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Abstract: In this paper, we investigate a numerical solution of Lienard’s equation. The residual power
series (RPS) method is implemented to find an approximate solution to this problem. The proposed
method is a combination of the fractional Taylor series and the residual functions. Numerical and
theoretical results are presented.
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1. Introduction

The ordinary Lienard’s equation is given by:

y′′(x) + f (y)y′(x) + g(y) = r(x). (1)

Different choices of f , g, and r will produce different models. For example, if f (y) y′(x) is the
damping force, g(y) is the restoring force, and r(x) is the external force, we get the damped pendulum
equation. However, if we choose f (y) = ε(y2 − 1), g(y) = y, and r(x) = 0 , we get a nonlinear model
of electronic oscillation, see [1,2].

Several researchers have studied the exact solution of special cases of Equation (1). For example,
Feng [3] investigated the exact solution of:

y′′(x) + a y(x) + b y3(x) + c y5(x) = 0. (2)

He found that one of the solutions to Equation (2) is given by:

y(x) =

√
−2a

b
(1 + tan(

√
−ax) (3)

when b2

4 − 4 a c
3 = 0, b > 0, and a < 0. Several methods are used to investigate the solution

of nonlinear equation such as the homotopy analysis method (HAM), Adomian decomposition
method, and variational method [4–12]. Equation (2) was studied by many researchers, notably
Kong [13], Matinfar et al. [14,15], and others. In this paper, we generalize Equation (2) to the
fractional case. It is not an easy task to solve highly nonlinear differential equations of fractional
order. Many of the researchers tried to solve nonlinear equations by using different techniques.
For example, Liao studied an analytical method termed as the HAM [9–11] to examine nonlinear
problems. Furthermore, the HAM is used by many researchers to solve various types of nonlinear
problems such as fractional Black–Scholes equation [12], natural convective heat and mass transfer
in a steady 2-D MHD fluid flow over a stretching vertical surface via porous media [16], micropolar
flow in a porous channel in the presence of mass injection [17], etc. The standard classical analytic
schemes require more computational time and computer memory. Some researchers combine
analytical techniques with Laplace transform to study nonlinear problems such as a class of nonlinear
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differential equations [18], the nonlinear boundary value problem on a semi infinite domain [19], the
fractional convection–diffusion equation [20], the fractional Keller–Segel model [21], fractional coupled
Burgers equations [16], and the synthesis of FO-PID controllers [22]. In this paper, we consider the
following class of fractional Lienard’s equation of the form:

D2αy(x) + a y(x) + b y3(x) + c y5(x) = 0, x > 0,
1
2
< α ≤ 1, (4)

subject to:
y(0) = y0, Dαy(0) = y1 (5)

where a, b, c, y0, and y1 are constants. The derivative in Equation (4) is in the Caputo sense.
The Caputo derivative is defined as follows; see [23,24].

Definition 1. Let n be the smallest integer greater than or equal to α. The Caputo fractional derivative of order
α > 0 is defined as:

Dαy(x) =


1

Γ(n−α)

∫ x
0 (x− t)n−α−1y(n)(t)dt, n− 1 < α < n,

y(n)(x), α = n ∈ N.
.

The power rule of the Caputo derivative is given as follows.

Theorem 1. The Caputo fractional derivative of the power function is given by:

Dαxp =


Γ(p+1)

Γ(p−α+1) xp−α, n− 1 < α < n, p > n− 1, p ∈ R,

0, n− 1 < α < n, p ≤ n− 1, p ∈ N.

We implement the residual power series (RPS) method [13,25–27] to solve Equation (4). We start
by the following definition and some theorems related to the RPS, [13,27].

Definition 2. A power series expansion of the form:

∞

∑
m=0

cm(x− x0)
mα = c0 + c1(x− x0)

α + c2(x− x0)
2α + ...

where 0 ≤ n− 1 < α ≤ n, x ≤ x0, is called fractional power series FPS about x = x0.

Theorem 2. Suppose that f has a RPS representation at x = x0 of the form:

f (x) =
∞

∑
m=0

cm(x− x0)
mα, x0 ≤ x < x0 + R,

where R is the radius of convergence. If Dmα f (x), m = 0, 1, 2, ... are continuous on (x0, x0 + R),
then cm = Dmα f (x0)

Γ(1+mα)
.

2. The Residual Power Series Method for Fractional Lienard’s Equation

Write the solution of Equation (4) as a fractional power series of the form:

y(x) =
∞

∑
n=0

yn
xnα

Γ(1 + nα)
. (6)
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Using the initial conditions in Equation (5), we approximate y(x) in Equation (6) by:

yk(x) = y0 + y1
xα

Γ(1 + α)
+

k

∑
n=2

yn
xnα

Γ(1 + nα)
, k = 2, 3, ... (7)

where y1(x) = y0 + y1
xα

Γ(1+α)
is considered as the first RPS approximate solution of y(x). To find the

values of the RPS-coefficients yn, n = 2, 3, 4, ... , we solve the equation:

D(n−2)αResn(0) = 0, n = 2, 3, 4, ... (8)

where Resk(x) is the kth residual function [13,27] and it is defined by:

Resk(x) = D2αyk(x) + a yk(x) + b y3
k(x) + c y5

k(x). (9)

To find y2 in Equation (7), we substitute the second RPS approximate solution y2(x) = y0 +

y1
xα

Γ(1+α)
+ y2

x2α

Γ(1+2α)
into:

Res2(x) = D2αy2(x) + a y2(x) + b y3
2(x) + c y5

2(x)
= y2 + a

(
y0 + y1

xα

Γ(1+α)
+ y2

x2α

Γ(1+2α)

)
+b
(

y0 + y1
xα

Γ(1+α)
+ y2

x2α

Γ(1+2α)

)3

+c
(

y0 + y1
xα

Γ(1+α)
+ y2

x2α

Γ(1+2α)

)5
.

(10)

Then, we solve Res2(0) = 0 to get:

y2 = −
(

a y0 + b y3
0 + c y5

0

)
. (11)

To find y3 in Equation (7), we substitute the third RPS approximate solution y3(x) = y0 +

y1
xα

Γ(1+α)
+ y2

x2α

Γ(1+2α)
+ y3

x3α

Γ(1+3α)
into:

Res3(x) = D2αy3(x) + a y3(x) + b y3
3(x) + c y5

3(x)
= y2 + y3

xα

Γ(1+α)
+ a

(
y0 + y1

xα

Γ(1+α)
+ y2

x2α

Γ(1+2α)
+ y3

x3α

Γ(1+3α)

)
+b
(

y0 + y1
xα

Γ(1+α)
+ y2

x2α

Γ(1+2α)
+ y3

x3α

Γ(1+3α)

)3

+c
(

y0 + y1
xα

Γ(1+α)
+ y2

x2α

Γ(1+2α)
+ y3

x3α

Γ(1+3α)

)5
.

(12)

Then, we solve DαRes3(0) = 0 to get:

y3 = −
(

a y1 + 3b y2
0 y1 + 5c y4

0 y1

)
. (13)

In general, to find yk(x), we substitute the kth RPS approximate solution yk(x) into:

Resk(x) = D2αyk(x) + a yk(x) + b y3
k(x) + c y5

k(x). (14)

Then, we solve D(k−2)α
t Resk(0) = 0 to get:

yk = −


a yk−2 + b ∑k−2

i=0 ∑k−2−i
j=0

yi yj yk−2−i−j Γ(1+(k−2)α)
Γ(1+iα)Γ(1+jα)Γ(1+(k−2−i−j)α)

+c ∑k−2
i=0 ∑k−2−i

j=0 ∑
k−2−i−j
l=0 ∑

k−2−i−j−l
m=0

yi yjyl ym yk−2−i−j−l−m Γ(1+(k−2)α)
Γ(1+iα)Γ(1+jα)Γ(1+lα)Γ(1+mα)Γ(1+(k−2−i−j−l−m)α)

 . (15)
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3. Convergence Analysis

In this section, we prove the convergence of the proposed method. We start by the following lemma.

Lemma 1. The classical power series ∑∞
n=0 ynxn, −∞ < x < ∞, has a radius of convergence R if and only if

the fractional power series ∑∞
n=0 ynxαn, x ≥ 0, has a radius of convergence R

1
α .

Proof. See [28].

Theorem 3. The fractional power series:

y(x) =
∞

∑
n=0

yn
xnα

Γ(1 + nα)
(16)

where the coefficients are defined in Equation (15) has a positive radius of convergence.

Proof. From Equation (15), one can see that:

∣∣yk

∣∣
Γ(1 + kα)

≤

 A yk−2 + B ∑k−2
i=0 ∑k−2−i

j=0 |yi|
∣∣yj
∣∣ ∣∣∣yk−2−i−j

∣∣∣
+C ∑k−2

i=0 ∑k−2−i
j=0 ∑

k−2−i−j
l=0 ∑

k−2−i−j−l
m=0 |yi|

∣∣yj
∣∣ |yl | |ym|

∣∣∣yk−2−i−j−l−m

∣∣∣
 (17)

where:

A =
|a|

Γ(1 + kα)
,

B = Max
0 ≤ j ≤ k− 2− i

0 ≤ i ≤ k− 2
k

{
Γ(1 + (k− 2)α)

Γ(1 + iα)Γ(1 + jα)Γ(1 + (k− 2− i− j)α)Γ(1 + kα)

}
|b| ,

C = Max
0 ≤ m ≤ k− 2− i− j− l

0 ≤ l ≤ k− 2− i− j
0 ≤ j ≤ k− 2− i

0 ≤ i ≤ k− 2
k

{
Γ(1 + (k− 2)α)

ρi,j,k,l,m

}
|c| ,

ρi,j,k,l,m = Γ(1 + iα)Γ(1 + jα)Γ(1 + lα)Γ(1 + mα)Γ(1 + (k− 2− i− j− l −m)α)Γ(1 + kα).

Let:

f (x) =
∞

∑
k=0

akxk (18)

where a0 = |y0 | , a1 =
|y1 |

Γ(1+α)
, and

ak = A ak−2 + B ∑k−2
i=0 ∑k−2−i

j=0 ai aj ak−2−i−j

+C ∑k−2
i=0 ∑k−2−i

j=0 ∑
k−2−i−j
l=0 ∑

k−2−i−j−l
m=0i ai ajalam ak−2−i−j−l−m

(19)
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for k = 2, 3, ... Then,

ω = f (x) = a0 + a1 x + x2 ∑∞
k=0 ak+2xk

= a0 + a1 x + x2

 A ∑∞
k=0 akxk + B ∑∞

k=0

(
∑k

i=0 ∑k−i
j=0 ai aj ak−i−j

)
xk

+C ∑∞
k=0

(
∑k

i=0 ∑k−i
j=0 ∑

k−i−j
l=0 ∑

k−i−j−l
m=0i ai ajalam ak−i−j−l−m

)
xk

 .
(20)

Let:
H(x, ω) = ω− a0 − a1 x− x2

(
Aω + Bω3 + Cω5

)
. (21)

It is easy to see that H(x, ω) is an analytic function in the (x, ω)− plane and

H(0, a0) = 0, Hω(0, a0) = 1 6= 0. (22)

By implicit function theorem [29], f (x) is analytic function in a neighborhood of the point (0, a0) of
the (x, ω)− plane with a positive radius of convergence. Thus, the series in Equation (6) is convergent
by Lemma 1.

4. Numerical Results

In this section, we present four examples to show the efficiency of the proposed approach.
Comparison with the exact solution presented in Equation (3) is reported in Tables 1–4 for different
choices of a, b, and c with α = 1. Let:

error(x) = |yexact(x)− y5(x)| , x ≥ 0. (23)

In these two examples, we use k = 3. Then,

y2 = −
(
a y0 + b y3

0 + c y5
0
)

,
y3 = −

(
a y1 + 3b y2

0 y1 + 5c y4
0 y1

)
.

(24)

Example 1. Consider the following class of fractional differential equation:

D2αy(x)− y(x) + 3y3(x)− 27
16

y5(x) = 0,
1
2
< α ≤ 1, (25)

subject to:

y(0) = y0 =

√
2
3

, Dαy(0) = y1 =
1√
6

. (26)

Then, the error, when α = 1, is reported in Table 1. Figure 1 shows the effect of α on the solution
for α = 0.6, 0.7, 0.8, 0.9, 1.

Table 1. Error when α = 1.

x Exact Solution y3(x) error(x)

0.00 0.816497 0.816497 0
0.02 0.824622 0.824620 2.2 × 10−6

0.04 0.832675 0.832658 1.7 × 10−5

0.06 0.840663 0.840606 5.8 × 10−5

0.08 0.848595 0.848460 1.4 × 10−4

0.10 0.856479 0.856216 2.6 × 10−4
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Α

0.02 0.04 0.06 0.08 0.10

x

0.83

0.84

0.85

y3HxL

Figure 1. The approximate solution for α = 0.6, 0.7, 0.8, 0.9, 1.

Example 2. Consider the following class of fractional differential equation:

D2αy(x)− y(x) + 4y3(x)− 3y5(x) = 0,
1
2
< α ≤ 1, (27)

subject to:

y(0) = y0 =

√
1
2

, Dαy(0) = y1 =
1√
8

. (28)

Then, the error, when α = 1, is reported in Table 2. Figure 2 shows the effect of α on the solution
for α = 0.6, 0.7, 0.8, 0.9, 1.

Table 2. Error when α = 1.

x Exact Solution y3(x) error(x)

0.00 0.707107 0.707107 0
0.02 0.714142 0.714144 1.9 × 10−6

0.04 0.721103 0.721118 1.5 × 10−5

0.06 0.727986 0.728036 4.9 × 10−5

0.08 0.734789 0.734905 1.1 × 10−4

0.10 0.741508 0.741733 2.2 × 10−4

Α

0.02 0.04 0.06 0.08 0.10

x

0.715

0.720

0.725

0.730

0.735

0.740

y3HxL

Figure 2. The approximate solution for α = 0.6, 0.7, 0.8, 0.9, 1.

Example 3. Consider the following class of fractional differential equation:

D2αy(x)− y(x) + 2y3(x)− 3
4

y5(x) = 0,
1
2
< α ≤ 1, (29)
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subject to:
y(0) = y0 = 1, Dαy(0) = y1 = 1. (30)

Then, the error, when α = 1, is reported in Table 3. Figure 3 shows the effect of α on the solution
for α = 0.6, 0.7, 0.8, 0.9, 1.

Table 3. Error when α = 1.

x Exact Solution y3(x) error(x)

0.00 1.41421356 1.41421356 0
0.02 1.43407937 1.43407951 1.4 × 10−8

0.04 1.45370489 1.45370501 1.2 × 10−6

0.06 1.47313071 1.47313091 2.0 × 10−6

0.08 1.49239558 1.49239579 2.1 × 10−6

0.10 1.51153681 1.51153707 2.6 × 10−6

Α

0.02 0.04 0.06 0.08 0.10

x

1.05

1.10

1.15

1.20

1.25

y3HxL

Figure 3. The approximate solution for α = 0.6, 0.7, 0.8, 0.9, 1.

Example 4. Consider the following class of fractional differential equation:

D2αy(x)− 4y(x) + 8y3(x)− 3y5(x) = 0,
1
2
< α ≤ 1, (31)

subject to:
y(0) = y0 = 1, Dαy(0) = y1 = 1. (32)

Then, the error, when α = 1, is reported in Table 4. Figure 4 shows the effect of α on the solution
for α = 0.6, 0.7, 0.8, 0.9, 1.

Table 4. Error when α = 1.

x Exact Solution y3(x) error(x)

0.00 1 1 0
0.02 1.01981437 1.01981441 4.0 × 10−8

0.04 1.03931280 1.03931294 1.4 × 10−7

0.06 1.05857420 1.05857444 2.4 × 10−7

0.08 1.07767317 1.07767348 3.1 × 10−7

0.10 1.09668137 1.09668171 3.4 × 10−7
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Α

0.02 0.04 0.06 0.08 0.10

x

1.05

1.10

1.15

1.20

y3HxL

Figure 4. The approximate solution for α = 0.6, 0.7, 0.8, 0.9, 1.

5. Conclusions

In this paper, we have investigated the analytical solution of Lienard’s equation based on the RPS
method. Convergence of the proposed infinite series is presented. Four examples of our numerical
results are presented. Comparison with the exact solution when α = 1 is reported in Tables 1–4. From
Tables 1–4, we see that the approximate solute is close to the exact solution with four terms only. From
Figures 1 and 2, we see that as α is increasing, the approximate solution is increasing while from
Figures 3 and 4, we see that as α is increasing, the approximate solution is decreasing. We see that
this approach is cheap compared with other methods and we obtain accurate results using four terms
only. A reasonably accurate solution can be achieved with only a few terms. Moreover, the proposed
method can be applied to several nonlinear models in science and engineering.
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of the reviewers.
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