
mathematics

Article

Convertible Subspaces of Hessenberg-Type Matrices

Henrique F. da Cruz 1,2, Ilda Inácio Rodrigues 1, Rogério Serôdio 1,2, Alberto Simões 1,2,3

and José Velhinho 1,*
1 Faculdade de Ciências, Universidade da Beira Interior, Rua Marquês d’Ávila e Bolama, 6201-001 Covilhã,

Portugal; hcruz@ubi.pt (H.F.d.C.); ilda@ubi.pt (I.I.R.); rserodio@ubi.pt (R.S.); asimoes@ubi.pt (A.S.)
2 Centro de Matemática e Aplicações (CMA-UBI), Universidade da Beira Interior,

Rua Marquês d’Ávila e Bolama, 6201-001 Covilhã, Portugal
3 Center for Research and Development in Mathematics and Applications (CIDMA), Universidade de Aveiro,

Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
* Correspondence: jvelhi@ubi.pt; Tel.: +351-275242071

Received: 16 November 2017; Accepted: 10 December 2017; Published: 13 December 2017

Abstract: We describe subspaces of generalized Hessenberg matrices where the determinant is
convertible into the permanent by affixing ± signs. An explicit characterization of convertible
Hessenberg-type matrices is presented. We conclude that convertible matrices with the maximum
number of nonzero entries can be reduced to a basic set.
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1. Introduction

Let Mn(C) denote the space of all n-square matrices over the complex field C and let Sn be the
symmetric group of degree n. For A = [aij] ∈ Mn(C), the permanent function is defined as:

per(A) = ∑
σ∈Sn

n

∏
i=1

aiσ(i). (1)

The permanent function therefore resembles the determinant, which in turn is given by:

det(A) = ∑
σ∈Sn

ε(σ)
n

∏
i=1

aiσ(i), (2)

where ε denotes the sign function.
Although not as prominent as the determinant, the permanent function is still a well-known

matrix function, with many applications in combinatorics and graph theory. However, while the
determinant can be easily computed, no efficient algorithm for computing the permanent is known.
The difficulty for a direct computation of the permanent leads to the idea of trying to compute it by
using determinants. This problem dates back to 1913 in a work by Pólya [1], and it has been under
intensive investigation since then. While it is clear that the permanent of a 2× 2 matrix:

A =

[
a11 a12

a21 a22

]
(3)

equals the determinant of the related matrix:

B =

[
a11 −a12

a21 a22

]
, (4)
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Szegö [2] proved that for n ≥ 3, there is no way to generalize this procedure. That is, there is no
uniform way of changing the signs in the entries of a matrix A ∈ Mn(C) in order to obtain a matrix B
satisfying det(B) = per(A).

In [3], Gibson proved that if A is an n-square (0, 1)-matrix, and if the permanent of A can be
converted to a determinant by affixing ± signs to the elements of the matrix, then A has at most
Ωn = 1

2 (n
2 + 3n− 2) positive entries.

Later, Little [4] proved that an n-square (0, 1)-matrix can be conveniently represented by means of
a bipartite graph and reinterpreted the problem of characterizing convertible matrices as the problem
of characterizing bipartite graphs whose 1-factors can be counted by using Pfaffians in the manner
suggested by Kasteleyn [5].

The computational complexity for determining if a (0, 1)-matrix is convertible was studied by
Vazirani and Yannakakis [6] and Robertson, Seymour, and Thomas [7], leading the latter authors to
design a polynomial-time algorithm capable of determining whether or not the permanent of the
matrix is convertible into a determinant.

In this article, we consider mostly n-square (0, 1)-matrices with the maximum number of positive
entries Ωn. For these cases, we present a procedure to determine whether or not a given matrix
is convertible. Compared with previously available algorithms, this method does not rely on the
associated bipartite graph, and is more efficient. This result is presented in Section 4, where we
introduce a new concept: the imprint. Before that, in Section 3, we define Hessenberg-type matrices,
generalizing the well-known notion of Hessenberg matrices, and present some preliminary results.
Our main results are presented in Section 5. We extend Fonseca’s result [8] by presenting an explicit
characterization of convertible Hessenberg-type matrices and corresponding subspaces. We conclude
that convertible matrices can be reduced to a basic set.

2. Basic Definitions and Preliminary Results

Let us start with a brief summary of definitions and results that are subsequently used throughout
the article.

In the present work, we exclusively consider square matrices, so we will drop the qualifier square
in what follows. In general, the order n of the considered matrices is arbitrary, except when explicitly
stated otherwise.

A matrix X ∈ Mn(C) is said to be convertible if there exists a (1,−1)-matrix C ∈ Mn(C), such that:

per(X) = det(C ? X), (5)

where ? denotes the Hadamard product. As already mentioned in the Introduction, a convertible
matrix of order n has at most Ωn = 1

2 (n
2 + 3n− 2) nonzero entries [3].

For a (0, 1)-matrix S of order n, we define the associated coordinate subspace as:

Mn(S) = {S ? X : X ∈ Mn(C)}. (6)

It is clear that if S is convertible then every element of Mn(S) is also convertible, with respect to
the same matrix C; i.e., there exists a (1,−1)-matrix C ∈ Mn(C) such that:

per(X) = det(C ? X), for all X ∈ Mn(S). (7)

We will also say that Mn(S) is convertible.
A well-known set of convertible matrices is the set of Hessenberg matrices. The matrix

A = [aij] ∈ Mn(C) is said to be a lower (upper) Hessenberg matrix if aij = 0 for i < j− 1 (i > j + 1).
In [9], Gibson proved that the linear space of lower (or upper) Hessenberg matrices is a convertible
subspace of Mn(C). In [8], Fonseca extended Gibson’s result to a broader class of matrices. In the next
section we introduce a definition that further extends the class of matrices considered in [8].
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Definition 1. Two matrices A and B are permutation equivalent if there exist permutation matrices P and Q
such that B = PAQ. In such a case, we denoted it by A ∼ B.

It is clear that if A is convertible and A ∼ B, then B is also convertible.

Proposition 1. If a matrix S ∈ Mn(C) is convertible, then it is sufficient to change at most n− 1 signs in
order to convert the permanent into the determinant.

Proof. Trivial by Lemma 3 and by the Theorem in [3].

Let A = [aij] ∈ Mn(C). We denote by A(i1, . . . , ik; j1, . . . , jk) the submatrix of A obtained after
removing rows i1, . . . , ik and columns j1, . . . , jk.

The following result is given in the proof of Lemma 1 of [3]:

Lemma 1. Let S = [sij] be a convertible (0, 1)-matrix, with per(S) = det(C ? S), where C = [cij] is a
(1,−1)-matrix . If srs = 1, then S(r; s) is also convertible, with:

per(S(r; s)) = (−1)r+scrs det(C(r; s) ? S(r; s)). (8)

A subspace version of this lemma follows immediately.

Proposition 2. If Mn(S) is a convertible subspace and sij = 1, then Mn−1(S(i; j)) is also a
convertible subspace.

Corollary 1. If Mn(S) is a convertible subspace and si1 j1 , . . . , sik jk are k nonzero elements of S,
then Mn−k(S(i1, . . . , ik; j1, . . . , jk)) is also a convertible subspace.

Proof. Trivial by induction.

3. Hessenberg-Type Matrices

In this section we will extend further the class of matrices considered in [8]. Throughout what
follows, the adjective “lower” for the lower Hessenberg matrices will be dropped, since no ambiguity
will appear.

Definition 2. An n-square matrix is a Hessenberg-type matrix if it has at most n− 1 nonzero entries above
the main diagonal. A coordinate subspace V of Mn(C) is said to be a Hessenberg-type subspace if there is a
Hessenberg-type (0, 1)-matrix S = [sij] with sij = 1 if i ≥ j, such that:

V = Mn(S). (9)

If S has exactly k ≤ n− 1 nonzero entries above the main diagonal, we call V a (k, n)-Hessenberg-type
subspace, or simply a (k, n)-subspace if there is no ambiguity. If k = n− 1, then S is called a full Hessenberg-type
matrix and the corresponding Mn(S) subspace is called a full Hessenberg-type subspace.

Note that a full Hessenberg-type (0, 1)-matrix has precisely the maximum allowed number Ωn of
nonzero entries for convertibility.

Standard Hessenberg matrices are of course special cases of Hessenberg-type matrices.
In particular, a matrix in a (n− 1, n)-subspace, with all n− 1 nonzero entries located in the second
upper diagonal, will be referred to as a full Hessenberg matrix.

Fonseca’s extension result [8], concerning a particular Hessenberg-type subspace, can be stated
as follows:
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Theorem 1. [8] Let S = [sij] ∈ Mn(C) be a full Hessenberg-type (0, 1)-matrix, and `, k ∈ {2, . . . , n− 1},
with k < `+ 1. If the positions (i, j) of the nonzero entries, above the main diagonal, satisfy:

j = k or i = ` or (k ≤ i < ` and j = i + 1), (10)

then Mn(S) is a convertible subspace. The (1,−1)-matrix C ∈ Mn(C) such that per(X) = det(C ? X) for all
X ∈ Mn(S) satisfies:

cij = −1, if (1 < i < k ∨ k < j < n) ∧ (i > j), (11)

cij = 1, otherwise. (12)

Example 1. For example, if n = 7, k = 4, and ` = 5, then:

S =



1 0 0 1 0 0 0
1 1 0 1 0 0 0
1 1 1 1 0 0 0
1 1 1 1 1 0 0
1 1 1 1 1 1 1
1 1 1 1 1 1 0
1 1 1 1 1 1 1


and C =



1 0 0 −1 0 0 0
−1 1 0 −1 0 0 0
−1 −1 1 −1 0 0 0

1 1 1 1 −1 0 0
1 1 1 1 1 −1 −1
1 1 1 1 1 1 0
1 1 1 1 1 −1 1


(13)

and the coordinate subspace M7(S) is convertible.

Next, we present some results concerning nonfull Hessenberg-type subspaces.

Proposition 3. The (1, n)-subspace is convertible.

Proof. Trivial by Theorem 1.

Proposition 4. Let S be a (2, n)-Hessenberg-type (0, 1)-matrix with a 1 in position (i1, j1), j1 > i1. S is
convertible if and only if the position (i2, j2) of the second 1 above the main diagonal is not in one of the
following regions: 

Region I := i2 < i1 and j2 > j1
Region II := i2 > i1 and j2 < j1
Region III := i2 < i1 and i1 + 1 < j2 < j1
Region IV := i1 < i2 < j1 − 1 and j2 < j1

. (14)

Proof. Without loss of generality, let us consider the scheme below. Note that if j1 = i1 + 1, then we
only have region I.
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j1
↓

S =



1 ∗ ∗ ∗ �
III

∗
I1 1 ∗ ∗ � ∗

1 1 1 ∗ � ∗
i1 → 1 1 1 1 ∗ ∗ ∗ 1 ∗ ∗ ∗

1 1 1 1 1 II ∗
IV

1 1 1 1 1 1 ∗
1 1 1 1 1 1 1 ∗ ⊗ ⊗ ⊗
1 1 1 1 1 1 1 1 ∗ ∗ ∗
1 1 1 1 1 1 1 1 1 ∗ ∗
1 1 1 1 1 1 1 1 1 1 ∗
1 1 1 1 1 1 1 1 1 1 1



.

(15)

(⇒) Let us first suppose that the second 1 is in region I. Assume, without loss of generality, that the
second 1 is in the upper-right corner of S. If this is not the case, then there exists a submatrix S′

of S satisfying this condition, and the non-convertibility of S′ implies the non-convertibility of
S. Note that S(1; n) is an (n− 1)-square matrix with (n− 1) nonzero entries above the main
diagonal—which cannot be convertible because it has more than Ωn−1 nonzero entries [3].
Then, by Lemma 1, we conclude that S is not convertible.

The situation where the second 1 is in region II is no different from the previous case, since one
can interchange the role of the two 1’s.

Next, let us suppose that the second 1 is in region III. So, we have j1 > i1 + 1 and we may
assume—without loss of generality—that j1 = n and i2 = 1 (an example of a matrix S of this
form is given in Equation (16) below). If this is not the case, then as we argued for the region I
case, there exists a submatrix S′ of S satisfying this condition.

S =



1 0 0 0 1 0 0
1 1 0 0 0 0 0
1 1 1 0 0 0 1
1 1 1 1 0 0 0
1 1 1 1 1 0 0
1 1 1 1 1 1 0
1 1 1 1 1 1 1


. (16)

Since the number of nonzero entries of S is 1
2 (n

2 + n + 4), it follows that S(1, i1; j2, n) is an
(n− 2)-square matrix with 1

2 (n
2 + n + 4)− (n + 5 + i1 − j2) = 1

2 (n
2 − n− 6) + j2 − i1 nonzero

entries, because there are 2 + 2 + i1 + (n− j2 + 1) = n + 5 + i1 − j2 nonzero entries eliminated
in S. Since j2 − i1 > 1 in region III, the number of nonzero entries of this (n− 2)-square matrix
is greater than the maximum admissible Ωn−2 = 1

2 (n
2 − n− 4), and S(1, i1; j2, n) is therefore

not convertible. By Corollary 1, this implies that the initial matrix is also nonconvertible.

Finally, if the second 1 is in region IV, one can interchange the role of the 1’s above the main
diagonal, thus falling in the previous case.

(⇐) If the second 1 is not in any of the four regions, then we have three cases:

• if j2 = i1 + 1 and i2 < i1 (positions labeled by �), then S is permutation equivalent to a
convertible matrix by Theorem 1, permuting columns j2 and j2 − 1.
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• if i2 = j1 − 1 and j2 > j1 (positions labeled by ⊗), then S is permutation equivalent to a
convertible matrix by Theorem 1, permuting rows i2 and i2 + 1.

• otherwise (positions labeled by ∗) S is convertible by Theorem 1.

Lemma 2. For n ≥ 3, the number of convertible (2, n)-subspaces with a nonzero entry at a fixed position (i, j),
i ≤ j− 1, is:

1
2
[n2 + (5− 2j)n + j2 − j + i2 − i− 8] if i < j− 1, (17)

1
2
[n2 + (1− 2i)n + 2i2 − 4] if i = j− 1. (18)

Proof. Consider first the case i < j− 1. By Proposition 4, the number of convertible (2, n)-subspaces is
given by:

Tn−j+1 + Ti + (n− i− 2) + (j− 3) =
1
2
[n2 + (5− 2j)n + j2 − j + i2 − i− 8], (19)

where Tn = n(n+1)
2 is the nth triangular number.

For i = j− 1 the number of convertible (2, n)-subspaces is likewise given by:

Tn−i + Ti − 2 =
1
2
[n2 + (1− 2i)n + 2i2 − 4]. (20)

Proposition 5. For n ≥ 3, the number of convertible (2, n)-subspaces is 1
24 (n− 1)(n− 2)(n2 + 13n− 12).

Proof. The formula clearly holds for n = 3. Let us prove it for general n by induction. Suppose then
that the formula holds for n. Let S be an arbitrary (2, n + 1)-Hessenberg-type (0, 1)-matrix. Two cases
may occur: apart from the (1, 1) position, there is either none or at least one nonzero entry in the first
row of S. In the first case, it is clear that the number of convertible subspaces of Mn+1(S) coincides
with the number of convertible subspaces of Mn(S(1; 1)), which is, by hypothesis:

1
24

(n− 1)(n− 2)(n2 + 13n− 12). (21)

In the second case, one applies Lemma 2 at fixed positions (1, j). For position (1, 2) the counting is
provided by Formula (18), which gives:

1
2

[
(n + 1)2 + (1− 2)(n + 1) + 2− 4

]
=

1
2

(
n2 + n− 2

)
. (22)

For positions (1, j), j > 2, the counting is provided by Formula (17). Summing over all different
possibilities gives:

n+1

∑
j=3

[
1
2

(
(n + 1)2 + (5− 2j)(n + 1) + j2 − j− 8

)
− (j− 2)

]
, (23)

where the term (j− 2) takes care of the double counting (since there may be two nonzero entries in the
first row, apart from the position (1, 1)). This sum can be easily performed, yielding:

1
6 (n− 1)(n2 + 7n− 12). (24)



Mathematics 2017, 5, 79 7 of 12

Finally, summing all contributions (21), (22), and (24) for the number of convertible
(2, n + 1)-subspaces, we get:

1
24

(n− 1)n(n2 + 15n + 2). (25)

It follows by induction that the number of convertible (2, n)-subspaces is 1
24 (n− 1)(n− 2)(n2 +

13n− 12).

4. The Imprint and a Criterion for Convertibility

The following new concept will allow us to determine if a given (0, 1)-matrix with Ωn nonzero
entries is convertible or not in a very simple way, thus providing a useful criterion for convertibility of
the associated subspaces.

Definition 3. The imprint of an n-square (0, 1)-matrix S = [sij] is the array, sorted in increasing order,
given by: (

r1 r2 . . . rn

c1 c2 . . . cn

)
, (26)

where

rk =
n

∑
j=1

sik j, for k = 1, . . . , n, and {i1, . . . , in} = {1, 2, . . . , n} (27)

and

ck =
n

∑
i=1

sijk for k = 1, . . . , n, and {j1, . . . , jn} = {1, 2, . . . , n} . (28)

We will denote the imprint of S by imp(S).

Example 2. Consider the following matrices:

S1 =


1 1 0 0 0
1 1 0 1 0
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

 and S2 =


1 1 0 0 0
1 1 1 0 0
1 1 1 1 0
1 1 1 1 1
1 1 1 1 1

 . (29)

Then,

imp(S1) =

(
2 3 5 5 5
3 3 4 5 5

)
and imp(S2) =

(
2 3 4 5 5
2 3 4 5 5

)
. (30)

Lemma 3. If S is permutation equivalent to a full Hessenberg (0, 1)-matrix, then:

imp(S) =

(
2 3 . . . n− 1 n n
2 3 . . . n− 1 n n

)
. (31)

The following proposition gives a necessary and sufficient criterion for convertibility of matrices
in Mn(C) with Ωn nonzero entries.
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Proposition 6. S is a convertible n-square (0, 1)-matrix with Ωn nonzero entries if and only if:

imp(S) =

(
2 3 . . . n− 1 n n
2 3 . . . n− 1 n n

)
. (32)

Proof.

(⇒) If S is convertible and has Ωn nonzero entries, then, by Corollary 2 in [3], S is permutation
equivalent to a full Hessenberg matrix. Hence, by Lemma 3,

imp(S) =

(
2 3 . . . n− 1 n n
2 3 . . . n− 1 n n

)
. (33)

(⇐) If

imp(S) =

(
2 3 . . . n− 1 n n
2 3 . . . n− 1 n n

)
, (34)

it is possible to reorder the rows and columns to obtain a Hessenberg matrix. Hence,
it is convertible.

Remark 1. It follows from the last result that not all matrices in an (n − 1, n)-subspace are convertible.
For example, the matrix:

S =


1 0 1 1
1 1 0 1
1 1 1 0
1 1 1 1

 (35)

is not convertible because imp(S) 6=
(

2 3 4 4
2 3 4 4

)
.

5. Charaterization of Full Hessenberg-Type Subspaces

In this section we consider full Hessenberg-type matrices and the corresponding subspaces.
Our aim is to obtain an explicit characterization of convertible full Hessenberg-type subspaces.

Hessenberg-type matrices can be composed to produce new higher-dimensional matrices
as follows.

Definition 4. Let S1 and S2 be two Hessenberg-type (0, 1)-matrices with dimensions m and n, respectively,
such that the submatrix of S1 formed by the k× k lower-right corner coincides with the submatrix of S2 formed
by its k × k upper-left corner. The k-overlap S1

⊙
k S2 is the (m + n − k)-dimensional matrix obtained by

superposition of S1 and S2 by their main diagonal, overlapping the coincident k × k submatrix, where the
missing entries below and above the main diagonal are 1 and 0, respectively.

Note that the new matrix S1
⊙

k S2 is not necessarily of the Hessenberg-type, as the following
counting of nonzero entries above the main diagonal shows. Let a, b, and c respectively denote the
number of 1’s above the main diagonal in S1, S2, and the common k× k submatrix. The number of 1’s
above the main diagonal in S1

⊙
k S2 is then (a− c) + c + (b− c) = a + b− c. In the least favorable

case when both matrices S1 and S2 are full (i.e., a = m− 1 and b = n− 1), it follows that S1
⊙

k S2 is
Hessenberg-type only if c ≥ k− 1.
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Example 3. For the two following (full) Hessenberg-type matrices:

S1 =


1 0 1 0
1 1 1 1
1 1 1 0
1 1 1 1

 and S2 =

 1 0 1
1 1 1
1 1 1

 , (36)

two examples of overlaps are:

S1
⊙

1
S2 =

1
1
1
1
1
1

1
1
1
1
1
0

1
1
1
1
1
1

1
1
1
0
1
0

1
1
0
0
0
0

1
1
1
0
0
0

and S1
⊙

2
S2 =

1
1
1
1
1

1
1
1
1
0

1
1
1
1
1

1
1
0
1
0

1
1
1
0
0

. (37)

In the first case, the matrix is Hessenberg-type, whereas in the second case it is not.

Lemma 4. Let S1 and S2 be two full Hessenberg-type (0, 1)-matrices. S1
⊙

k S2 is a full Hessenberg-type
(0, 1)-matrix if and only if the common k× k matrix is a full Hessenberg-type (0, 1)-matrix.

Proof. If the k× k matrix is full, the conclusion follows trivially from the counting below Definition 4.
By the same counting, if S1

⊙
k S2 is full, we have m + n− 2− c = m + n− k− 1, and thus the number

of nonzero entries above the main diagonal in the k× k matrix is c = k− 1.

Proposition 7. Let S1 and S2 be two full and convertible Hessenberg-type (0, 1)-matrices. If a k-overlap
S1
⊙

k S2 is a full Hessenberg-type matrix, then it is convertible.

Proof. Let S1 and S2 be two full and convertible Hessenberg-type (0, 1)-matrices of order m1 and
m2, respectively, and S the k-overlap matrix of order n, S = S1

⊙
k S2, which by hypothesis is a full

Hessenberg-type matrix. If n = max{m1, m2}, then S = S1 or S = S2, and it is therefore convertible.
Suppose that n > max{m1, m2}. Without loss of generality, one can consider the scheme

depicted below:

︸ ︷︷ ︸
m1 − k

︸︷︷︸
k
︸ ︷︷ ︸

m2 − k

m2

m1


(38)

where the k× k overlap submatrix will be denoted by S′. It follows from the previous lemma that
S′ is a full Hessenberg-type matrix. Moreover, it follows from Corollary 1 that S′ is convertible,
since S′ = S1(1, . . . , m1 − k; 1, . . . , m1 − k).

Let us calculate imp(S). For the last m2 rows of S, the number of nonzero entries in each row is
obtained by adding m1 − k to each value of the first row of imp(S2),

2 . . . m2 − 1 m2 m2

+ m1 − k . . . m1 − k m1 − k m1 − k
m1 − k + 2 . . . m1 + m2 − k− 1 m1 + m2 − k m1 + m2 − k

. (39)
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Since S′ is a full convertible matrix, we have:

imp(S′) =

(
2 . . . k− 1 k k
2 . . . k− 1 k k

)
, (40)

and the contribution of these k rows to the first row of imp(S1) is:

2 . . . k− 1 k k
+ m1 − k . . . m1 − k m1 − k m1 − k

m1 − k + 2 . . . m1 − 1 m1 m1

, (41)

which correspond to the last k values of the first row of imp(S1). It follows that the first m1 − k values
of the first row of imp(S1) correspond to the first m1 − k rows of S1, and therefore to the first m1 − k
rows of S. Hence, after taking into account the first m1 − k values of the first row of imp(S1), the first
row of imp(S) turns out to be:

2, 3, . . . , m1 + m2 − k− 1, m1 + m2 − k, m1 + m2 − k. (42)

Since a similar argument is clearly valid for the columns, we get:

imp(S) =

(
2 . . . m1 + m2 − k− 1 m1 + m2 − k m1 + m2 − k
2 . . . m1 + m2 − k− 1 m1 + m2 − k m1 + m2 − k

)
, (43)

and it follows from Proposition 6 that S is convertible.

We will now show that a small family of matrices generates—by means of the above defined
overlap—all possible full convertible Hessenberg-type subspaces.

For n ≥ 2, consider the family of full n-square Hessenberg-type (0, 1)-matrices represented below:

(44)

where the n− 1 nonzero entries above the main diagonal are in the following regions: position (1, n),
positions (1, 2), . . ., (1, k) in the first line and positions (k + 1, n), . . ., (n− 1, n) in the last column,
where the integer k can take any of the values {1, 2, . . . , n− 1}. In particular, if k = n− 1, all the 1’s
above the main diagonal are positioned in the first row and if k = 1 all the 1’s are positioned in the
last column.

We will refer to these matrices as basic, with the understanding that for n = 2 the (only) basic
matrix is the (0, 1)-Hessenberg matrix.

Proposition 8. The basic matrices are convertible.

Proof. The basic matrices are permutation equivalent to the Hessenberg matrix (or coincide with it,
for n = 2).

Proposition 9. If a full Hessenberg-type (0, 1)-matrix is convertible, then it is basic or an overlap of two or
more basic matrices.

Proof. We will prove it by induction.
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For n = 3 there are three convertible subspaces M3(S), where:

S =

1
1
1

1
1
1

1
1
0

or S =

1
1
1

1
1
1

1

1
0 or S =

1
1
1

1
1

1

1
1

0
. (45)

The first matrix S is a 1-overlap of two 2-square (0, 1)-Hessenberg matrices, whereas the last two
are basic.

Suppose now that the proposition is valid for n. Note first that validity for n actually guarantees
validity for n− 1, and therefore for n− k, with k ≥ 1, for the following reason. Suppose there is a
(n− 1)-square full convertible Hessenberg-type (0, 1)-matrix that is neither basic nor an overlap of
basic matrices. The 1-overlap of this matrix (by means of the diagonal position (n− 1, n− 1)) with the
2× 2 basic matrix is then a full Hessenberg-type matrix of order n, and is convertible by Proposition 7,
but fails to be basic or an overlap of basic matrices, which is a contradiction.

Let then S = [sij] be an (n + 1)-square full convertible Hessenberg-type (0, 1)-matrix. In what
follows, we will repeatedly use Proposition 6, which establishes that for all integer 2 ≤ ` ≤ n, there is
exactly one row and one column of S with exactly ` nonzero entries. Proposition 2 and Corollary 1 are
also used.

Let k + 1, k ≥ 1 be the number of 1’s in the first row of S. It follows that rows 2, 3, . . ., until row k
are fully determined. In particular, for these rows, sij = 0 for j > i. Moreover, all entries in the first row
at positions (1, j) with j ≤ k must be 1’s, for the following reason. Matrices S(j; j) are convertible ∀j,
and must therefore have less nonzero entries above the diagonal than S. However, for j ≤ k (and j > 1),
no 1’s would be removed from S, unless they are at positions (1, j). So, s12, . . ., s1k in S are necessarily
1’s, with the remaining 1 in the first row appearing in an arbitrary position (1, m), m > k (of course,
the above constraints are void for k = 1). Note that the column j = m is also completely determined:
it is already established that sim = 0 for 1 < i ≤ k, and it follows from Proposition 6 that the remaining
entries must be 1’s. Now, if m = n + 1, we are done, since S is then seen to be basic (in particular, this
includes the case k = n). Otherwise, we have m ≤ n and let S′ be the square matrix formed by the first
m rows and columns of S. This matrix S′ is clearly convertible, by Corollary 1. On the other hand, since
the combined number of 1’s above the diagonal in the first row and last column of S′ is clearly m− 1,
it follows that the maximum number Ωm of admissible nonzero entries is saturated, showing that S′ is
of the basic type. Furthermore, S(1, . . . , k; 1 . . . , k) is certainly Hessenberg-type, convertible, and full,
since the number of 1’s above the diagonal in S(1, . . . , k; 1 . . . , k) is precisely n− k, given that exactly k
nonzero entries above the diagonal are removed from S. It is clear that S is an (m− k)-overlap of S′

with S(1, . . . , k; 1 . . . , k), thus completing our proof, since S(1, . . . , k; 1 . . . , k) is, by hypothesis, basic or
an overlap of basic matrices.

We will conclude by counting the number of convertible full Hessenberg-type subspaces of order
n, or the corresponding full convertible Hessenberg-type (0, 1)-matrices. Given an (n− 1, n)-subspace,

there are

(
Tn−1

n− 1

)
different combinations of distributing the nonzero entries above the diagonal,

where Tn−1 is the (n− 1)th triangular number. Of course, not all of them correspond to a convertible
subspace. The number of convertible subspaces is established by the following proposition.

Proposition 10. For n ≥ 2, there are 3n−2 different full convertible Hessenberg-type (0, 1)-matrices of order n.

Proof. We will prove it by induction. The hypothesis is clearly verified for n = 2. Suppose then that
the proposition is valid for n and let us consider the n + 1 case. It follows again from Proposition 6
that full convertible Hessenberg-type (0, 1)-matrices S fall in two classes: there are either two 1’s in
the first row, with one of them necessarily at position (1, 1), or two 1’s in the second row, necessarily
at positions (2, 1) and (2, 2). In the first case, assigning the remaining 1 to the position (1, 2) puts
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no restriction on the (full convertible n-square Hessenberg-type) matrix S(1; 1), and so there are as
many possibilities for S as there are for S(1; 1) (i.e., 3n−2). Assigning the remaining 1 to one of the
positions (1, j), j > 2, restricts the form of S(1; 1), but one can easily convince oneself that the reunion
of all these cases exhausts all possibilities for S(1; 1), so one again gets 3n−2 possibilities. In the second
case, it follows from the arguments in the proof of Proposition 9 that there must be a 1 at position
(1, 2). In this case, there is no restriction on the matrix S(2; 2), and one gets again 3n−2 possibilities.
So, there are 3× 3n−2 = 3n−1 full Hessenberg-type convertible matrices of order n + 1, thus completing
the proof.
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