140 10
Predicted Class 2: 0 0 148

Table 4. Comparison of the performance of different detection models.

Models Test Accuracy Sensitivity Specificity

k-NN 71.1% 90.9% 99.5%
SVM 83.0% 93.0% 87.8%

Random Forest 96.2% 100.0% 96.2%
Neural Network 95.8% 98.0% 98.6%

When the detection of cyber-attacks is incorporated into the closed-loop system of Equation (15)
under the LMPC of Equation (14), the detection system is called every Na = 5 sampling periods.
The sliding window length is Ns = 15 sampling periods and the threshold for the detection indicator
is DTH = 1.6. The detection system is activated from t = 0.1 min such that a desired test accuracy
is achieved with enough data. The closed-loop state-space profiles under the NN-based detection
system with the stability region Ωρ check and the detection system without the Ωρ check are shown in
Figures 11 and 12.

Specifically, in Figure 11, it is demonstrated that without the stability region check, the closed-loop
state leaves Ωρ before the cyber-attack is confirmed. However, under the detection system with the
boundedness check of Ωρ, the closed-loop state is always bounded in Ωρ by switching to redundant
sensors at the first detection of min-max cyber-attacks. In Figure 12, it is shown that after the min-max
cyber-attack is confirmed at t = 0.115 min, the misbehaving sensor is isolated and the LMPC of
Equation (14) starts using the measurement of temperature from redundant sensors and re-stabilizes
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the system at the origin. The simulations demonstrate that it takes around 0.8 min for the closed-loop
state trajectory to enter and remain in Ωρmin under the LMPC of Equation (14) once the min-max
cyber-attack is detected. The corresponding input profiles for the closed-loop system of Equation (1)
under the NN-based detection system with the Ωρ check are shown in Figure 13, where it is observed
that a sharp change of ∆CA0 occurs from t = 0.095 min to t = 0.115 min due to the min-max
cyber-attack.
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Figure 11. The state-space profile for the closed-loop CSTR with the initial condition (0.24, −2.78),
where a min-max cyber-attack is detected by the NN-based detection system and mitigated by the
LMPC of Equation (14).
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Figure 12. Closed-loop state profiles (x2 = T − Ts, x̄2 = T̄ − Ts) for the initial condition (0.24, −2.78)
under the LMPC of Equation (14) and the NN-based detection system.
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Figure 13. Manipulated input profiles (u1 = ∆CA0, u2 = ∆Q) for the initial condition (0.24, −2.78)
under the LMPC of Equation (14) and the NN-based detection system.

Additionally, when both disturbances and min-max cyber-attacks are present, it is demonstrated
that the NN-based detection system is still able to detect the min-max cyber-attack and
re-stabilize the closed-loop system of Equation (15) in the presence of disturbances by following
the same steps as in the pure-cyber-attack case. The bounded disturbances w1 and w2 are
added in Equation (15a,15b) as standard Gaussian white noise with zero mean and variances
σ1 = 0.1 kmol/(m3 min) and σ2 = 2 K/min, respectively. Also, the disturbance terms are bounded as
follows: |w1| ≤ 0.1 kmol/(m3 min), and |w2| ≤ 2 K/min, respectively. The closed-loop state and input
profiles are shown in Figures 14–16. Specifically, in Figure 15, it is demonstrated that the min-max
cyber-attack occurs at 0.08 min and is confirmed at 0.115 min before the closed-loop state leaves Ωρ.
In the presence of disturbances, the misbehaving sensor is isolated and the closed-loop states are
driven to a neighborhood around the origin under the LMPC of Equation (14). In Figure 16, it is
demonstrated that the manipulated inputs show variation around the steady-state values (0, 0) when
the closed-loop system reaches a neighborhood of the steady-state due to the bounded disturbances.
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Figure 14. The state-space profiles for the closed-loop CSTR with bounded disturbances and the
initial condition (0.25, −3), where a min-max attack is detected by the NN-based detection system and
mitigated by the LMPC of Equation (14).
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Figure 15. State profiles (x2 = T − Ts, x̄2 = T̄ − Ts) for the closed-loop CSTR with bounded
disturbances and the initial condition (0.25, −3) under the LMPC of Equation (14) and the NN-based
detection system.
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Figure 16. Manipulated input profiles (u1 = ∆CA0, u2 = ∆Q) for the closed-loop CSTR with bounded
disturbances and the initial condition (0.25, −3) under the LMPC of Equation (14).

Lastly, since the surge cyber-attack of Equation (6) is undetectable by the model-based detection
method, we also test the performance of the NN-based detection on the surge cyber-attack due to the
similarity between surge cyber-attacks and min-max cyber-attacks (i.e., the surge cyber-attack works
as a min-max attack for the first few sampling steps). It is demonstrated in simulations that 89% of
surge cyber-attacks can be detected by the NN-based detection system that is trained for min-max
cyber-attacks only, which implies that the NN-based detection method can be applied to many other
cyber-attacks with similar properties.

Moreover, when cyber-attacks with different properties are taken into account, for example,
the replay attack (i.e., x̄ = X, where X is the set of past measurements of states), the NN-based detection
system can still efficiently distinguish the type of cyber-attacks and disturbances by re-training the NN
model. The new NN model is built with labeled training data for the case of min-max, replay, nominal
and with disturbances, for which the classification accuracy within 0.28 min is up to 85%. As a result,
the NN-based detection model can be readily updated with the data of new cyber-attacks without
changing the entire structure of detection or control systems.
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6. Conclusions

In this work, we proposed an integrated NN-based detection and model predictive control
method for nonlinear process systems to account for potential cyber-attacks. The NN-based detection
system was first developed with the sliding detection window to detect cyber-attacks. Based on that,
the Lyapunov-based MPC was developed with the stability region check triggered by the detection
indicator to achieve closed-loop stability in the sense that the closed-loop state remained within
a well-characterized stability region and was ultimately driven to a small neighborhood around
the origin. Finally, the proposed integrated NN-based detection and LMPC method was applied
to a nonlinear chemical process example. The simulation results demonstrated that the min-max
cyber-attack was successfully detected before the state exited the stability region, and the closed-loop
system was stabilized under the LMPC by using the measurements from redundant secure sensors.
The good performance of the proposed approach with respect to surge and replay cyber-attacks was
also demonstrated. The value and importance of the NN-based detection method is twofold. First,
the NN-based detection method is able to detect cyber-attacks without having to know the process
model if a large amount of past data is available. This is very important as nowadays most SCADA
systems are large-scale networks with complicated process models, while the big data processing
becoming available in both storage and computation. Second, compared to other detection methods,
the NN-based detection is easy to implement. The proposed detection and control method can improve
the safeness of processes by effectively detecting known (or similar to known) cyber-attacks and also
can be readily updated to handle new, unknown cyber-attacks. However, NN-based detection method
also has its limitations. Although it achieves desired performance for a trained, known cyber-attack,
it is not guaranteed to work for an unknown, new cyber-attack unless it shares similar properties with
known cyber-attacks.
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