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1. Introduction

Approximate Lie symmetry is based on the utilization of the perturbation approach in finding
symmetries of certain equations. Baikov, Gazizov and Ibragimov [1] proved an approximate Lie
theorem enabling one to construct approximate symmetries of differential equations that are stable
under small perturbations. Fushchich and Shtelen [2] and later Gazizov [3] introduced approximate
symmetries of differential equations with small perturbations and showed that the these symmetries
form an approximate Lie algebra. Since then, many authors have used the approximate Lie symmetries
to study nonlinear partial differential equations (PDEs) with a small parameter; see, for instance, [4–7]
and the references therein.

Pakdermirli, Yurusoy and Dolapci [8] provided a comparison between several methods that use
approximate symmetries. Valenti [9] calculated the solution of a model describing dissipative media
using the generator of the first-order approximate symmetries. Bokhari, Kara and Zaman [4] considered
some nonlinear evolution equations with a small parameter and their symmetries. On the other
hand, a refined invariant subspace method to determine subspaces of solutions to nonlinear wave
equations was discussed in [10]. Zhi-Yong, Yu-Fu and Xue-Lin [11] performed classification and gave
approximate solutions to a class of perturbed nonlinear wave equation employing the method
originated from Fushchich and Shtelen. In [12], the authors introduced a new method to obtain
the approximate symmetry of the nonlinear evolution equation from perturbations.

In this paper, we study the approximate symmetries of a class of perturbed nonlinear wave
equations given by:

utt + αut = (g(u)ux)x + (h(u)uy)y + β f (u). (1)

Lie group theory provides a systematic way of finding exact solutions of differential equations.
If the problem involves a small parameter, then an approximate solution instead of an exact solution
can be sought. We employ two methods in which a combination of Lie symmetries and perturbation
theory is used to find approximate Lie symmetries and invariant solutions.

Method I was introduced by Baikov, Gazizov and Ibragimov [1,13]. In this method, an
approximate generator is calculated to obtain the solution. The Lie operator is expanded in a
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perturbation series other than perturbation for dependent variables as in the usual case. In other
words, it is assumed that the perturbed differential equation is of the form:

F(z) = F0(z) + εF1(z) = 0, (2)

where z = (x, u, u(1), ..., u(n)), F0(z) = 0 is the unperturbed equation and F1(z) is the perturbed term.

Theorem 1. [14] Equation (2) is approximately invariant with the generator X = X0 + εX1 if and only if:

[XF]F≈0 = O(ε) or [X0F0 + ε(X1F0 + X0F1]F≈0 = O(ε),

in which X0 is a generator of Lie symmetry of F0 = 0 and X1 is a generator of Lie symmetry of F1.

The exact symmetry of the unperturbed equation F0(z) = 0 denoted by X0 can be obtained using
the equation X0F0(z)|F0(z)=0 = 0. Applying the auxiliary function:

H =
1
ε

X0(F0(z) + εF1(z))|F0+eF1=0,

we deduce the vector field X1 from the relation:

X1F0(z)|F0=0 + H = 0. (3)

After computing the approximate symmetries, the corresponding invariant solutions are constructed
via the classical Lie symmetry method [14]. One may refer the reader for some cases of studying
unperturbed and perturbed non-linear wave equations to Bokhari, Kara, Karim, Zaman [15] and Zhi-Yong,
Yu-Fu and Xue-Lin [12]. Ahmed, Bokhari, Kara and Zaman [16] provided a classification of the symmetries
of the unperturbed nonlinear (2+ 1) dimensional wave equation with its respective commutator table.

Method II is due to Fushchich and Shtelen [2] and later followed by Euler et al. [17] and
Euler and Euler [18]. In this method, the dependent variables are expanded in a perturbation series as is
done in the usual perturbation analysis (see, e.g., [19,20]). The approximate symmetry of the original
equation is defined to be the exact symmetry of the coupled equations.

Consider the general m-th order nonlinear evolution equation:

E = E(x, t, u, u1, u2, ..., um, ut; ε) = 0, (4)

where ut = ∂u/∂t, uk = ∂ku/∂xk, 1 ≤ k ≤ m, ε is a small parameter and E is a smooth function
of the indicated variables. Expanding the dependent variable in the small parameter yields:

u = u0 + εu1 + ..., 0 < ε < 1. (5)

Inserting expansion Equation (5) into the original Equation (4) and separating at each order
of the perturbed parameter, one has:

Order ε0 : E0 = 0, Order ε1 : E1 = 0, (6)

and hence, the exact symmetry of system Equation (6) is the approximate symmetry of the original
Equation (4).

The outline of this paper is as follows. In Section 2, we construct invariant solutions of a perturbed
nonlinear (1 + 1)-dimensional wave equation. In Section 3, we consider Equation (1) with β = 0
and obtain exact and approximate symmetries of the equation using the approximate Lie symmetry
Method I. Moreover approximate invariant solutions of the perturbed non-linear wave equation based
on the Lie group method are constructed. In Section 4, we discuss Equation (1) with α = 0 and compute
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approximate symmetries of the equation with a forcing term using both the approximate Lie symmetry
methods. We compare these different methods and discuss the advantages of using one over the other.
Moreover, approximate invariant solutions of the nonlinear wave equation with a forcing term based
on the Lie group method are constructed.

2. Perturbed Nonlinear (1 + 1)-Dimension Wave Equation

Consider the perturbed nonlinear wave equation (see e.g., [21]):

F0(z) + εF1(z) = utt − (u2ux)x + εut = 0. (7)

The approximate group generator of Equation (7) is of the form:

X = X0 + εX1 ≡ (τ0 + ετ1)
∂

∂t
+ (ξ0 + εξ1)

∂

∂x
+ (η0 + εη1)

∂

∂u
, (8)

where τj, ξ j, ηj(j = 0, 1) are all unknown functions of t, x, and u. The infinitesimal generator
for the unperturbed equation is a vector field in the three-dimensional space (two independent
variables and one dependent variable):

X0 = τ0
∂

∂t
+ ξ0

∂

∂x
+ η0

∂

∂u
. (9)

The prolongation of the infinitesimal symmetry generator is given by:

X0(2) = X0 + ηt
0

∂

∂ut
+ ηx

0
∂

∂ux
+ ηtt

0
∂

∂utt
+ ηxt

0
∂

∂uxt
+ ηxx

0
∂

∂uxx
. (10)

The symmetry criterion of Equation (10) yields the relation:

X0(2)(utt − (u2ux)x
)∣∣

utt−(u2ux)x
= 0. (11)

Comparing coefficients of ux, u2
x, . . . , we obtain the following system of determining equations.

ξ0u = 0, ξ0t = 0, τ0u = 0, τ0x = 0, η0uu = 0,

2η0 + 2uη0u − 4uξ0x + 4uτ0t = 0, 2u2η0xu − uη0xx + 4uη0x = 0,

− 2η0tu + τ0tt = 0, 2uη0 + 2u2η0x + 2u2τ0t = 0, u2η0xx − η0tt = 0

Solving this system of PDEs, we obtain:

ξ0 = α0 + α1x, τ0 = α3t + α1t + α2, η0 = −α3u, (12)

where α0, α1, α2, α3 are arbitrary constants. Thus,

X0 = (α0 + α1x)
∂

∂x
+ (α3t + α1t + α2)

∂

∂t
− α3u

∂

∂u
(13)

To determine the auxiliary function H, we consider:

H =
1
ε

[
X0(2) [ f0(z) + εF1(z)]

]∣∣∣∣
{F0(z)+εF1(z)=0}

, (14)

or:
H = 1

ε

[
X0(2) [utt − 2uu2

x − u2uxx + εut]
]∣∣∣∣
{utt−2uu2

x−u2uxx+εut=0}
, (15)

where X0(2) is the second prolongation of X0. This implies that:
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H =
1
ε

[
η(−2u2

x − 2uuxx) + ηx(−4uu2
x) + ηt(ε) + ηxx(−u2) + ηtt

]∣∣∣∣
{utt−2uu2

x−u2uxx+εut=0}
. (16)

Hence,

η = −α3u, ηx = −α3ux, ηt = α4ut − α3ut,

ηtt = α4utt − 2α3utt, ηxx = −α4uxx − 2α3uxx.

Substituting η, ηx, ηt, ηtt, ηxx and utt = 2uu2
x + u2uxx − εut into Equation (16) gives:

H = α3ut. (17)

The determining equation for deformations is written as:

X1(2)(utt − u2uxx − 2uu2
x)
∣∣
utt=u2uxx+2uu2

x
+ H = 0, (18)

where X1(2) denotes the second prolongation of the operator:

X1 = τ1
∂

∂t
+ ξ1

∂

∂x
+ η1

∂

∂u
. (19)

We obtain the following system of the determining equations for Equation (18):

ξ1u = 0, ξ1t = 0, τ1u = 0, τ1x = 0, η1uu = 0,

2η1 + 2uη1u − 4uξ1x + 4uτ1t = 0, 2u2η1xu − uη1xx + 4uη1x = 0,

− 2η1tu + τ1tt − α3 = 0, 2uη1 + 2u2η1x + 2u2τ1t = 0, u2η1xx − η1tt = 0

Solving the above system yields:

τ1 = β1 + β3t +
1
6

α3t2, ξ1 = β2 + (β3 + β4)x, η1 = (β4 −
1
3

α3u)u. (20)

Substituting Equations (12) and (20) into Equation (8), we obtain the following approximate
symmetries for Equation (7):

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 = t

∂

∂t
+ x

∂

∂x
+

ε

6
(t2 ∂

∂t
− 2tu

∂

∂u
),

X4 = x
∂

∂x
+ u

∂

∂u
, X5 = εX1, X6 = εX2, X7 = εX4, X8 = εX3.

In Table 1, we show that the generators span an eight-dimensional approximate Lie algebra
and, hence, generate an eight-parameter approximate transformation group.

Table 1. Approximate commutators of approximate symmetry of the perturbed non-linear wave equation.

X1 X2 X3 X4 X5 X6 X7 X8

X1 0 0 X1 +
1
3 (X8 − X7) 0 0 0 0 X5

X2 0 0 X2 X2 0 0 X6 X6
X3 0 0 0 0 −X5 −X6 0 0
X4 0 0 0 0 0 −X6 0 0
X5 0 0 X6 X6 0 0 0 0
X6 0 0 X6 0 0 0 0 0
X7 0 −X6 0 0 0 0 0 0
X8 −X5 −X6 0 0 0 0 0 0
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Approximate Invariant Solution

Using the symmetry X = X3 − X4, we obtain:

X = t
∂

∂t
− u

∂

∂u
+

ε

6

(
t2 ∂

∂t
− 2tu

∂

∂u

)
. (21)

The approximate invariants of Equation (21) can be written as:

E(t, x, u, ε) = E0(t, x, u) + εE1(t, x, u) + O(ε),

which lead to the system:

t
∂E0

∂t
− u

∂E0

∂u
= 0,

t
∂E1

∂t
− u

∂E1

∂u
= −1

6

(
t2 ∂E0

∂t
− 2tu

∂E0

∂u

)
, (22)

Solving Equation (22) gives two functionally independent invariants:

E1 = E0
1(t, x, u) + εE1

1(t, x, u), E2 = E0
2(t, x, u) + εE1

2(t, x, u), (23)

for generator Equation (21).
The first equation in Equation (22) has two functionally independent solutions,

E0
1 = x, E0

2 = tu.

Substituting E0
1 = x into the second equation in Equation (22) and taking its simplest solution

E1
1 = 0, we obtain one invariant in Equation (23),

E1 = x. (24)

Now, we substitute the solution E0
2 = tu of the first equation in Equation (22) into the second

equation in Equation (22) and get a non-homogeneous linear equation:

t
∂E1

1
∂t
− u

∂E1
2

∂u
=

1
6

t2u.

The corresponding characteristic equation are:

dt
t
= −du

u
= 6

dE1
2

t2u

for which the first integral tu = λ = const. We obtain:

E1
2 =

1
6

t2u + c. (25)

Assuming t = 0, we get the second invariant in Equation (23),

E2 = tu +
ε

6
t2u.

Note that invariants’ Equations (24) and (25) are functionally independent. Letting E2 = φ(E1), i.e.,(
1 +

εt
6

)
tu = φ(x)
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and solving for tu in the first order of precision,

tu =

(
1 +

εt
6

)−1
φ(x) =

(
1 +

εt
6

)
φ(x) + O(ε).

The approximately invariant solution is given by:

u =

(
1
t
− ε

6

)
φ(x). (26)

From Equation (7), we obtain:
dφ

dx
= ±

√
1 + cφ−4.

Setting c = 0, we have φ(x) = ±x, and:

u = ±
( x

t
− ε

x
6

)
.

3. Perturbed Nonlinear (2 + 1)-Dimension Wave Equation

Consider the perturbed nonlinear wave equation:

utt + εut = (g(u)ux)x + (h(u)uy)y, (27)

where ε is a small parameter. Putting g(u) = h(u) = u gives:

utt + εut = (uux)x + (uuy)y. (28)

The first method is used to obtain a complete approximate symmetry classification of Equation (28)
with the first order of precision o(ε). The approximate group generator of Equation (28) is of the form:

X = X0 + εX1

= (τ0 + ετ1)
∂

∂t
+ (ξ0 + εξ1)

∂

∂x
+ (θ0 + εθ1)

∂

∂y
+ (η0 + εη1)

∂

∂u
, (29)

where τi, ξi, θi and ηi, i = 0, 1, are unknown functions of t, x, y and u.

3.1. Exact Symmetries

To find the exact symmetries, we solve the determining equation:

X(2)
0 F0(z)

∣∣
F0(z)=0 = 0, (30)

where F0(z) = utt − (uux)x − (uuy)y is the unperturbed part of Equation (28) and X(2)
0 is the second

prolongation of the infinitesimal generator X0 given by:

X(2)
0 = X0 + ηt

0
∂

∂ut
+ ηx

0
∂

∂ux
+ η

y
0

∂

∂uy
+ ηtt

0
∂

∂utt
+ ηtx

0
∂

∂utx

+ η
ty
0

∂

∂uty
+ ηxx

0
∂

∂uxx
+ η

xy
0

∂

∂uxy
+ η

yy
0

∂

∂uyy
. (31)
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Equation (30) takes the form:(
η0(−uxx − uyy) + ηx

0 (−2ux) + η
y
0(−2uy) + ηxx

0 (−u)

+ η
yy
0 (−u) + ηtt

0
)∣∣

utt=(uux)x+(uuy)y
= 0, (32)

where:

ηx
0 = Dxη0 − (uxDxξ0 + uyDxθ0 + utDxτ0),

η
y
0 = Dyη0 − (uxDyξ0 + uyDyθ0 + utDyτ0),

ηt
0 = Dtη0 − (uxDtξ0 + uyDtθ0 + utDtτ0),

ηxx
0 = Dxηx

0 − uxxDxξ0 − uxyDxθ0 − uxtDxτ0, (33)

η
yy
0 = Dyη

y
0 − uxyDyξ0 − uyyDyθ0 − uytDyτ0),

ηtt
0 = Dtη

t
0 − uxtDtξ0 − uytDtθ0 + uttDtτ0).

Here, Dx, Dy and Dt denote the total derivative operators with respect to x, y and t, respectively,

Dx =
∂

∂x
+ ux

∂

∂u
+ uxx

∂

∂ux
+ uxy

∂

∂uy
+ uxt

∂

∂ut
+ · · ·+ uxtt

∂

∂utt
,

Dy =
∂

∂y
+ uy

∂

∂u
+ uxy

∂

∂ux
+ uyy

∂

∂uy
+ uty

∂

∂ut
+ · · ·+ uytt

∂

∂utt
, (34)

Dt =
∂

∂t
+ ut

∂

∂u
+ uxt

∂

∂ux
+ uyt

∂

∂uy
+ utt

∂

∂ut
+ · · ·+ uttt

∂

∂utt
.

Equation (32) gives the following system of equations:

ξ0u = 0, ξ0t = 0, τ0u = 0, τ0y = 0, τ0x = 0, θ0u = 0, θ0t = 0,

η0uu = 0, −2η0x − 2uη0xu + uξ0xx + uξ0yy = 0, −η0u + 2ξ0x − 2τ0t = 0,

− 2η0y + uθ0xx + uθ0yy = 0, −2η0y + 2θ0y + η0u − 2τ0t = 0, −uη0xx + η0tt − uη0yy = 0,

2η0ut − τ0tt = 0, 2uξ0x − 2uτ0t − η0 = 0, θ0x + ξ0y = 0, −2uτ0t + 2uθ0y − η0 = 0

Solving this system of PDEs, one has:

ξ0 = a3x + a1y + a2, θ0 = a3y− a1x + a6, τ0 = a4t + a5, η0 = 2u(a3 − a4), (35)

where a1, a2, a3, a4, a5 and a6 are arbitrary constants. Hence, the infinitesimal generator
for Equation (28) is:

X0 =(a4t + a5)
∂

∂t
+ (a3x + a1y + a2)

∂

∂x

+ (a3y− a1x + a6)
∂

∂y
+ (2u(a3 − a4))

∂

∂u
. (36)

3.2. Approximate Symmetries

The auxiliary function H is given by:

H =
1
ε

[
X(k)

0
(

F0(z) + εF1(z)
)∣∣

F0(z)+εF1(z)=0

]
. (37)
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Substituting the generator X0 into Equation (36) and:

F0(z) + εF1(z) = utt + εut − (uux)x − (uuy)y

into Equation (37), we obtain:
H = a4ut. (38)

Now, we calculate operator X1 by solving the inhomogeneous determining equation:

X(2)
1 F0(z)

∣∣
F0(z)

+ H = 0,

which can be written as:[
X(2)

1
(
utt − (uux)x − (uuy)y

)∣∣
utt=(uux)x+(uuy)y

]
+ a4ut = 0. (39)

Equation (39) generates the following system of equations:

ξ1u = 0, ξ1t = 0, τ1u = 0, τ1y = 0, τ1x = 0, θ1u = 0,

θ1t = 0, η1uu = 0, −2η1x− 2uη1xu + uξ1xx + uξ1yy = 0, −η1u + 2ξ1x − 2τ1t = 0,

− 2η1y + uθ1xx + uθ1yy = 0, −2η1y + 2θ1y + η1u − 2τ1t = 0, −uη1xx + η1tt − uη1yy = 0,

2η1ut − τ1tt + a4 = 0, 2uη1x − 2uτ1t − η1 = 0, θ1x + ξ1y = 0, −2uτ1t + 2uθ1y − η1 = 0.

Solving this system of PDEs, we obtain:

ξ1 = b3x + b1y + b2, θ1 = b3y− b1x + b6,

τ1 = a4t2

10 + b4t + b5, η1 = 2u
(

b3 − 1
5 a4t− b4

)
,

(40)

where b1, b2, b3, b4, b5 and b6 are arbitrary constants. Thus, the approximate symmetries
of Equation (28) are:

X1 = y
∂

∂x
− x

∂

∂y
, X2 =

∂

∂x
, X3 = x

∂

∂x
+ y

∂

∂x
+ y

∂

∂y
+ 2u

∂

∂u
,

X4 = t
∂

∂t
− 2u

∂

∂u
+ ε

(
t2

10
∂

∂t
− 2

5
tu

∂

∂u

)
,

X5 =
∂

∂t
, X6 =

∂

∂y
, X7 = εX1, X8 = εX2,

X9 = εX3, X10 = εX5, X11 = εX6, X12 = εX4.

Remark 1.

X12 = ε

(
t

∂

∂t
− 2ut

∂

∂u

)
In Table 2, we show that the previous generators span a twelve-dimensional approximate Lie algebra

and, hence, generate a twelve-parameter approximate transformations group.
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Table 2. Approximate commutator table of approximate symmetries of the perturbed non-linear
wave equation.

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12

X1 0 X6 0 0 0 −X2 0 X11 0 0 0 0
X2 −X6 0 X2 0 0 0 −X11 0 X8 0 0 0
X3 0 −X2 0 0 0 −X6 0 −X8 0 0 X11 0
X4 0 0 0 0 −X5 − 2

5 X12 0 0 0 0 −X10 0 0
X5 0 0 0 X5 +

2
5 X12 0 0 0 0 0 0 0 X10

X6 X2 0 X6 0 0 0 X8 0 X11 0 0 0
X7 0 X11 0 0 0 −X8 0 0 0 0 0 0
X8 −X11 0 X8 0 0 0 0 0 0 0 0 0
X9 0 −X8 0 0 0 −X11 0 0 0 0 0 0
X10 0 0 0 X10 0 0 0 0 0 0 0 0
X11 0 0 X11 0 0 0 0 0 0 0 0 0
X12 0 0 0 0 −X10 0 0 0 0 0 0 0

3.3. Approximate Invariant Solutions

Reconsider Equation (28):
utt − εut = (uux)x + (uuy)y. (41)

and the symmetry:

X4 = t
∂

∂t
− 2u

∂

∂u
+

ε

10

(
t2 ∂

∂t
− 4ut

∂

∂u

)
. (42)

The approximate invariant for Equation (42) is of the form:

E(t, x, y, u, ε) = E0(t, x, y, u) + εE1(t, x, y, u) + o(ε),

determined by the equation X(E) = o(ε). Using the notation:

X = X0 + εX1,

where:

X0 = t
∂

∂t
− 2u

∂

∂u
, X1 =

1
10

(
t2 ∂

∂t
− 4tu

∂

∂u

)
;

for operator Equation (42), we write the determining equation X(E) = o(ε) for the approximate
invariants in the form:

X0(E0) + ε
[

X0(E1) + X1(E0)
]
= 0, X0(E0) = 0,

X0(E1) + X1(E0) = 0,

or:

t
∂E0

∂t
− 2u

∂E0

∂u
= 0

t
∂E1

∂t
− 2u

∂E1

∂u
= − 1

10

(
t2 ∂E0

∂t
− 4tu

∂E0

∂u

)
. (43)

Solving Equation (43) gives two functionally independent invariants:

E1 = E0
1(t, x, y, u) + εE1

1(t, x, y, u), E2 = E0
2(t, x, y, u) + εE1

2(t, x, y, u), (44)

for generator Equation (42).
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The first equation in Equation (43) has two functionally independent solutions:

E0
1 = xy, E0

2 = t2u.

Substituting E0
1 = xy into the second equation in Equation (43) and taking its simplest solution

E1
1 = 0, we obtain one invariant in Equation (44),

E1 = xy (45)

Note that the dependent variable u does not appear in Equation (45). Now, we substitute
the solution E0

2 = t2u of the first equation in Equation (43) into the second equation in Equation (43)
and obtain non-homogeneous linear equation:

t
∂E1

1

∂t
− 2u

∂E2
1

∂u
=

1
5
(t3u).

The corresponding characteristic equations are:

dt
t
= −du

2u
= 5

dE1
2

t2u
,

with the first integral t2u = λ = const. Therefore, the second equation:

dt
t
= 5

dE1
2

t3u

gives:

E2
1 =

1
5

t3u + c. (46)

Assuming that c = 0, we obtain the second invariant in Equation (44),

E2 = t2u +
ε

5
t3u. (47)

Note that E1 and E2 are functionally independent. Letting E2 = ψ(E1), i.e.,(
t2u +

ε

5
t3u
)
= ψ(xy)

and solving for t2u in the first order of precision,

t2u =
(

1 +
ε

5
t
)−1

φ(xy) =
(

1− ε

5
t
)

φ(xy) + o(ε),

yield the approximate invariant solution:

u(t, x, y) =
(

1
t2 −

ε

5t

)
φ(xy). (48)

From Equation (28), we obtain:(
∂φ

∂x

)2
+

∂2φ

∂x2 · φ +

(
∂φ

∂y

)2
+

∂2φ

∂y2 · φ− 6φ = 0. (49)

Case I: Let ψ(xy) be of the form φ(xy) = (xy)α. From Equation (49), one obtains:

[2α2 − α]
(

xα−2yα + xαyα−2
)
− 6 = 0
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For α = 2, we have:

u(t, x, y) =
(

1
t2 −

ε

5t

)
(x2y2) s.t x2 + y2 = 1.

An approximate solution for this case is depicted in Figure 1.
Case II: Let φ(xy) = A(x)B(x). Equation (49) gives the following equation:

B

(
A′2 + AA′′

A

)
+ A

(
B′2 + BB′′

B

)
− 6 = 0 (50)

where:

A′ =
∂A
∂x

, A′′ =
∂2 A
∂x2 , B′ =

∂B
∂y

, B′′ =
∂2B
∂y2

Equation (50) leads to the following ordinary differential equations:

AA′′ + A′2 − d1 A2 − c1 A = 0, (51)

and:
BB′′ + B′2 − d2B2 − c2B = 0, (52)

where c1, c2, d1, d2 are constants.
Let γ(x) = A2(x). From Equations (51) and (52), we obtain:

(2 ln(d1 A(x) + c1)− 1)

(
A2(x)

2d1
−

c2
1

2d2
1

)
+

c1

d2
1

A2(x) =
x2

2
+ c3x + c4, (53)

and:

(2 ln(d2B(x) + c2)− 1)

(
B2(x)
2d2

−
c2

2
2d2

2

)
+

c2

d2
2

B2(x) =
x2

2
+ c5x + c6, (54)

where c3, c4, c5, c6 are arbitrary constants. Therefore, a solution in this case is of the form:

u(t, x, y) =
(

1
t2 −

ε

5t

)
A(x)B(x). (55)

We plot an approximate solution for this case in Figure 2.

Figure 1. CaseI: approximate invariant solution of Equation (28) for t = π, − 1 ≤ x ≤ 1, − 1 ≤ y ≤ 1,
ε = 0.1.
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Figure 2. Case II:approximate invariant solution of Equation (28) for t = 100, − 1 ≤ x ≤ 1,−1 ≤ y ≤ 1,
ε = 0.1.

4. Nonlinear Wave Equation with a Forcing Term

In this section, we discuss the nonlinear (2 + 1)-dimensional wave equation with a forcing term:

utt − (uux)x − (uuy)y = ε f (u). (56)

4.1. Approximate Symmetries by Method I

Exact symmetries of the unperturbed part (ε = 0) of Equation (56) are given by:

ξ0 = a3x + a1y + a2, θ0 = a3y− a1x + a6, τ0 = a4t + a5, η0 = 2u(a3 − a4), (57)

where a1, a2, a3, a4, a5 and a6 are arbitrary constants.
Consider the auxiliary function:

H =
1
ε

[
X0(F0(z) + εF1(z)

) ∣∣
F0(z)+εF1(z)=0, (58)

where:
X0 = τ0

∂

∂t
+ ξ0

∂

∂x
+ θ0

∂

∂y
+ η0

∂

∂u
.

Using Equations (56) and (57), one obtains:

H = −2a3
(
u f ′(u) + f (u)

)
+ 2a4

(
u f ′(u)− 2 f (u)

)
. (59)

Now we calculate the operator X1 with the condition that

X1(F0(z))
∣∣
F0(z)=0 + H = 0. (60)

Condition Equation (60) can be written as:[
X(2)

1 (utt − (uux)x − (uuy)y)
∣∣
utt=(uux)x+(uuy)y

]
− 2c3

(
u f ′(u) + f (u)

)
+2c4

(
u f ′(u)− 2 f (u)

)
= 0, (61)

where X(2)
1 is the second prolongation of X1.
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Equation (61) yields the following system of equations:

ξ1u = 0, ξ1t = 0, τ1u = 0, τ1y = 0, τ1x = 0,

θ1u = 0, θ1t = 0, η1uu = 0, −2η1x − 2uη1xu + uξ1xx + uξ1yy = 0,

− η1u + 2ξ1x − 2τ1t = 0 − 2η1y + uθ1xx + uθ1yy = 0, −2η1y + 2θ1y + η1u − 2τ1t = 0,

− uη1xx + η1tt − uη1yy − 2a3(u f ′(u) + f (u)) = 0, 2η1ut − τ1tt = 0,

2uξ1x − 2uτ1t − η1 = 0, θ1x + ξ1y = 0, −2uτ1t + 2uθ1y − η1 = 0,

Solving this system of PDEs, we obtain:

ξ1 = b3x + b1y + b2, θ1 = b3y− b1x + b6,
τ1 = b4t + b5, η1 = 2u(b3 − b4),

(62)

where b1, b2, b3, b4, b5 and b6 are arbitrary constants.
Case I: a3 = 0. The scaling operator:

X3 = x
∂

∂x
+ y

∂

∂y
+ 2u

∂

∂u

is not stable, and hence, Equation (56) does not inherit symmetries of its unperturbed part.
Case II: Solving the first order linear differential equation u f ′(u) + f (u) = 0, we obtain

f (u) = k1/u, where k1 is a constant. The approximate symmetry generator of Equation (56) is given by:

X =X0 + εX1

=[(a3 + εb3)x + (a1 + εb1)y + (a2 + εb2)]
∂

∂x

+ [(a3 + εb3)y− (a1 + εb1)x + (a6 + εb6)]
∂

∂y

+ [(a4 + εb4)t + (a5 + εb5)]
∂

∂t
+ [2u((a3 + εb3)− (a4 + εb4))]

∂

∂u
(63)

These additional symmetries are actually the same as those obtained from the unperturbed
equation that are considered as trivial symmetries. To summarize: in this case, Method I only gives
trivial symmetries.

4.2. Approximate Symmetries by Method II

We expand the dependent variable to the first order of ε as follows:

u = v + εw + o(ε), ε→ 0.

Taylor expansion of f in the first order of precision is given by:

f (u) =
k1

v

(
1− εw

v
+ o(ε)

)
=

k1

v
− εk1w

v2 + o(ε), ε→ 0.

Substituting the above expansion into Equation (56) and separating at each order of perturbation
parameter, one may obtain:

vtt − vx
2 − vvxx − vy

2 − vvyy = 0,

wtt − 2vxwx − vwxx − wvxx − 2vywy − vwyy − wvyy =
k1
v

. (64)
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Now, the infinitesimal generator for the problem is:

X = τ(t, x, y, , v, w)
∂

∂t
+ ξ(t, x, y, v, w)

∂

∂x
+ θ(t, x, y, v, w)

∂

∂y

+φ(t, x, y, v, w)
∂

∂v
+ η(t, x, y, v, w)

∂

∂w
. (65)

Using standard Lie group analysis, we obtain the infinitesimals as follows:

τ = c4t + c5, ξ = c1x− c3y + c6, θ = c3x + c1y + c2,

φ = 2v(−c4 + c1), η = −2w(c1 − 2c4), (66)

where c1, c2, c3, c4, c5 and c6 are arbitrary constants. Hence, we have the following symmetries:

X1 = x
∂

∂x
+ y

∂

∂y
+ 2v

∂

∂v
− 2w

∂

∂v
, X2 =

∂

∂y
, X3 = −y

∂

∂x
+ x

∂

∂y
,

X4 = t
∂

∂t
− 2v

∂

∂v
+ 4w

∂

∂w
, X5 =

∂

∂t
, X6 =

∂

∂x
. (67)

Table 3 shows that Equation (67) spans a sixth-dimensional Lie algebra.

Table 3. Commutators span six-dimensional Lie algebra.

X1 X2 X3 X4 X5 X6

X1 0 −X2 0 0 0 −X6
X2 X2 0 −X6 0 0 0
X3 0 X6 0 0 0 −X2
X4 0 0 0 0 −X5 0
X5 0 0 0 X5 0 0
X6 X6 0 X2 0 0 0

4.3. Approximate Invariant Solution

Using X3 from Equation (67), we retrieve the following characteristic equations:

dx
−y

=
dy
x

=
dv
0

=
dw
0

. (68)

The equations in Equation (68) yield α = x2 + y2 and suggest that w = w(α), v = v(α).
Derivatives of dependent variables v and w with respect to x and y are:

vt = vα
∂α

∂t
= 0, vtt = 0

vx = v− α
∂α

∂x
= 2xvα, vxx = 2vα + 2xvαα

∂α

∂x
= 2vα + 4x2vαα

vy = v− α
∂α

∂y
= 2yvα, vyy = 2vα + 2yvαα

∂α

∂y
= 2vα + 4y2vαα

wt = wα
∂α

∂t
= 0, wtt = 0

wx = w− α
∂α

∂x
= 2xwα, wxx = 2wα + 2xwαα

∂α

∂x
= 2wα + 4x2wαα

wy = w− α
∂α

∂y
= 2ywα, wyy = 2wα + 2ywαα

∂α

∂y
= 2wα + 4y2wαα.
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These equations lead to the following second order ordinary differential equations:

αv2
α + αvvαα + vvα = 0,

2αvαwα + vwα + αvwαα + wvα + αwvαα =
k1

4v
. (69)

Substituting:

v(α) =
H(α)2

2
into the first equation of Equation (69), we obtain:

∂H(α)

∂α
+ α

∂2H(α)

∂α2 = 0.

We have H(α) = c1 ln α + c2, where c1 and c2 are arbitrary constants of the integration.
Thus, v(α) =

√
c2 + c1 ln α. Put c2 = 0, c1 = 1. The second equation of Equation (69) is reduced

to the following second-order ordinary differential equation:

(1 + ln α)wα + (α ln α)wαα −
1

4 ln α
w =

k1

4
. (70)

Observe that it is not straight forward to obtain a solution for Equation (70). However, we may
obtain an asymptotic estimate of the solution of Equation (70) using the asymptotic expansions [22].

Definition 1. The function f (x) = O(g(x)) as x → x0 if there exists a constant C such that
limx→x0 f /g = C.

In Equation (70), we have (1 + ln α) = O(α), (α ln α2) = O(α2) and 1
4 ln α = O(1) as α → ∞.

For large values of α, Equation (70) is asymptotically equivalent to the following equation:

α2wαα + αwα + w =
k1

4
. (71)

The solution of the above non-homogeneous Cauchy–Euler equation is:

w(α) = k2 sin(ln α) + k3 cos(ln α) +
k1

4

where k2, k3 are constants. Lastly, we re-cast the solution in original coordinates as:

u(t, x, y) = v(t, x, y) + εw(t, x, y)

=
√

ln(x2 + y2) + ε

(
k2 sin(ln(x2 + y2)) + k3 cos(ln(x2 + y2)) +

k1

4

)
. (72)

This is an approximate solution invariant under rotation in x − y, dilation in space
and u coordinates. We depict an invariant solution for the unperturbed equation in Figure 3 and an
approximate solution of the perturbed one in Figure 4.
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Figure 3. Invariant solution of the unperturbed equation of Equation (56) for −10 ≤ x ≤ 10,
−10 ≤ y ≤ 10, x2 + y2 ≥ 1.

Figure 4. Approximate invariant solution of Equation (56) for −10 ≤ x ≤ 10, −10 ≤ y ≤ 10,
x2 + y2 ≥ 1, k1 = 4, k2 = 1, k3 = 1, ε = 0.1.

5. Concluding Remarks

In this work, we have studied a class of perturbed nonlinear wave equations via Lie symmetry
analysis. Two methods have been employed to obtain approximate symmetries used to construct
invariant solutions of the equations. There was a case where Method I gives only trivial solutions.
We applied Method II to this case and obtained the invariant solutions of the equation. Many problems
arising from physical or engineering situations may be dealt with by approximate Lie symmetry
analysis. We plan to investigate modified and perturbed forms of Korteweg-de Vries (KdV) equations
using this approach.
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