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Abstract: In the present work, we deal with nonlinear fractional differential equations with “maxima”
and deviating arguments. The nonlinear part of the problem under consideration depends on the
maximum values of the unknown function taken in time-dependent intervals. Proceeding by an
iterative approach, we obtain the existence and uniqueness of the solution, in a context that does not
fit within the framework of fixed point theory methods for the self-mappings, frequently used in the
study of such problems. An example illustrating our main result is also given.
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1. Introduction

One of the most interesting kinds of nonlinear functional differential equations is the case when
the nonlinear part depends on the maximum values of the unknown function. These equations, called
functional differential equations with “maxima”, arise in many technological processes. For instance,
in the automatic control theory of various technical systems, it occurs that the law of regulation depends
on the maximal deviation of the regulated quantity (see [1,2]). Such problems are often modeled
by differential equations that contain the maximum values of the unknown function (see [3–5]).
Recently, ordinary differential equations with “maxima” have received wide attention and have been
investigated in diverse directions (see, for example, [4,6–11] and the references therein). As far as we
know, in the fractional case, these equations are not yet sufficiently discussed in the existing literature,
and thus form a natural subject for further investigation. Motivated by the previous fact and inspired
by [11], in this work, we focus on the existence and uniqueness of the solution for similar systems
in a fractional context, and in more general terms. We consider the following nonlinear fractional
differential equation with “maxima” and deviating arguments:

CDαu (t) = f
(

t, max
σ∈[a(t), b(t)]

u (σ) , u (t− τ1 (t)) , ..., u (t− τN (t))
)

, t > 0, (1)

with the initial condition function

u (t) = φ (t) , t ≤ 0, (2)

where CDα denotes the Caputo fractional derivative operator of order α ∈ [0, 1], N is a positive
integer, a, b and τi (with 1 ≤ i ≤ N) are real continuous functions defined on R+ = [0, +∞]

subject to conditions that will be specified later, φ : [−∞, 0] −→ R is a continuous function such that
φ (0) = φ0 > 0, and f : R+ ×R1+N −→ R is a nonlinear continuous function.
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Our aim is to give sufficient assumptions leading to an iterative process that converges to the
unique continuous solutions of Equations (1) and (2). These being under weaker conditions compared
to the usual contractions (see Remark 3), and in a setting for which the standard process of Picard’s
iterations fails to be well defined.

It should be pointed out here, that the maximums in Equation (1) are taken on time-dependent
intervals and not on a fixed one as is the case of the example given in [11].

Moreover, the Equation (1) will be supposedly of mixed type, namely with both retarded and
advanced deviations τi, while, in [11], only the delays are considered. It is also important to note that,
in the Lipschitz condition of the nonlinear function f , we take into account the direction of maximums
too, which is not the case of the corresponding assumption in [11].

Due to all of these generalizations, our work attempts to extend the application of [11]
(Theorem 3) to the fractional case by a constructive approach.

To our knowledge, the studies devoted to the question of the existence and uniqueness of the
solutions for fractional differential equations are based on different variants from the fixed point theory
for self-mappings, or on the upper and lower solutions method (see, e.g., [12–18] and the references
therein). We emphasize here that our result answers this question for a class of problems of the forms
Equations (1) and (2), even when the previous versions of the theory fail to do so directly. That is,
when the integral operator associated with Equations (1) and (2) is allowed to be a non self-mapping
(see Remark 1).

The rest of the paper is organized as follows. In the next section, we introduce some basic
definitions from the fractional calculus as well as preliminary lemmas. In Section 3, under some
sufficient conditions allowing the integral operator associated with Equations (1) and (2) to be non self,
we prove an existence–uniqueness result by means of an iterative process. The applicability of our
theoretical result is illustrated in Section 4.

2. Preliminaries

We start by recalling the definitions of the Riemann–Liouville fractional integrals and the Caputo
fractional derivatives on the half real axis. For further details on the historical account and essential
properties about the fractional calculus, we refer to [19–22].

Definition 1. The Riemann–Liouville fractional integral of a function u : R+ −→ R of order α ∈ R+ is
defined by

Iαu (t) :=
1

Γ (α)

∫ t

0
(t− s)α−1 u (s) ds, t > 0,

where Γ (.) is the Gamma function, provided that the right side is pointwise defined on [0, ∞].

In the following definition, n denotes the positive integer such that n− 1 < α ≤ n and dn/dtn is
the classical derivative operator of order n. For simplicity, we set du/dt = u′ (t).

Definition 2. The Caputo fractional derivative of a function u : R+ −→ R of order α ∈ R+ is defined by

CDαu (t) := In−α dn

dtn u (t) :=
1

Γ (n− α)

∫ t

0
(t− s)n−α−1 dn

dsn u (s) ds, t > 0,

provided that the right-hand side exists pointwise on [0, ∞].

In particular, when 0 < α < 1,

CDαu (t) := I1−αu′ (t) :=
1

Γ (1− α)

∫ t

0

u′ (s)
(t− s)α ds, t > 0. (3)
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Let us denote by C (R) the set of all real continuous functions onR. Applying the Riemann–Liouville
fractional integral operator Iα of order α to both sides of Equation (1) and using its properties
(see [19,21]), together with the initial condition Equation (2), we easily get the following lemma.

Lemma 1. If f , a, b and τi (with 1 ≤ i ≤ N) are continuous functions, then
u ∈ {v ∈ C (R) s.t. v (t) = φ (t) for t ≤ 0 } is a solution of Equations (1) and (2) if and only if
u (t) = Fu (t), where

Fu (t) = φ0 +
∫ t

0

(t− s)α−1

Γ (α)
f
(

s, max
σ∈[a(s),b(s)]

u (σ) , u (s− τ1 (s)) , ..., u (s− τN (s))
)

ds, t > 0, (4)

Fu (t) = φ (t) , t ≤ 0. (5)

Proof. Let u ∈ C (R). The functions a and b are continuous, so, according to the Remark in [7]
(page 8) , see also [4] (Remark 3.1.1, page 62), max

σ∈[a(t), b(t)]
u (σ) is continuous too. Moreover, since τi are

continuous, then f
(

t, max
σ∈[a(t), b(t)]

u (σ) , u (t− τ1 (t)) , ..., u (t− τN (t))
)

as a composition of continuous

functions, it is also continuous. Now, we are able to follow the usual approach to show this type
of result (see [15,19,21,23,24]). Note first that the Caputo fractional derivative of order α ∈ [0, 1] can
be expressed by means of the Riemann–Liouville fractional derivative denoted by Dα, as follows
(see [21] (2.4.4) or [19] (Definition 3.2)):

CDαu (t) = Dα [u (t)− u (0)] :=
d
dt

I1−α [u (t)− u (0)] . (6)

Let now u ∈ {v ∈ C (R) s.t. v (t) = φ (t) for t ≤ 0 } be a solution of Equations (1) and (2). Thus,
in view of the first equality in Equation (6), Equation (1) can be rewritten as

Dα [u (t)− u (0)] = f
(

t, max
σ∈[a(t), b(t)]

u (σ) , u (t− τ1 (t)) , ..., u (t− τN (t))
)

, t > 0. (7)

Since the right-hand side of Equation (7) is continuous, then according to the definition of the
Riemann–Liouville fractional derivative given by the second equality in Equation (6), we have

I1−α [u (t)− u (0)] ∈ C1 (R+) . (8)

Thus, using [21] (Lemma 2.9, (d) with γ = 0), we have

IαDα [u (t)− u (0)] = [u (t)− u (0)]− 1
Γ (α)

I1−αU (0) tα−1, (9)

where

U (t) := [u (t)− u (0)] . (10)

Since U is continuous, for every T > 0, there exists L > 0 such that |U (t)| ≤ L : for all t ∈ [0, T].
Thus, the following inequality holds true for every t > 0, sufficiently small∣∣∣I1−αU (t)

∣∣∣ ≤ 1
Γ (1− α)

∫ t

0

|U (s)|
(t− s)α ds ≤ L

Γ (2− α)
t1−α.

Hence, the fact that 1− α > 0, together with the continuity of I1−αU resulting from Equation (8),
imply that I1−αU (0) = 0. Consequently, Equation (9) becomes
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IαDα [u (t)− u (0)] = [u (t)− u (0)] . (11)

Now, returning to Equation (7), applying the Riemann–Liouville fractional integral to both sides,
and then using Equation (11) together with Equation (2), we obtain Equation (4).

Suppose now that u ∈ {v ∈ C (R) s.t. v (t) = φ (t) for t ≤ 0 } is a solution of Equations (4)
and (5). Then, in view of Definition 1, we can rewrite Equation (4) as

u (t) = φ0 + Iα f
(

t, max
σ∈[a(t), b(t)]

u (σ) , u (t− τ1 (t)) , ..., u (t− τN (t))
)

.

Since u is continuous, then the right-hand side above is continuous too. By applying the Caputo
fractional derivative operator CDα to both sides, then using its linearity (see [19] (Theorem 3.16)),
as well as the fact that the derivative of a constant (in the sense of Caputo) is equal to zero [21]
(Property 2.16), together with [21] (Lemma 2.21), we get Equation (1).

In the present work, the state space will be regarded as a complete Hausdorff locally convex space.
For further details on these spaces, we refer to [25]. In the sequel of this paper, we make use of the
following lemma, which can be found in [26] ([Lemma 2).

Lemma 2. Let X be a complete Hausdorff locally convex space, E a closed subset of X and u, v ∈ X. If u ∈ E
and v /∈ E, then there exists β ∈ [0, 1] such that wβ := (1− β)u + βv ∈ ∂E, where ∂E denotes the boundary
of E. Furthermore, if u /∈ ∂E, then β ∈ [0, 1].

3. The Main Results

In this section, we not only prove the existence–uniqueness result for Equations (1) and (2), but
we also give this solution as a limit of an iterative process.

First, let us set the following hypotheses:

(H1) ∀t ≥ 0 : 0 ≤ a∗ ≤ a(t) ≤ b(t) ≤ b∗, with a∗ := inf
t∈[0,+∞[

a(t), and b∗ := sup
t∈[0,+∞[

b(t). Furthermore,

for all t ∈ [0, b∗], we assume that a(t) = a∗ and b(t) = b∗. In other words, the functions a and b
are constant on the interval [0, b∗].

(H2) ∃τ > 0, such that, for i = 1, ..., N : τi (t) > t− τ, ∀t > 0.
(H3) For i = 1, ..., N, ∃ti > 0 : τi (t) ≥ t, ∀t ∈ [0, ti], and τi (t) < t, ∀t ∈ [ti,+∞].
(H4) There exist positive constants l1 and l2, such that f satisfies the Lipschitz condition

| f (t, ξ, x1, ..., xN)− f (t, η, y1, ..., yN)| ≤ l1 |ξ − η|+ l2
N

∑
i=1
|xi − yi| .

(H5) There exists a positive constant M > φ0 such that

1
Γ (α) α

f (t, M, x1, ..., xN) ≤
M− φ0

b∗α , ∀ (t, x1, ..., xN) ∈ [0 , b∗]×RN .

(H6) f is a non negative function, and, moreover, ∃h ∈ [φ0, M] such that ∀t ∈ [0 , b∗]

1
Γ (α) α

f (t, h, x1, ..., xN) >
M− φ0

|b∗ − max
1≤i≤N

ti|α
, ∀ (x1, ..., xN) ∈

(
[φ0, φ0+

h−φ0
b∗ τ]

)N
.

Let X = C (R) be the locally convex sequentially complete Hausdorff space of all real valued
continuous functions defined on R, and {PK : K ∈ K} be the saturated family of semi-norms,
generating the topology of X, defined by

PK (u) = sup
t∈K

{
e−λt |u (t)|

}
, (12)
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where K runs over the set of all compact subsets of R denoted by K, and λ is a positive real number to
be specified later.

We denote by Eφ,M, the subset of X defined by

Eφ,M = {u ∈ X : u (t) = φ (t) for t ≤ 0, and u (t) ≤ M for t ∈ [a∗, b∗]} ,

where a∗, b∗ and M are the constants given by (H1) and (H5). It can be easily seen that Eφ,M is a closed
subset of X and its boundary is

∂Eφ,M =

{
u ∈ X : u (t) = φ (t) for t ≤ 0 and max

t∈[a∗ , b∗ ]
u (t) = M

}
.

Throughout the remaining of this paper, F denotes the operator defined on Eφ,M by Equations (4)
and (5). Thus, according to Lemma 1, F maps Eφ,M into X and the fixed points of F are continuous
solutions of problems Equations (1) and (2).

Remark 1. It should be pointed out that under hypotheses (H1)–(H3), (H6) with the additional condition
max

1≤i≤N
ti < b∗, F is a non-self mapping on Eφ,M. Indeed, as is noted in the proof of [11] (Theorem 3) , for any

function u ∈ Eφ,M defined by u (t) = φ0 + (h− φ0) t/b∗, where t ∈ [0 , b∗] and h is the constant given
by (H6), it can be easily seen that Fu /∈ Eφ,M. This will be checked by the example of the last section.

The introduction of a self-mapping of the index set in uniform spaces is motivated by applications
in the theory of neutral functional differential equations [11,27,28]. Following this idea, let us define a
map j : K −→ K by

j(K) :=


K, if K+ = ∅,

[0, max{Km, τ, b∗}] , if K+ 6= ∅,
(13)

where K+ := K ∩ [0, +∞] , Km = sup K, τ and b∗ are the positive constants given in (H1)–(H2). For
n ∈ N∗, jn(K) is the compact set defined inductively by jn(K) = j

(
jn−1(K)

)
and j0(K) = K.

Remark 2. Note that, for every K ∈ K and every integer n greater than 1, we have jn(K) = j(K).

In the next proposition, we show that F satisfies Equation (14), which is a weakened version of
the usual contraction when Lλ < 1 (see Remark 3).

Proposition 1. Under hypotheses (H1)–(H4), the operator F : Eφ,M → X satisfies for each u, v ∈ Eφ,M and
every K ∈ K

PK (Fx− Fy) ≤ LλPj(K) (x− y) (14)

with

Lλ =
l1

λαΓ (α)
Γ
(

α2
) 1

1+α

(
α

1 + α

) α
1+α

eλb∗ +
Nl2eλτ

λα
. (15)

Proof. Note that it suffices to consider K+ 6= ∅, since otherwise PK (Fu− Fv) = 0. Letting t ∈ K+, we
obtain by means of hypotheses (H3) and (H4)

|Fu (t)− Fv (t)| ≤
∫ t

0

(t− s)α−1

Γ (α)
l1| max

σ∈[a(s),b(s)]
u (σ)− max

σ∈[a(s),b(s)]
v (σ) |ds
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+
∫ t

0

(t− s)α−1

Γ (α)
+ l2

N

∑
i=1
|u (s− τi (s))− v (s− τi (s)) |ds

≤ l1
∫ t

0

(t− s)α−1

Γ (α)
max

σ∈[a(s),b(s)]
|u(σ)−v(σ)| ds + l2

N

∑
i=1

∫ min{ti , t}

0

(t− s)α−1

Γ (α)
|φ(ri(s))−φ(ri(s))| ds

+ l2 ∑
i∈{1,...,N:ti≤t}

∫ t

ti

(t− s)α−1

Γ (α)
|u (ri (s))− v (ri (s))| ds

= l1
∫ t

0

(t− s)α−1

Γ (α)
max

σ∈[a(s),b(s)]
|u(σ)−v(σ)| ds + l2 ∑

i∈{1,...,N:ti≤t}

∫ t

ti

(t− s)α−1

Γ (α)
|u(ri(s))−v(ri(s))| ds

≤ l1
∫ t

0

(t− s)α−1

Γ (α)
eλb(s) max

σ∈[a(s),b(s)]
e−λσ|u (σ)− v (σ) |ds

+ l2 ∑
i∈{1,...,N:ti≤t}

∫ t

ti

(t− s)α−1

Γ (α)
eλri(s)e−λri(s) |u (ri (s))− v (ri (s))| ds

≤ l1 max
σ∈[a∗ ,b∗ ]

e−λσ|u(σ)−v(σ)|
∫ t

0

(t− s)α−1

Γ (α)
eλb(s)ds

+ l2 ∑
i∈{1,...,N:ti≤t}

∫ t

ti

(t− s)α−1

Γ (α)
eλri(s)e−λri(s) |u (ri (s))− v (ri (s))| ds,

where ri (s) = s− τi (s) . Note that, due to the definition Equation (13) and under hypothesis (H1),
it is clear that, for every K ∈ K with K+ 6= ∅, we have [a∗, b∗] ⊂ j(K) and further (H2)–(H3) lead to
ri (s) ∈ j(K) when ti ≤ s ≤ t. Hence,

|Fx (t)− Fy (t)| ≤ l1Pj(K) (u− v)
∫ t

0

(t− s)α−1

Γ (α)
eλb(s)ds

+ l2 ∑
i∈{1,...,N:ti≤t}

∫ t

ti

(t− s)α−1

Γ (α)
eλri(s) max

ξ∈j(K)
e−λξ |u(ξ)−v(ξ)| ds

= l1Pj(K) (u− v)
∫ t

0

(t− s)α−1

Γ (α)
eλb(s)ds + l2Pj(K) (u− v) ∑

i∈{1,...,N:ti≤t}

∫ t

ti

(t− s)α−1

Γ (α)
eλri(s)ds.

Now, multiplying the both sides of the above inequality by e−λt, then performing the change of
variable u = λ (t− s), we get

e−λt |Fu (t)− Fv (t)| ≤ l1 Pj(K) (u− v)
∫ t

0

(t− s)α−1

Γ (α)
e−λ(t−b(s))ds

+ l2 Pj(K) (u− v) ∑
i∈{1,...,N:ti≤t}

∫ t

ti

(t− s)α−1

Γ (α)
e−λ(t−ri(s))ds

=
l1

λαΓ (α)
pj(K) (u− v)

∫ λt

0
xα−1e−λ(t−b(t− x

λ ))dx
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+
l2
λα

Pj(K) (u− v) ∑
i∈{1,...,N:ti≤t}

∫ λ(t−ti)

0

xα−1

Γ (α)
e−xe−λτi(t− x

λ )dx

≤ l1
λαΓ (α)

Pj(K) (u− v)
∫ λt

0
xα−1e−xe−λ((t− x

λ )−b(t− x
λ ))dx

+
l2
λα

Pj(K) (u− v) ∑
i∈{1,...,N:ti≤t}

∫ λ(t−ti)

0

xα−1

Γ (α)
e−xe−λτi(t− x

λ )dx.

Let µ := 1 + α and ν := 1 + 1/α. Taking into account (H3), Hölder’s inequality gives

e−λt |Fu (t)− Fv (t)| ≤,

 l1
λαΓ (α)

(∫ λt

0
xµ(α−1)e−µxdx

) 1
µ
(∫ λt

0
e−νλ((t− x

λ )−b(t− x
λ ))dx

) 1
ν

+
Nl2eλτ

λα

 Pj(K) (u− v)

=

 l1
λαΓ (α)

(∫ λt

0
xµ(α−1)e−µxdx

) 1
µ
(

λ
∫ t

0
e−νλ(s−b(s))ds

) 1
ν

+
Nl2eλτ

λα

 Pj(K) (u− v)

≤

 l1
λαΓ (α)

(∫ λt

0
xµ(α−1)e−µxdx

) 1
µ
(

λ
∫ t

0
e−νλ(s−b∗)ds

) 1
ν

+
Nl2eλτ

λα

 Pj(K) (u− v)

≤
{

l1
λαΓ (α)

Γ
(

α2
) 1

µ 1
ν

1
ν

eλb∗ +
Nl2eλτ

λα

}
Pj(K) (u− v) .

Thus, the result is obtained by taking the supremum on K.

Remark 3. Since K+ ⊂ j(K), if PK (Fu− Fv) ≤ LλPK (u− v) is satisfied, then Equation (14) holds true.
Therefore, due to the choice of j, in the present context, the usual contraction is a particular case of Equation (14)
when Lλ < 1.

To reach our aim, we proceed by adapting the proof of [11], [Theorem 1] with some completeness,
for the construction of an iterative process converging to the unique continuous solutions of
Equations (1) and (2).

According to Remark 1, the standard process of Picard’s iterations fails to be well defined.
To overcome this fact, we make use of Lemma 2 to construct a sequence of elements of Eφ,M as follows:
starting from an arbitrary point u0 ∈ Eφ,M, we define the terms of a sequence {un}n∈N∗ in Eφ,M
iteratively as follows:

un = Fun−1, if Fun−1 ∈ Eφ,M,

un = (1− βn)un−1 + βnFun−1 ∈ ∂Eφ,M with βn ∈ [0, 1[ , if Fun−1 /∈ Eφ,M.
(16)

Note that the terms of the sequence {un}n∈N∗ belong to A ∪ B ⊂ Eφ,M, with B ⊂ ∂Eφ,M, where

A := {ui ∈ {un}n∈N∗ : ui = Fui−1} and B := {ui ∈ {un}n∈N∗ : ui 6= Fui−1}.

Furthermore, if un ∈ B, a straightforward computation leads to

PK(un−1 − un) + PK(un − Fun−1) = PK(un−1 − Fun−1) ∀K ∈ K. (17)
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Proposition 2. Let u0 ∈ Eφ,M, and {un}n∈N∗ be the sequence defined iteratively by Equation (16). Then,
under hypotheses (H1)–(H5), for each K ∈ K and every integer m greater than or equal to 1, the following
estimation holds true:

max{PK(u2m − u2m+1), PK(u2m+1 − u2m+2)} ≤ 22m−1Lm
λ CK, (18)

where Lλ is given by Equation (15) and

CK = max{Pj(K)(u0 − u1), Pj(K)(u1 − u2), Pj(K)(u2 − u3)}.

Proof. If max
t∈[a∗ , b∗ ]

u (t) = M, then, for a∗ ≤ t ≤ b∗, hypothesis (H5) gives

Fu (t) = φ0 +
1

Γ (α)

∫ t

0
(t− s)α−1 f (s, M, u (s− τ1 (s)) , ..., u (s− τN (s))) ds

≤ φ0 +
α(M−φ0)

b∗α

∫ t
0 (t− s)α−1 ds ≤ M,

which means that F(∂Eφ,M) ⊂ Eφ,M. Consequently, two consecutive terms of the sequence {un}n∈N∗

can not belong to B (recall that B ⊂ ∂Eφ,M). Thus, it suffices to consider the three cases below.

Case 1. un, un+1 ∈ A. From Equation (14), we have

PK(un − un+1) = PK(Fun−1 − Fun) ≤ Lλ · Pj(K)(un−1 − un).

Case 2. un ∈ A, un+1 ∈ B. From the condition Equation (14) together with Equation (17) (for un+1

instead of un), we get

PK(un − un+1) = PK(un − Fun)− PK(un+1 − Fun)

≤ PK(Fun−1 − Fun) ≤ Lλ · Pj(K)(un−1 − un).

Case 3. un ∈ B, un+1 ∈ A. Then, ∃βn ∈ [0, 1] : un = (1− βn)un−1 + βnFun−1, which implies that

PK(un − un+1) ≤ max{PK(un−1 − un+1), PK(Fun−1 − un+1)}.

Thus, by Equation (14), for every integer number n ≥ 2, we obtain either

PK(un − un+1) ≤ Lλ · pj(K)(un−1 − un), or PK(un − un+1) ≤ Lλ · Pj(K)(un−2 − un).

Moreover,

Pj(K)(un−2 − un) ≤ Pj(K)(un−2 − un−1) + Pj(K)(un−1 − un)

≤ 2 max{Pj(K)(un−2 − un−1), Pj(K)(un−1 − un)}.

In summary, the following inequality is true in all cases

PK(un − un+1) ≤ 2Lλ max{Pj(K)(un−2 − un−1), Pj(K)(un−1 − un)}. (19)

We now prove Equation (18) by induction. Using Equation (19), we have either

PK(u2 − u3) ≤ 2Lλ · Pj(K)(u0 − u1) ≤ 2Lλ · CK,

or
PK(u2 − u3) ≤ 2Lλ · Pj(K)(u1 − u2) ≤ 2Lλ · CK,
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and similarly we obtain

PK(u3 − u4) ≤ 2Lλ · CK.

Consequently, Equation (18) is satisfied for m = 1. Assume now that Equation (18) holds true for
some m > 1. Using Equation (19), we get either

PK(u2m+2 − u2m+3) ≤ 2Lλ · Pj(K)(u2m − u2m+1),

or
PK(u2m+2 − u2m+3) ≤ 2Lλ · Pj(K)(u2m+1 − u2m+2).

Thus, the fact that Cj(K) = CK, which follows from Remark 2, leads to

PK(u2m+2 − u2m+3) ≤ 2Lλ22m−1Lλ
mCj(K) = 22mLλ

m+1CK ≤ 22(m+1)−1Lλ
m+1CK.

In the same way, we get

PK(u2m+3 − u2m+4) ≤ 22(m+1)−1Lλ
m+1 CK,

which means that Equation (18) holds for m + 1, and this completes the proof.

We are now ready to prove our main result.

Theorem 1. Let u0 ∈ Eφ,M, then under hypotheses (H1)–(H6) with

max
1≤i≤N

ti < b∗, (20)

the sequence {un}n∈N∗ defined iteratively by Equation (16), converges in Eφ,M to the unique continuous solution
of Equations (1) and (2) provided that{

l1
Γ (α)

Γ
(

α2
) 1

1+α

(
α

1 + α

) α
1+α

+ Nl2

}
e max{τ, b∗}α <

1
4

. (21)

Proof. Let us put λ = 1/max{τ, b∗} in Equation (12). Thus, according to Proposition 1, for every
K ∈ K and u, v ∈ Eφ,M, Equation (14) holds true with Lλ < 1/4. Therefore, for an arbitrary fixed
K ∈ K, and, for each ε > 0, there exists a positive integer s satisfying

∞

∑
m=s

22mLm
λ <

ε

CK
. (22)

Hence, for n ≥ 2s, q ≥ 1 and a sufficiently large l, we get, by means of Equations (18) and (22),

PK(un − un+q) ≤ PK(un − un+1) + PK(un+1 − un+2) + · · ·+ PK(un+q−1 − un+q)

≤
l

∑
m=s
{PK(u2m − u2m+1) + PK(u2m+1 − u2m+2)}

≤
l

∑
m=s

22mLm
λ · CK ≤ CK ·

∞
∑

m=s
22mLm

λ < ε.

Consequently, {un}n∈N∗ is a Cauchy sequence in the closed subset Eφ,M of the complete locally
convex space X, and so it converges to a point u ∈ Eφ,M. Let {unk}k≥1 be a sub-sequence of {un}n≥1

in A, which is unk+1 = Funk for every positive integer k. Then, for each compact K ∈ K, we have
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PK(u− Fu) ≤ PK(u− unk ) + PK(unk − Fu) = PK(u− unk ) + PK(Funk−1 − Fu)

≤ PK(u− unk ) + Lλ · Pj(K)(unk−1 − u) −−−−→
k→+∞

0.

Therefore, u = Fu and so, according to Lemma 1, u is a solution of Equations (1) and (2). For the
uniqueness, assume that there exists another solution v ∈ Eφ,M such that u 6= v. Since X is Hausdorff,
then PK0(u− v) 6= 0 for some compact K0 ∈ K. Using Equation (14) and Remark 2, we get for every
positive integer n

0 < PK0(u− v) = PK0(Fu− Fv) ≤ Lλ · Pj(K0)
(u− v) = Lλ · Pj(K0)

(Fu− Fv)

≤ L2
λ · Pj(K0)

(u− v) ≤ . . . ≤ Ln
λPj(K0)

(u− v),

which contradicts the fact that Lλ < 1
4 . This completes the proof.

4. Example

The following example illustrates the applicability of our theoretical result. Let us consider the
following equation

CD0.5u (t) =
1.132

2.45 + 10−2| max
t∈[10−1, 2]

u(t)|+ 10−4|u( 0.994
1+t t−0.004)|

, t > 0, (23)

subject to the initial condition function

u (t) = 2t2 + 1.168, t ≤ 0, (24)

Problems in Equations (23) and (24) are identified to Equations (1) and (2) with α = 0.5, N = 1,

a(t) = 10−1, b(t) = 2, τ1 (t) = t− 0.994
1 + t

t + 0.004, φ (t) = 2t2 + 1.168 and

f (t, ξ, η) =
1.132

2.45 + 10−2 |ξ|+ 10−4 |η|
.

It can be easily seen that hypotheses (H1)–(H4) are satisfied with a∗ = 10−1, b∗ = 2, τ = 0.994,
t1 = 4× 10−3/

(
1− 10−2), l1 = 1132× 10−5 and l2 = 1132× 10−7.

In addition, there exists M = 1.9 (M > φ0 = 1.168), such that, for every η ∈ R, we have

f (t, M, η) ≤ 1.132
2.45 + 10−2 ×M

' 0.45845216686918,

and

0.5Γ (0.5)
M− φ0

b∗0.5 ' 0.458712974257473.

Thus, (H5) holds true. To check (H6), let h = 1.168001 (φ0 < h < M), and then we have for every
η ∈ [φ0, φ0 +

h−φ0
b∗ τ[=

]
1.168, 1.168 +

(
9.97× 10−5)]

f (t, h, η) >
1.132

2.45 + h× 10−2 +
(

φ0 +
h−φ0

b∗ τ
)
× 10−4

' 0.461798645149363,

and

0.5Γ (0.5)
M− φ0

(b∗ − t1)
0.5 ' 0.459177023920154.

Since, moreover, f is clearly non negative, hypothesis (H6) is satisfied too.
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Furthermore, we have t1 < b∗ and{
l1

Γ (0.5)
Γ (0.25)

1
1.5

(
0.5
1.5

) 0.5
1.5

+ Nl2

}
e max{τ, b∗}0.5 ' 0.041231690678434,

which is all conditions of Theorem 1 being fulfilled. Now, let u0 be the function defined by

u0 (t) =


1.168 + (5× 10−7)t : t ∈ [0, b∗] ,
1.168001 : t ≥ b∗,
2t2 + 1.168 : t ≤ 0.

It is clear that u0 ∈ Eφ,1.9, where

Eφ,1.9 =
{

u ∈ C (R) : u (t) = 2t2 + 1.168 for t ≤ 0 and u (t) ≤ 1.9 for t ∈
[
10−1, 2

]}
.

Note that, for 0 < t− τ1 (t) < τ, we have

φ0 = 1.168 < u0 (t− τ1 (t)) < 1.168 + (5× 10−7)τ = φ0 +
h− φ0

b∗
τ.

Then, hypothesis (H6) yields to

Fu0 (2) = Fu0 (b∗) = φ0 +
∫ b∗

0

(b∗ − s)α−1

Γ (α)
f (s, h, u0 (s− τ1 (s))) ds

.

≥ φ0 +
∫ b∗

t1

(b∗ − s)α−1

Γ (α)
f (s, h, u0 (s− τ1 (s))) ds

> φ0 + α
M− φ0

(b∗ − t1)
α

∫ b∗

t1

(b∗ − s)α−1 ds = M = 1.9,

which means that Fu0 /∈ Eφ,1.9. Thus, in this framework, the iterative processes usually used in
the self-mapping context can not be applied, while, according to Theorem 1, the process defined
by Equation (16), converges in Eφ,1.9, to the unique continuous solutions of Equations (23) and (24).
The first term is approximately given by

u1 (t) '



1.168 + (12115× 10−13) t + 0.5176017180
√

t : 0 < t ≤ t1,
1.168 + (12115× 10−13) t + (509761847× 10−18)

√
27225 t− 110 + 0.5176017180

√
t :

t1 < t ≤ b∗,
1.168000002 + (509761847× 10−18)

√
27225 t− 110 + 0.517601718

√
t : t ≥ b∗,

2t2 + 1.168 : t ≤ 0.

For t > 0, the other terms can be computed using the following formulas:

u2 (t) = φ0 +
1.132
Γ (α)

∫ t

0

(t− s)α−1

2.45 + 10−2| max
t∈[10−1, 2]

u1(s)|+ 10−4|u1( 0.994
1+s s−0.004)|

ds.

By successive iterations up to the order n− 1, the term un is given by

un (t) =
∫ t

0

(t− s)α−1

2.45 + 10−2| max
t∈[10−1, 2]

un−1(s)|+ 10−4|un−1( 0.994
1+s s−0.004)|

ds,
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if the right-hand side belongs to Eφ,1.9. If not, we have

un (t) = (1− βn)un−1 + βn

φ0 +
1.132
Γ (α)

∫ t

0

(t− s)α−1

2.45 + 10−2| max
t∈[10−1, 2]

un−1(s)|+ 10−4|un−1( 0.994
1+s s−0.004)|

ds

 ,

with βn ∈ [0, 1], such that the right-hand side belongs to ∂Eφ,1.9.

5. Conclusions

In this contribution, the investigated question concerns the existence and uniqueness of the
solution for a class of nonlinear functional differential equations of fractional order. The considered
problems in Equations (1) and (2) are distinguished by the fact that the nonlinear part depends on
maximum values of the unknown function, which is not frequently discussed in the existing literature.
These maximums are taken on time-dependent intervals and, moreover, the equation is of mixed
type, i.e., with both retarded and advanced deviations. It should be noted that, if the hypotheses
(H6) and Equation (20) are omitted, the operator F can be a self mapping, and thus, by the usual
contraction methods, it can be shown that the result of Theorem 1 remains valid with the bound
in Equation (21) weakened to 1. When additional conditions are necessary to meet the physical or
mechanical requirements of the phenomenon governed by Equations (1) and (2), we leave the previous
usual framework of study. In this case, our main result of Theorem 1 shows that the condition in
Equation (21) is sufficient for the existence and uniqueness of the solution.
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