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1. Introduction

Ulam [1] proposed the stability problem of functional equations:

“Suppose G1 is a group and G2 is a metric group with the metric d(·, ·). Given ε > 0, does there
exist a δ > 0 such that if a function h : G1 → G2 satisfies inequality d(h(xy), h(x)h(y)) < δ

for all x, y ∈ G1, then there exists a homomorphism H : G1 → G2 with d(h(x), H(x)) < ε for
all x ∈ G1?”

The Ulam’s problem for the Cauchy additive equation

f (x + y) = f (x) + f (y) (1)

was solved by Hyers when G1 and G2 are Banach spaces. Indeed, Hyers [2] proved that every solution
to the inequality ‖ f (x+ y)− f (x)− f (y)‖ ≤ ε (for all x, y) can be approximated by an additive function.
In that case, the Cauchy additive equation is said to satisfy the Hyers–Ulam stability. This terminology
is also applied to the case of other functional equations. Thereafter, a number of mathematicians
tackled this problem (cf. [3–5]). For a more detailed description of such terminology, we refer the
reader to [2,6–9].

The functional equation

f (x)− g(y) = (x− y)h(x + y), (2)

where x, y ∈ R (the set of all real numbers), arises from the mean value theory and it characterizes
polynomials of degree one or two. This functional equation was first studied by Aczél in 1963 and also
independently by Haruki (see [10,11]). The functional Equation (2) was generalized by Kannappan,
Sahoo and Jacobson [12] (see also [13] (Theorem 2.5) or [10,11]).

We summarize a result of Aczél concerning the solution to (2) in the following theorem.

Theorem 1. Suppose X is a field of characteristic different from 2. The functions f , g, h : X → X satisfy the
functional Equation (2) for all x, y ∈ X if and only if there exist a, b, c ∈ X such that

f (x) = g(x) = ax2 + bx + c and h(x) = ax + b
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for all x ∈ X.

In this paper, we investigate the generalized Hyers–Ulam stability of the mean value type
functional Equation (2) by using a method originated from fixed point theory in the sense of Cădariu
and Radu (see [14–16]). On one hand, this paper is a continuation of the previous work [17]. On the
other hand, the present paper is a good complement to previous work because we make use of the
fixed point method in this paper while we used the direct method in [17].

2. Main Results

Fixed point theory has a variety of applications, e.g., it has an application in the split feasibility
problem for modeling inverse problems or in signal processing (see [18]).

First, a theorem of Margolis and Diaz will be introduced. As usual, we will denote by N0 the set
of all nonnegative integers, i.e., N0 = N∪ {0}.

Theorem 2. ([19] or [20]) Suppose that (X, d) is a complete generalized metric space, where the metric d
may assume an infinite value, and that J : X → X is a strictly contractive mapping with Lipschitz constant
0 < L < 1. Then, for any element x ∈ X, either d(Jnx, Jn+1x) = +∞ for all n ∈ N0 or there exists a k ∈ N0

such that

(i) d(Jnx, Jn+1x) < +∞ for all n ≥ k;
(ii) the sequence {Jnx} is convergent to a fixed point y∗ of J;
(iii) y∗ is the unique fixed point of J in Y :=

{
y ∈ X : d(Jkx, y) < +∞

}
;

(iv) d(y, y∗) ≤ 1
1−L d(y, Jy) for all y ∈ Y.

In the present paper, assume that X is a commutative unital Banach algebra over K (or X is a
normed field of characteristic different from 2), where K denotes either R or C (see [21] (Chapter 10)
for an exact definition of unital Banach algebra and we note that X has a unit element e with ‖e‖ = 1).

For any given mappings f , g, h : X → X, we will use the following notation

D(x, y) := f (x)− g(y)− (x− y)h(x + y) (3)

for x, y ∈ X.

Theorem 3. Assume that X is a commutative unital Banach algebra over K with a unit element e (or X is a
normed field of characteristic different from 2). Suppose a function ϕ : X× X → [0, ∞) satisfies either

ϕ(2x, 2y) ≤ 4Lϕ(x, y) (for all x, y ∈ X\{0}) (4)

or

4ϕ

(
x
2

,
y
2

)
≤ Lϕ(x, y) (for all x, y ∈ X\{0}), (5)

where L is a real constant with 0 < L < 1. If functions f , g, h : X → X satisfy the inequality

‖ f (x)− g(y)− (x− y)h(x + y)‖ ≤ ϕ(x, y) (6)

for all x, y ∈ X, then there exists a unique K-linear mapping H : X → X such that

‖ f (x)− x(H(x) + h(0))− f (0)‖

≤

 ϕ(x, 0) + ϕ(0, 0) + Φ(x,‖x‖e)
1−L if ϕ satisfies (4),

ϕ(x, 0) + ϕ(0, 0) + LΦ(x,‖x‖e)
1−L if ϕ satisfies (5)

(7)
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‖g(x)− x(H(x) + h(0))− g(0)‖

≤

 ϕ(0, x) + ϕ(0, 0) + Φ(x,‖x‖e)
1−L if ϕ satisfies (4),

ϕ(0, x) + ϕ(0, 0) + LΦ(x,‖x‖e)
1−L if ϕ satisfies (5)

(8)

‖h(x)− H(x)− h(0)‖ ≤


Φ(x,‖x‖e)
(1−L)‖x‖ if ϕ satisfies (4),
LΦ(x,‖x‖e)
(1−L)‖x‖ if ϕ satisfies (5)

(9)

H(x) = H(e)x

for all x ∈ X\{−e, 0, e}, where

Φ(x, ‖x‖e) := ϕ

(
x + ‖x‖e

2
,

x− ‖x‖e
2

)
+ ϕ

(
x + ‖x‖e

2
,
‖x‖e− x

2

)
+ ϕ

(
x− ‖x‖e

2
,
‖x‖e− x

2

)
+ ϕ

(
x− ‖x‖e

2
,

x− ‖x‖e
2

)
+

1
2

ϕ

(
x +
‖x‖e

2
, x− ‖x‖e

2

)
+

1
2

ϕ

(
x +
‖x‖e

2
,
‖x‖e

2
− x
)

+
1
2

ϕ

(
x− ‖x‖e

2
,
‖x‖e

2
− x
)
+

1
2

ϕ

(
x− ‖x‖e

2
, x− ‖x‖e

2

)
(10)

for any x ∈ X\{−e, 0, e}.

Proof. We denote by S the set of all functions u : X → X with u(0) = 0. A generalized metric d on S is
defined by

d(u, v) := inf
{

K > 0 : ‖u(x)− v(x)‖ ≤ K
Φ(x, ‖x‖e)
‖x‖ for all x ∈ X\{−e, 0, e}

}
for all u, v ∈ S. Then it is easy to show that (S, d) is a complete generalized metric space. Hence,
we omit its proof. The proof of this theorem will be divided into two cases: One is the case when ϕ

satisfies (4) and the other is that ϕ satisfies (5).
Case 1. Assume that ϕ satisfies (4). Let us define a mapping J : S→ S by

Ju(x) :=
1
2

u(2x) (x ∈ X)

for all u ∈ S. Notice that

Jnu(x) =
1
2n u(2nx)

for all n ∈ N0 and x ∈ X.
From (4) and (10), it follows that

Φ(2x, ‖2x‖e) ≤ 4LΦ(x, ‖x‖e)

for all x ∈ X\{−e, 0, e}. Assume that u, v ∈ S and K ∈ [0, ∞] is an arbitrary constant with d(u, v) ≤ K.
By definition of d, we have

‖Ju(x)− Jv(x)‖ = 1
2
‖u(2x)− v(2x)‖ ≤ K

2
Φ(2x, ‖2x‖e)
‖2x‖ ≤ LK

Φ(x, ‖x‖e)
‖x‖

for all x ∈ X\{−e, 0, e}, which yields that

d(Ju, Jv) ≤ Ld(u, v)
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for any u, v ∈ S. This implies that J is a strictly contractive self-mapping of S with the Lipschitz
constant L.

Let us define a mapping h′ : X → X by h′(x) := h(x)− h(0). By a long calculation and (3), we get

h′(x)− Jh′(x)

= h(x)− h(0)− h(2x)− h(0)
2

=
1
‖x‖

(
− D

(
x + ‖x‖e

2
,

x− ‖x‖e
2

)
+ D

(
x + ‖x‖e

2
,
‖x‖e− x

2

)
−D

(
x− ‖x‖e

2
,
‖x‖e− x

2

)
+ D

(
x− ‖x‖e

2
,

x− ‖x‖e
2

)
+

1
2

D
(

x +
‖x‖e

2
, x− ‖x‖e

2

)
− 1

2
D
(

x +
‖x‖e

2
,
‖x‖e

2
− x
)

+
1
2

D
(

x− ‖x‖e
2

,
‖x‖e

2
− x
)
− 1

2
D
(

x− ‖x‖e
2

, x− ‖x‖e
2

))

for all x ∈ X\{−e, 0, e}. By (6), (10) and from the last equality, it follows that

‖h′(x)− Jh′(x)‖ =
∥∥∥∥h(x)− h(0)− h(2x)− h(0)

2

∥∥∥∥ ≤ Φ(x, ‖x‖e)
‖x‖

for all x ∈ X\{−e, 0, e}, which means that d(h′, Jh′) ≤ 1 < ∞ by definition of d.
According to Theorem 2, the sequence {Jnh′} converges to a fixed point H : X → X of J which is

unique in the set T =
{

u ∈ S : d(h′, u) < ∞
}

. We note that

d(h′, H) ≤ 1
1− L

d(h′, Jh′) ≤ 1
1− L

, (11)

from which the first inequality in (9) follows.
By (3) and a routine calculation, we obtain

xJnh′(e)− Jnh′(x)

=
1

4n

(
D
(

2n−1(x + e), 2n−1(x− e)
)
− D

(
2n−1(x + e), 2n−1(e− x)

)
+ D

(
2n−1(x− e), 2n−1(e− x)

)
− D

(
2n−1(x− e), 2n−1(x− e)

) )
for all x ∈ X. This equality yields

‖xH(e)− H(x)‖

≤ lim
n→∞

1
4n

(
ϕ
(

2n−1(x + e), 2n−1(x− e)
)
+ ϕ

(
2n−1(x + e), 2n−1(e− x)

)
+ ϕ

(
2n−1(x− e), 2n−1(e− x)

)
+ ϕ

(
2n−1(x− e), 2n−1(x− e)

) )
≤ lim

n→∞

Ln−1

4
(

ϕ(x + e, x− e) + ϕ(x + e, e− x)

+ ϕ(x− e, e− x) + ϕ(x− e, x− e)
)

= 0

for all x ∈ X\{0}, i.e.,

H(x) = xH(e)

for all x ∈ X\{0}. Since H(0) = 0 and the last equality obviously holds for x = 0, H : X → X is a
K-linear mapping.
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Finally, it follows from (6) and (11) that

‖ f (x)− g(0)− xh(x)‖ ≤ ϕ(x, 0),

‖ f (0)− g(x) + xh(x)‖ ≤ ϕ(0, x),

‖ f (0)− g(0)‖ ≤ ϕ(0, 0),

‖xh(x)− xH(x)− xh(0)‖ = ‖x‖‖h(x)− H(x)− h(0)‖ ≤ Φ(x, ‖x‖e)
1− L

for all x ∈ X\{−e, 0, e}. Using the above inequalities and (9), we easily obtain the
inequalities (7) and (8).

Case 2. Suppose ϕ satisfies (5) and we define a mapping J : S→ S by

Ju(x) := 2u
( x

2

)
(x ∈ X)

for all u ∈ S. Notice that the equality

Jnu(x) = 2nu
( x

2n

)
holds for all n ∈ N0 and x ∈ X.

Assume that u, v ∈ S and K ∈ [0, ∞] is an arbitrary constant with d(u, v) ≤ K. By definition of d
and (5), we have

‖Ju(x)− Jv(x)‖ = 2
∥∥∥u
( x

2

)
− v
( x

2

)∥∥∥ ≤ 2K
Φ
( x

2 , ‖x‖e2
)

‖x‖
2

≤ LK
Φ(x, ‖x‖e)
‖x‖

for all x ∈ X\{−e, 0, e}, which again implies that

d(Ju, Jv) ≤ Ld(u, v)

for any u, v ∈ S. This means that J is a strictly contractive self-mapping of S with Lipschitz constant L.
Considering (3), we make a somewhat long and tedious calculation to get

h′(x)− Jh′(x) = h(x)− h(0)− 2
(

h
( x

2

)
− h(0)

)
=

4
‖x‖

(
D
(

1
4
(x + ‖x‖e), 1

4
(x− ‖x‖e)

)
−D

(
1
4
(x + ‖x‖e), 1

4
(‖x‖e− x)

)
+ D

(
1
4
(x− ‖x‖e), 1

4
(‖x‖e− x)

)
−D

(
1
4
(x− ‖x‖e), 1

4
(x− ‖x‖e)

)
− 1

2
D
(

1
2

x +
1
4
‖x‖e,

1
2

x− 1
4
‖x‖e

)
+

1
2

D
(

1
2

x +
1
4
‖x‖e,

1
4
‖x‖e− 1

2
x
)

− 1
2

D
(

1
2

x− 1
4
‖x‖e,

1
4
‖x‖e− 1

2
x
)

+
1
2

D
(

1
2

x− 1
4
‖x‖e,

1
2

x− 1
4
‖x‖e

))
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for all x ∈ X\{−e, 0, e}. Using (5) and (6) and in view of (10), we notice that

‖h′(x)− Jh′(x)‖ =
∥∥∥h(x)− h(0)− 2

(
h
( x

2

)
− h(0)

)∥∥∥ ≤ L
Φ
(
x, ‖x‖e

)
‖x‖

for all x ∈ X\{−e, 0, e}, which means that d(h′, Jh′) ≤ L < ∞.
In view of Theorem 2, the sequence {Jnh′} converges to a fixed point H : X → X of J that is

uniquely determined in the set T =
{

u ∈ S : d(h′, u) < ∞
}

. We notice that

d(h′, H) ≤ 1
1− L

d(h′, Jh′) ≤ L
1− L

, (12)

from which the second inequality in (9) follows.
We make a routine calculation by using (3) to obtain

xJnh′(e)− Jnh′(x) = 4n

(
D
(

x + e
2n+1 ,

x− e
2n+1

)
− D

(
x + e
2n+1 ,

e− x
2n+1

)

+ D
(

x− e
2n+1 ,

e− x
2n+1

)
− D

(
x− e
2n+1 ,

x− e
2n+1

))

for all x, y ∈ X. This equality together with (5) yields

‖xH(e)− H(x)‖ ≤ lim
n→∞

4n

(
ϕ

(
x + e
2n+1 ,

x− e
2n+1

)
+ ϕ

(
x + e
2n+1 ,

e− x
2n+1

)

+ ϕ

(
x− e
2n+1 ,

e− x
2n+1

)
+ ϕ

(
x− e
2n+1 ,

x− e
2n+1

))

≤ lim
n→∞

Ln+1

4

(
ϕ(x + e, x− e) + ϕ(x + e, e− x)

+ ϕ(x− e, e− x) + ϕ(x− e, x− e)
)

= 0

for all x ∈ X\{0}, i.e.,

H(x) = xH(e)

for all x ∈ X\{0}. Hence, we conclude that H : X → X is a K-linear mapping.
Finally, by (6) and (12), we get

‖ f (x)− g(0)− xh(x)‖ ≤ ϕ(x, 0),

‖ f (0)− g(x) + xh(x)‖ ≤ ϕ(0, x),

‖ f (0)− g(0)‖ ≤ ϕ(0, 0),

‖xh(x)− xH(x)− xh(0)‖ = ‖x‖‖h(x)− H(x)− h(0)‖ ≤ LΦ(x, ‖x‖e)
1− L

for all x ∈ X\{−e, 0, e}. Using the above inequalities and (9), we easily obtain the inequalities (7)
and (8).
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3. Applications

In the following corollary, we set ϕ(x, y) := θ
(
‖x‖p + ‖y‖p) and L := 2p

4 , where p and θ are
positive real constants with 0 < p < 2. Then, ϕ satisfies (4) and 0 < L < 1. Further, if we use the
following notation

K(x) := 2
∥∥x + ‖x‖e

∥∥p
+ 6
∥∥x− ‖x‖e

∥∥p
+
∥∥2x + ‖x‖e

∥∥p
+ 3
∥∥2x− ‖x‖e

∥∥p,

then it follows from (10) that Φ(x, ‖x‖e) = θ
2p K(x) for all x ∈ X\{−e, 0, e}.

Corollary 1. Suppose X is a commutative unital Banach algebra over K with a unit element e (or X is a normed
field of characteristic different from 2). Let p and θ be positive real numbers with 0 < p < 2. If functions
f , g, h : X → X satisfy the inequality

‖ f (x)− g(y)− (x− y)h(x + y)‖ ≤ θ
(
‖x‖p + ‖y‖p)

for all x, y ∈ X, then there exist a, b, c ∈ X such that

∥∥ f (x)− ax2 − bx− c
∥∥ ≤ θ‖x‖p +

4θK(x)
2p(4− 2p)

,

∥∥g(x)− ax2 − bx− c
∥∥ ≤ θ‖x‖p +

4θK(x)
2p(4− 2p)

,

‖h(x)− ax− h(0)‖ ≤ 4θK(x)
2p(4− 2p)‖x‖

(13)

for all x ∈ X\{−e, 0, e}. In particular, if 0 < p < 2 but p 6= 1, then the a, b, c ∈ X are determined uniquely.

Proof. If we put ϕ(x, y) := θ
(
‖x‖p + ‖y‖p) and L := 2p

4 , then ϕ satisfies (4). Further, we put a := H(e),
b := h(0) and c := f (0) = g(0) in Theorem 3. Finally, assume that 0 < p < 2 but p 6= 1 and there exist
a′, b′ ∈ X such that

‖h(x)− a′x− b′‖ ≤ 4θK(x)
2p(4− 2p)‖x‖ .

Then, by the third inequality of (13), we get

‖(a− a′)x + b− b′‖ ≤ 8θK(x)
2p(4− 2p)‖x‖

for all x ∈ X\{−e, 0, e}. If we substitute 2nx for x in the last inequality and divide the resulting
inequality by 2n, then we have∥∥∥∥(a− a′)x +

b− b′

2n

∥∥∥∥ ≤ 8θK(x)
2p(4− 2p)‖x‖

(
2p

4

)n
→ 0 as n→ ∞

for each x ∈ X\{−e, 0, e}, i.e., a = a′. To prove the uniqueness of b, we substitute 2nx when 0 < p < 1
and 1

2n x when 1 < p < 2. Similarly, we prove the uniqueness of c.

We now set ϕ(x, y) := θ
(
‖x‖p + ‖y‖p) and L := 4

2p , where p and θ are positive real constants
with p > 2. Then, ϕ satisfies (5) and 0 < L < 1. Further, it follows from (10) that Φ(x, ‖x‖e) = θ

2p K(x)
for all x ∈ X\{−e, 0, e}.
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Corollary 2. Suppose X is a commutative unital Banach algebra over K with a unit element e (or X is a
normed field of characteristic different from 2). Let p and θ be positive real numbers with p > 2. If functions
f , g, h : X → X satisfy the inequality

‖ f (x)− g(y)− (x− y)h(x + y)‖ ≤ θ
(
‖x‖p + ‖y‖p)

for all x, y ∈ X, then there exist unique a, b, c ∈ X such that

∥∥ f (x)− ax2 − bx− c
∥∥ ≤ θ‖x‖p +

4θK(x)
2p(2p − 4)

,

∥∥g(x)− ax2 − bx− c
∥∥ ≤ θ‖x‖p +

4θK(x)
2p(2p − 4)

,

‖h(x)− ax− h(0)‖ ≤ 4θK(x)
2p(2p − 4)‖x‖

for all x ∈ X\{−e, 0, e}.

Proof. If we put ϕ(x, y) := θ
(
‖x‖p + ‖y‖p) and L := 4

2p , then ϕ satisfies (5). Further, we put a := H(e),
b := h(0) and c := f (0) = g(0) in Theorem 3. In addition, we may prove the uniqueness of a, b and c
by using a similar argument as in the proof of Corollary 1.

Finally, we set ϕ(x, y) := δ and L := 1
4 , where δ is a positive real constant. Then, ϕ satisfies (4)

and Φ(x, ‖x‖e) = 6δ for all x ∈ X\{−e, 0, e}.

Corollary 3. Suppose X is a commutative unital Banach algebra over K with a unit element e (or X is a normed
field of characteristic different from 2). Let ε be a positive real number. If functions f , g, h : X → X satisfy
the inequality

‖ f (x)− g(y)− (x− y)h(x + y)‖ ≤ ε

for all x, y ∈ X, then there exist unique a, b ∈ X such that∥∥ f (x)− ax2 − bx− f (0)
∥∥ ≤ 10ε,∥∥g(x)− ax2 − bx− g(0)
∥∥ ≤ 10ε,

‖h(x)− ax− h(0)‖ ≤ 8ε

‖x‖

for all x ∈ X\{−e, 0, e}.

Proof. If we put ϕ(x, y) := ε and L := 1
4 , then ϕ satisfies (4) and Φ(x, ‖x‖e) = 6ε. Further, we put

a := H(e), b := h(0) and c := f (0) = g(0) in Theorem 3. Finally, we prove the uniqueness of a and b
in a similar way to the proof of Corollary 1.
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