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Keywords: graded modules; monomial modules; minimal graded resolution; extremal Betti numbers

MSC: 13B25, 13D02, 16W50

1. Introduction

Let us consider the polynomial ring S = K[x1, . . . , xn] as an N-graded ring where deg xi = 1
(i = 1, . . . , n), and let F = ⊕m

i=1Sei (m ≥ 1) be a finitely generated graded free S-module with basis
e1, . . . , em, where deg(ei) = fi for i = 1, . . . , m, with f1 ≤ f2 ≤ · · · ≤ fm. A graded submodule
M of F is a strongly stable submodule if M = ⊕m

i=1 Iiei, and Ii ⊂ S is a strongly stable ideal of S,
for any i = 1, . . . , m [1,2]. Strongly stable ideals play a fundamental role in commutative algebra,
algebraic geometry and combinatorics. Indeed, their combinatorial properties make them useful for
both theoretical and computational applications. In characteristic zero, the notion of strongly stable
ideals coincides with the notion of Borel-fixed ideals (see, for instance, [3,4]). These are monomial
ideals, which are fixed by the action of the Borel subgroup of triangular matrices of the linear group
Gl(n), and correspond to the possible generic initial ideals by a well-known result by Galligo [5]. In [6],
Pardue introduced the notion of the standard Borel-fixed submodule. A graded submodule M of F is
a standard Borel-fixed submodule if M = ⊕m

i=1 Iiei, with Ii ⊂ S (i = 1, . . . , m) strongly stable ideals,
and (x1, . . . , xn)

f j− fi Ij ⊆ Ii for every j > i. If we compare such a definition with that of a strongly
stable submodule, we notice that Pardue imposes the additional condition that the maximal ideal
(x1, . . . , xn) to an appropriate power multiplies Ij into Ii for every j > i. Such a condition is related
to the fact that a standard Borel-fixed submodule is a Borel-fixed submodule [6], Definition 7, and
the inclusion is a necessary and sufficient condition for a Borel-fixed submodule to be B(F)-fixed;
B(F) is the Borel subgroup of upper triangular matrices of the group Gl(F) of all graded S-module
automorphisms of F [6]. On the other hand, it is worth being recalled that in characteristic zero, every
Borel-fixed submodule is standard Borel-fixed [6]. In passing, we note that such a class of submodules
arises naturally, as in the case where ideals are considered. Indeed, if K is a field of characteristic
zero and M is a graded S-module, then the generic initial module Gin(M) is a standard Borel-fixed
submodule with respect to the graded reverse lexicographic order [6].
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Minimal graded free resolutions of modules over a polynomial ring are a classical and extremely
interesting topic. Let M be a finitely generated graded S-module. A graded Betti number βk,k+`(M) 6= 0
is called extremal if βi, i+j(M) = 0 for all i ≥ k, j ≥ `, (i, j) 6= (k, `). The pair (k, `) is called a corner of M.
Such special graded Betti numbers (nonzero top left corners in a block of zeroes in the Betti table) were
introduced by Bayer, Charalambous and Popescu [7] as a refinement of the Castelnuovo–Mumford
regularity. In characteristic zero, combinatorial characterizations of the possible extremal Betti numbers
that a graded submodule of a finitely generated graded free S-module may achieve can be found
in [1,8,9]. More precisely, the characterization regards classes of ideals of S in [8,9]; whereas it refers to
classes of submodules of Sm (m ≥ 1) in [1].

Let Corn(M) be the set of all the corners of M. If Corn(M) = {(k1, `1), . . . , (kr, `r)},
with n − 1 ≥ k1 > k2 > · · · > kr ≥ 1 and 2 ≤ `1 < `2 < · · · < `r, setting ai = βki ,ki+`i

(M),
for i = 1, . . . , r, we call b(M) = (a1, . . . , ar) the corner values sequence of M.

In [10], we posed the following question.

Question 1. Suppose given a strongly stable submodule M of a finitely generated graded free S-module
F with Corn(M) = {(k1, `1), . . . , (kr, `r)} (n− 1 ≥ k1 > k2 > · · · > kr ≥ 1; 2 ≤ `1 < `2 < · · · < `r)
as the set of all its corners and b(M) = (a1, . . . , ar) as its corner values sequence, does there exist a
standard Borel-fixed submodule M̃ of F, such that Corn(M̃) = Corn(M) and b(M̃) = b(M)?

Such a question was suggested by the fact that in [1], Theorem 4.6 , given two positive integers n, r,
1 ≤ r ≤ n− 1, r pairs of positive integers (k1, `1), . . ., (kr, `r) such that n− 1 ≥ k1 > k2 > · · · > kr ≥ 1
and 2 ≤ `1 < `2 < · · · < `r and r positive integers a1, . . . , ar, the existence of a strongly stable
submodule M of the finitely generated graded free S-module Sm, m ≥ 1 such that βk1,k1+`1(M) = a1,
. . ., βkr ,kr+`r (M) = ar are its extremal Betti numbers, has been proven. More precisely, a numerical
characterization of all possible extremal Betti numbers of any strongly stable submodule of the finitely
generated graded free S-module Sm, m ≥ 1, has been given.

The strategy used in [10] has shown that the construction of the standard Borel-fixed submodule
(general strongly stable submodule, in the sense of [10]) we are looking for often requires the increasing
of the rank of the free S-module F given in the hypotheses. Indeed, the standard Borel-fixed submodule
M̃ obtained in [10] was a submodule of a free S-module F̃, with rank F̃ ≥ rank F.

Here, we succeed at overcoming this problem by implementing a procedure that swaps the
monomial generators of the ideals appearing in the direct decomposition of M. As a result, both M
and the standard Borel-fixed submodule obtained will be submodules of the same finitely generated
graded free S-module F.

The paper is organized as follows. In Section 2, to keep the paper self-contained, some basic
notions are recalled. In Section 3, we introduce and discuss the concepts of blocks and sub-blocks of a
strongly stable ideal that will be crucial in the development of the paper. In Section 4, if M is a strongly
stable submodule of a finitely generated graded free S-module F, the existence of a standard Borel-fixed
submodule M̃ of F, which preserves both the values and the positions of the extremal Betti numbers of
M, is proven (Theorem 1); the underlying ideas behind the algorithm (Section 4.1) are discussed,
and a straight description of the algorithm covering all exceptional cases is given (Section 4.2).
Moreover, a not so short example (Example 6), suitably chosen to show that all the cases considered
in Theorem 1 can really occur in a single case, is presented in detail. Finally, two further examples
(Examples 7 and 8) illustrating how the procedure works are presented. Section 5 contains our
conclusions and perspectives.

2. Preliminaries

Let us consider the polynomial ring S = K[x1, . . . , xn] as an N-graded ring where each
deg xi = 1, endowed with the lexicographic order >lex induced by the ordering x1 >lex · · · >lex xn.
Let F = ⊕m

i=1Sei (m ≥ 1) be a finitely generated graded free S-module with basis e1, . . . , em,
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where deg(ei) = fi for each i = 1, . . . , m, with f1 ≤ f2 ≤ · · · ≤ fm. The elements of the
form xaei, where xa = xa1

1 xa2
2 . . . xan

n for a = (a1, . . . , an) ∈ Nn
0 , are called monomials of F,

and deg(xaei) = deg(xa) + deg(ei). In particular, if F ' Sm and ei = (0, . . . , 0, 1, 0, . . . , 0), where
one appears in the i-th place, we assume, as usual, deg(xaei) = deg(xa), i.e., deg(ei) = fi = 0. A
monomial submodule M of F is a submodule generated by monomials, i.e., M = ⊕m

i=1 Iiei, where Ii
are the monomial ideals of S generated by those monomials u of S such that uei ∈ M [3]; if m = 1 and
f1 = 0, then a monomial submodule is a monomial ideal of S.

If I is a monomial ideal of S, we denote by G(I) the unique minimal set of monomial generators
of I and by G(I)` the set of monomials u of G(I) such that deg u = `; if M = ⊕m

i=1 Iiei is a monomial
submodule of F; we set:

G(M) = {uei : u ∈ G(Ii), i = 1, . . . , m},
G(M)` = {uei : u ∈ G(Ii)`− fi

, i = 1, . . . , m}.

Finally, for a monomial 1 6= u ∈ S, let:

supp(u) = {i : xi divides u},

and:
m(u) = max{i : i ∈ supp(u)}.

Otherwise, if u = 1, we set m(u) = 0.

Next definitions can be found in [11] and [2], respectively.

Definition 1. A monomial ideal I of S is called stable if for all u ∈ G(I), one has (xju)/xm(u) ∈ I for all
j < m(u). It is called strongly stable if for all u ∈ G(I), one has (xju)/xi ∈ I for all i ∈ supp(u) and all
j < i.

Definition 2. A graded submodule M ⊆ F is a (strongly) stable submodule if M = ⊕m
i=1 Iiei and Ii ⊂ S is a

(strongly) stable ideal of S, for any i = 1, . . . , m.

For any finitely generated graded S-module M, there is a minimal graded free S-resolution [12]:

F. : 0→ Fs → · · · → F1 → F0 → M→ 0,

where Fi = ⊕j∈ZS(−j)βi,j . The integers βi,j = βi,j(M) = dimKTori(K, M)j are called the graded Betti
numbers of M.

Definition 3. A graded Betti number βk,k+`(M) 6= 0 is called extremal if βi, i+j(M) = 0 for all i ≥ k, j ≥ `,
(i, j) 6= (k, `).

Such a definition was introduced in [7].
The pair (k, `) is called a corner of M (in degree `). We denote by Corn(M) the set of all the

corners of the module M, i.e.,

Corn(M) = {(k, `) ∈ N×N : βk,k+`(M) is an extremal Betti number of M}.

Remark 1. In [1], the following definition was introduced.
Let (k1, . . . , kr) and (`1, . . . , `r) be two sequences of positive integers such that n− 1 ≥ k1 > k2 > · · · > kr ≥ 1
and 1 ≤ `1 < `2 < · · · < `r. The set C = {(k1, `1), . . . , (kr, `r)} is called a corner sequence, and `1, . . . , `r



Mathematics 2017, 5, 56 4 of 26

are called the corner degrees of C. It is clear that if M is a finitely generated S-module, then Corn(M) is a
corner sequence.

If M = ⊕m
i=1Iiei is a stable submodule of F, then we can use the Eliahou–Kervaire formula [11] for

computing the graded Betti numbers of M:

βk,k+`(M) = βk, k+`(⊕m
i=1Iiei) =

m

∑
i=1

 ∑
u∈G(Ii)`− fi

(
m(u)− 1

k

) . (1)

From (1), one can deduce the following characterization of the extremal Betti numbers of a
stable submodule [2,13].

Characterization 1. Let M = ⊕m
i=1Iiei be a stable submodule of F. A graded Betti number βk, k+`(M) is

extremal if and only if:
k + 1 = max{m(u) : uei ∈ G(M)` , i ∈ {1, . . . , m}},

and m(u) ≤ k, for all uei ∈ G(M)j and all j > `.

As a consequence of the above result, one obtains that if (k, `) ∈ Corn(M), then:

βk, k+`(M) = |{uei ∈ G(M)` : m(u) = k + 1, i ∈ {1, . . . , m}}|.

Definition 4. A graded submodule M of F is a standard Borel-fixed submodule (SBF submodule, for short) if
M = ⊕m

i=1Iiei, with Ii ⊂ S strongly stable ideal of S, for any i = 1, . . . , m, and (x1, . . . , xn)
fj− fi Ij ⊆ Ii for every

j > i.

It is easy to verify that Definition 4 is equivalent to the following one (see [14] for the square-free case).

Definition 5. A graded submodule M of F is a standard Borel-fixed submodule (SBF submodule) if
M = ⊕m

i=1Iiei, with strongly stable ideals Ii ⊂ S, for i = 1, . . . , m, and (x1, . . . , xn)
fj+1− fj Ij+1 ⊆ Ij, for any

j = 1, . . . , m− 1.

We notice that if M is a graded submodule of the finitely generated graded free S-module Sm

(m ≥ 1), then M is an SBF submodule of Sm if and only if M = ⊕m
i=1Iiei, with Ii ⊂ S strongly stable

ideal, for i = 1, . . . , r, and I1 ⊇ I2 ⊇ · · · ⊇ Im.

Example 1. Let S = K[x1, x2, x3]. The monomial submodule M = (x2
1, x1x2, x1x3, x2x3, x4

2) e1 ⊕ (x2
1, x1x2,

x4
2, x3

2x3)e2 of S2 is an SBF submodule. On the contrary, the monomial submodule N = (x2
1, x1x2, x1x3)e1⊕

(x2
1, x1x2, x4

2)e2 is not an SBF submodule of S2.

For the reader’s convenience, we recall some notations from [1]. Let M = ⊕m
i=1Iiei be a monomial

submodule of the finitely generated graded free S-module F = ⊕m
i=1Sei; we denote by CornM(Iiei) the

set of corners of Iiei that are also corners of M. Moreover, if D(M) is the set of the ideals appearing in
the direct decomposition of M, we define the following set of ideals of S:

Corn(D(M)) = {Ii ∈ D(M) : CornM(Iiei) 6= ∅, for i = 1, . . . , m}.

We call each ideal of Corn(D(M)) a corner ideal of M. One can observe that if (k, `) ∈ Corn(M) and
βk,k+`− fi(Ii) 6= 0, then (k, `) ∈ CornM(Iiei). Hence, we define the following m-tuple of non–negative integers:

C(k,`) = (βk,k+`− f1(I1), . . . , βk,k+`− fm(Im)).
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We call such a sequence the (k, `)-sequence of the module M. It is clear that βk,k+`(M) =

∑m
i=1 βk,k+`− fi(Ii). Therefore, if Corn(M) = {(k1, `1), . . . , (kr, `r)} is the corner sequence of M, one

associates with the module M a suitable r×m matrix whose i-th row is the (ki, `i)-sequence of M,
1 ≤ i ≤ r. We call such a matrix the corner matrix of M, and we denote it by CM. The sum of the
entries of the i-th row of CM equals the value of the extremal Betti number βki,ki+`i

(M), for i = 1, . . . , r.
Moreover, setting ai = βki,ki+`i

(M), for i = 1, . . . , r, we call b(M) = (a1, . . . , ar) the corner values
sequence of M.

3. Blocks and Sub-Blocks of a Monomial Ideal

If T ⊆ S, let us denote with Mon(T) (Mond(T), respectively) the set of all monomials (the set of
all monomials of degree d, respectively) of T. Moreover, for a subset T of monomials of degree d of
S, let max(T) (min(T), respectively) be the greatest monomial (smallest monomial, respectively) of T,
with respect to the lexicographic ordering on S.

Definition 6. A set T of monomials in S of degree d is said strongly stable if for all u ∈ T, xiu/xj ∈ T, for all
i < j and for all j ∈ supp(u).

Remark 2. One can observe that an ideal I is a strongly stable ideal if and only if Mon(Id) is a strongly stable
set in S for all d; Id is the K-vector space of all homogeneous elements f ∈ I of degree d.

The next definitions are motivated by the above remark.
Let T = {u1, . . . , uq} be a strongly stable set of monomials of degree d. We can suppose, possibly

after a permutation of the indices, that:

u1 >lex u2 >lex · · · >lex uq. (2)

If ui, uj, i < j, are two monomials in (2), let us define the following subset of T:

[ui, uj] = {w ∈ T : ui ≥lex w ≥lex uj};

[ui, uj] will be called a segment of T of initial element ui and final element uj; if i = j, we set
[ui, uj] = {ui}.

Example 2. Let S = K[x1, x2, x3, x4]. Consider the strongly stable set T = {x3
1, x2

1x2, x2
1x3, x1x2

2, x1x2x3}
of monomials of degree 3 in S. Setting B = {x2

1x2, x2
1x3, x1x2

2} and B̃ = {x2
1x2, x1x2

2, x1x2x3}, one has
B = [x2

1x2, x1x2
2], whereas B̃ 6= [x2

1x2, x1x2x3].

The previous definitions lead us to suitably represent strongly stable ideals of S. More in detail,
let I be a strongly stable ideal; setting I(`) = G(I)`, if I is generated in degrees `1 < `2 < · · · < `r,
we write I as:

I = [I(`1)|I(`2)| · · · |I(`r)],

where I(`i) is called the `i-degree block of I. It is clear that every I(`i) (1 ≤ i ≤ r) is a segment of the
strongly stable set Mon(I`i

) (Remark 2).
For instance, if I = (x2

1, x1x2, x1x3, x1x4, x1x5, x1x6, x3
2, x2

2x3, x2
2x4, x2x4

3, x5
3) is a strongly stable ideal

of S = K[x1, . . . , x6], then I = [I(2)|I(3)|I(5)], with I(2) = [x2
1, x1x6], I(3) = [x3

2, x2
2x4] and I(5) = [x2x4

3, x5
3].

Definition 7. Let I(`) be a degree block of a strongly stable ideal I of S. A subset B of I(`) is said to be an
`-degree sub-block of I if B is a segment of Mon(I`).
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In the above example, if we consider the three-degree block I(3) = [x3
2, x2

2x4] of I, one can
observe that {x3

2, x2
2x4} is not a three-degree sub-block of I; whereas {x2

2x3, x2
2x4} and {x3

2, x2
2x3} are both

three-degree sub-blocks of I.
Let M be a strongly stable submodule of Sm generated in degrees `1 < `2 < · · · < `r.

Setting I(`) := [ ], if G(I)` = ∅, every ideal I ∈ D(M) can be written as follows:

I = [I(`1)|I(`2)| · · · |I(`r)],

with some blocks equal to [ ]. In other words, we may always assume that every ideal I ∈ D(M) has
the same number of blocks.

Example 3. Let S = K[x1, . . . , x6]. Consider the strongly stable submodule M = ⊕3
i=1Iiei of S3 generated in

degrees 2, 3, 5, with:

I1 = (x2
1, x1x2, x1x3, x1x4, x1x5, x1x6, x3

2, x2
2x3, x2

2x4, x2x2
3, x2x3x4, x2x2

4, x5
3),

I2 = (x3
1, x2

1x2, x2
1x3, x2

1x4, x1x2
2, x1x2x3, x1x2x4, x1x2

3, x1x3x4, x1x2
4, x5

2, x4
2x3, x3

2x2
3),

I3 = (x2
1, x1x2, x1x3, x1x4, x1x5, x1x6, x2

2, x2x3, x2x4, x2x5, x2x6, x5
3).

One has:

I1 = [I1(2)|I1(3)|I1(5)], with I1(i) 6= [ ], for i = 2, 3, 5;
I2 = [I2(2)|I2(3)|I2(5)], with I2(2) = [ ];
I3 = [I3(2)|I3(3)|I3(5)], with I3(3) = [ ].

4. Construction of an SBF Submodule

In this section, if M = ⊕m
i=1Iiei is a strongly stable submodule of the finitely generated graded free

S-module Sm (m > 1), we propose a method for constructing an SBF submodule M̃ of Sm managing
the monomial generators of the ideals Ii ∈ Corn(D(M)) (i = 1, . . . , m). Our method will return a new
submodule of Sm with the same extremal Betti numbers as M.

We start this section with a definition and then prove a crucial result.

Definition 8. Let I be a graded ideal of S, and m1, . . . , ms monomials in I. The generators m1, . . . , ms are called
Borel generators of the ideal I if I is the smallest strongly stable ideal containing m1, . . . , ms.

If m1, . . . , ms are Borel generators of a graded ideal I, we write I = 〈m1, . . . , ms〉, and we call I
a finitely generated Borel ideal. It is called a principal Borel ideal if there is a single Borel generator for I.

Given two positive integers k, `, with 1 ≤ k < n and ` ≥ 1, let us introduce the following set
of monomials:

A(k, `) = {u ∈Mon`(S) : m(u) = k + 1}.

Lemma 1. Let M = ⊕r
j=1Ijej be a strongly stable submodule of Sm, m ≥ 1, with corner

sequence Corn(M) = {(k1, `1), . . . , (kr, `r)} and corner values sequence b(M) = (a1, . . . , an). Then, there exists
a strongly stable submodule M̃ of Sm such that:

(i) Corn(M̃) = Corn(M);
(ii) b(M̃) = b(M);
(iii) every corner ideal of M̃ is a finitely generated Borel ideal of S.
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Proof. From [1] Lemma 4.5, we may suppose that CornM(Ij) = Corn(Ij), for every Ij ∈ Corn(D(M)).
On the other hand, if:

CM =


a1,1 a1,2 · · · a1,m
a2,1 a2,2 · · · a2,m
· · · · · · · · · · · ·
ar,1 ar,2 · · · ar,m


is the corner matrix of M, then ai = βki,ki+`i

(M) = ∑m
j=1 ai,j, with ai,j 6= 0 whenever (ki, `i) is a corner of

Ij. Let Mi,j be the set of all monomials in A(ki, `i) that determine the corner (ki, `i) of Ij (i = 1, . . . , r).
One has that |Mi,j| = ai,j, whenever ai,j 6= 0. Let us denote by M̃i,j the subset of Mi,j with the following
property: if v, w ∈ M̃i,j, v >lex w, one has v 6= (xiw)/xj, j ∈ supp(w), i < j; min(M̃i,j) is the ai,j-th
monomial of degree `i with m(u) = ki + 1. Let us denote by 〈M̃1,j, . . . , M̃r,j〉 the smallest strongly stable
ideal containing all the monomials in ∪r

k=1M̃k,j. The strongly stable submodule M̃ of Sm obtained from
M, replacing every ideal Ij ∈ Corn(D(M)) with the ideal 〈M̃1,j, . . . , M̃r,j〉, and leaving unchanged the
ideals of D(M) \Corn(D(M)), is a strongly stable submodule of Sm that preserves the extremal Betti
numbers of M (values, as well as positions).

4.1. The Underlying Idea behind the Algorithm

The basic idea that leads to the construction of the Algorithm 1 is suggested by the observation
that every corner ideal I that appears in the decomposition of the given strongly stable submodule M
of Sm generated in degrees `1 < `2 < · · · < `r can be seen as a set of r blocks, i.e.,

I = [I(`1)|I(`2)| · · · |I(`r)],

with I(`) = [ ], for some `. Hence, one can try to suitably “interchange” the `-degree blocks
(or sub-blocks) of a corner ideal of M with the ones of the other corner ideals of M in order to
obtain an SBF submodule.

We want to clarify such an idea by means of some examples. Let us consider some cases in which
every ideal which appears in the direct decomposition of the given strongly stable submodule is a
corner ideal.

At first, one can observe that sometimes, to achieve our purpose, a rearrangement of the
ideals of D(M) is sufficient. For instance, in Example 3, we can quickly realize that the module
M̃ = I3e1⊕ I1e2⊕ I2e3 is an SBF submodule that preserves the extremal Betti numbers (positions and
values) of M.

Let T be a set of monomials of degree d of S. The following set of monomials of degree d+ 1 of S:

Shad(T) = {xiu : u ∈ T, i = 1, . . . , n}

is called the shadow of T. Moreover, let us define the i-th shadow recursively by Shadi(T) =

Shad(Shadi−1(T)), Shad0(T) = T.

Example 4. Let S = K[x1, . . . , x6]. Set k1 = 5, k2 = 3, k3 = 2 and `1 = 2, `2 = 3, `3 = 5 and C =

{(k1, `1), (k2, `2), (k3, `3)}. Consider the monomial submodule M = ⊕3
i=1Iiei of S3 (Table 1) generated in degrees

2, 3, 5 with:
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Table 1. The non-standard Borel-fixed (SBF) submodule M.

I1
I1(2) = {x2

1, x1x2, x1x3, x1x4, x1x5, x1x6}
I1(3) = {x3

2, x2
2x3, x2

2x4}
I1(5) = {x2x4

3}

I2
I2(2) = [ ]
I2(3) = {x3

1, x2
1x2, x2

1x3, x2
1x4}

I2(5) = [ ]

I3
I3(2) = {x2

1, x1x2, x1x3, x1x4, x1x5}
I3(3) = {x3

2, x2
2x3, x2

2x4, x2x2
3, x2x3x4, x2x2

4}
I3(5) = [ ]

M is a strongly stable submodule with Corn(M) = C, b(M) = (1, 5, 1) and:

CM =

 1 0 0
1 1 3
1 0 0

 .

The monomial module M̃ = ⊕3
i=1 Jiei of S3 (Table 2) generated in degrees 2, 3, 5 with:

Table 2. SBF submodule M̃.

J1

J1(2) = I1(2)
J1(3) = I3(3)
J1(5) = I3(5)

J2

J2(2) = I3(2)
J2(3) = I1(3)
J2(5) = I1(5)

J3

J3(2) = I2(2)
J3(3) = I2(3)
J3(5) = I2(5)

is the SBF submodule we are looking for. Indeed, Corn(M) = Corn(M̃), b(M) = b(M̃) and J1 ⊇ J2 ⊇ J3.
Moreover, its corner matrix is:

CM̃ =

 1 0 0
3 1 1
0 1 0

 .

Note that M̃ has been obtained from M only “interchanging” the blocks of the corner ideals of M.
It is worth being remarked that getting the desired SBF submodule can be more complicated, as

the next example clearly shows.

Example 5. Let S = K[x1, . . . , x7]. Set k1 = 6, k2 = 4, k3 = 3 and `1 = 2, `2 = 3, `3 = 5 and
C = {(k1, `1), (k2, `2), (k3, `3)}. Consider the monomial submodule M = ⊕4

i=1Iiei of S4 generated in degrees
2, 3, 5 (Table 3) with:
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Table 3. The non-SBF submodule M.

I1

I1(2) = {x2
1, x1x2, x1x3, x1x4, x1x5, x1x6, x1x7}

I1(3) = {x3
2, x2

2x3, x2
2x4, x2

2x5, x2x2
3, x2x3x4, x2x3x5}

I1(5) = {x2x4
4, x5

3, x4
3x4}

I2

I2(2) = {x2
1, x1x2, x1x3, x1x4, x1x5, x1x6, x1x7, x2

2, x2x3, x2x4, x2x5, x2x6, x2x7,
x2

3, x3x4, x3x5, x3x6, x3x7}
I2(3) = [ ]
I2(5) = {x5

4}

I3

I3(2) = {x2
1, x1x2, x1x3, x1x4, x1x5, x1x6, x1x7}

I3(3) = {x3
2, x2

2x3, x2
2x4, x2

2x5, x2x2
3, x2x3x4, x2x3x5, x2x2

4, x2x4x5}
I3(5) = [ ]

I4

I4(2) = {x2
1, x1x2, x1x3, x1x4, x1x5, x1x6, x1x7}

I4(3) = {x3
2, x2

2x3, x2
2x4, x2

2x5}
I4(5) = {x2x4

3, x2x3
3x4, x2x2

3x2
4}

M is a strongly stable submodule with Corn(M) = C, b(M) = (6, 6, 5) and:

CM =

 1 3 1 1
2 0 3 1
0 1 0 2

 .

The monomial module M̃ = ⊕4
i=1 Jiei (Table 4), where:

Table 4. The SBF submodule M̃.

J1

J1(2) = I2(2)
J1(3) = I2(4)
J1(5) = I2(5)

J2

J2(2) = I3(2)
J2(3) = I3(3)
J2(5) = I1(5) \ (Shad3(I3(2)) ∪ Shad(I3(3)) = {x5

3, x4
3x4}

J3

J3(2) = I1(2)
J3(3) = I1(3)
J3(5) = I1(5) \ (I1(5) \ (Shad3(I3(2)) ∪ Shad(I3(3))) = {x2x4

4}

J4

J4(2) = I4(2)
J4(3) = I4(3)
J4(5) = I4(5)

is an SBF submodule of S4 generated in degrees 2, 3, 5 with Corn(M) = Corn(M̃) and b(M) = b(M̃). Indeed,
the corner matrix of M̃ is:

CM̃ =

 3 1 1 1
0 3 2 1
1 1 1 2

 .

One can observe that to get the SBF module M̃, some “exchanges” involving both “blocks and sub-blocks”
of the ideals in M are required.
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4.2. Description of the Algorithm

If I is a graded ideal of the polynomial ring S, we denote by α(I) the initial degree of I,
i.e., the minimum t such that It 6= 0.

Moreover, for every integer m ≥ 1, let [m] = {1, . . . , m}.

Algorithm 1. SBF Algorithm

INPUT: a strongly stable submodule M of Sm (m > 1) with corner sequence C = {(k1, `1), . . . ,
(kr, `r)} and corner values sequence b(M) = (a1, . . . , ar).

OUTPUT: an SBF submodule M̃ of Sm such that Corn(M̃) = C and b(M̃) = b(M).
(1) Let M = ⊕m

i=1 Iiei be a strongly stable submodule of Sm with Corn(M) = C and b(M) =

(a1, . . . , ar).
(2) Set Ii = [Ii(`1), Ii(`2), . . . , Ii(`r)], for i = 1, . . . , m, and assume:

(a) Corn(Ii) = CornM(Ii), for all Ii ∈ D(M);

(b) each ideal Ii ∈ Corn(D(M)) is a finitely generated Borel ideal with m(min(Ii(`j))) =

kj + 1, whenever (kj, `j) ∈ Corn(Ii).

(3) We distinguish two cases: Corn(D(M)) = D(M), and Corn(D(M)) ⊂ D(M).
Case 1. Let Corn(D(M)) = D(M).

Step 1. Construction of J1 = [J1(`1), J1(`2), . . . , J1(`r)].

(i) J1(`1) is given by the `1-degree blocks in M with the greatest number of monomials.

(ii) Let t ∈ [m] such that J1(`1) = It(`1) ; let us consider the set:

S1,`2 =
{

Ii(`2) \ Shad`2−`1(It(`1)), i = 1, . . . , m
}

.

- If S1,`2 = ∅, we set J1(`2) = [ ] ;

- if S1,`2 6= ∅, let u1,`2 ∈ Mon(S) be the greatest monomial of degree `2

with m(u1,`2) ≤ k2 + 1 not belonging to Shad`2−`1(It(`1)). If Is(`2) = Is(`2) \
Shad`2−`1(It(`1)) ∈ S1,`2 (s ∈ [m]) is the set with the largest number of elements

and such that max(Is(`2)) = u1,`2 , let J1(`2) = Is(`2) .

(iii) In order to construct the `3-degree generators of J1, consider the set:

S1,`3 =
{

Ii(`3) \
(
∪2

i=1Shad`3−`i(J1(`i))
)

, i = 1, . . . , m
}

.

- If S1,`3 = ∅, let J1(`3) = [ ] ;

- if S1,`3 6= ∅, let u1,`3 be the greatest monomial of S of degree `3

with m(u1,`3) ≤ k3 + 1 not belonging to ∪2
i=1Shad`3−`i(J1(`i)). Setting

Ii(`3) = Ii(`3) \
(
∪2

i=1Shad`3−`i(J1(`i))
)

(i ∈ [m]), we consider the elements

Ii(`3) ∈ S1,`3 with the greatest cardinality and such that max(Ii(`3)) = u1,`3 . If

Iq(`3) ∈ S1,`3 is such an element, for some q ∈ [m], we set J1(`3) = Iq(`3) .
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(iv) Iterating such a method, one determines the `j-degree generators of J1, for
j ∈ {4, . . . , m}. More in detail, the `j-degree blocks J1(`j) (j ∈ {4, . . . , m}) are
determined by the set:

S1,`j
=
{

Ii(`j) \
(
∪j−1

p=1Shad`j−`i(J1(`p))
)

, i = 1, . . . , m
}

.

(v) Save the sets of monomials of degrees `i (i = 2, . . . , r) which can appear during the
construction of J1:

(I) (Is(`2) \ Is(`2))∪ It(`2) (s 6= t) in degree `2;

(II) (Iq(`3) \ Iq(`3))∪ Is(`3), (s 6= q) in degree `3;

(III) and so on.

(vi) The segments in (v), if not empty, will be involved in the computation of
G(M̃ \ {J1e1})`j

(j = 2, . . . , r).

Step 2. Construction of J2 = [J2(`1), J2(`2), . . . , J2(`r)]. We manage the blocks and the
sub-blocks not involved in the construction of J1.

(i) Consider all the blocks Ii(`1), with i 6= t, where t is the integer defined in Step 1 (ii):

- if Ii(`1) = [ ] for all i ∈ [m] \ {t}, then we set J2(`1) = [ ] ;

- otherwise, we consider among the blocks Ii(`1), with i 6= t, the ones which are
maximal `1-degree blocks in M. If Ia(`1) is such a set, for some a ∈ [m] \ {t}, we
choose J2(`1) = Ia(`1) ;

(ii) Let J2(`1) = Ia(`1). If S2,`2 = {Ii(`2) \ Shad`2−`1(Ia(`1)), i ∈ [m] \ {s}}, we check the
set:

S̃2,`2 = S2,`2 ∪
{(

(Is(`2) \ Is(`2))∪ It(`2)
)
\ Shad`2−`1(Ia(`1))

}
,

where Is(`2), Is(`2) and It(`2) are the sets defined in the `2-degree case of Step 1.

- If S̃2,`2 = ∅, let J2(`2) = [ ] ;

- if u2,`2 is the greatest monomial of S of degree `2 with m(u2,`2) ≤ k2 + 1 not
belonging to Shad`2−`1(Ia(`2)), we test all X ∈ S̃2,`2 with the greatest cardinality,

and such that max(X) = u2,`2 . If X̃ ∈ S̃2,`2 is such an element, let J2(`2) = X̃ .

(iii) If Ii(`1) = [ ], for all i 6= t, then α(J2) ≥ `2, and we can construct J2(`2) using the above
arguments on J2(`1) 6= [ ].

(iv) In order to get J2(`3) , setting S2,`3 = {Ii(`3) \ (∪2
j=1Shad`3−`j(J2(`j))), i ∈ [m] \ {q}},

we consider the set:

S̃2,`3 = S2,`3 ∪
{(

(Iq(`3) \ Iq(`3))∪ Is(`3)
)
\
(
∪2

j=1Shad`3−`j(J2(`j))
)}

,

where Iq(`3), Iq(`3) and Is(`3) are the sets defined in the `3-degree case of Step 1.

- If S̃2,`3 = ∅, let J2(`3) = [ ] ;

- if S̃2,`3 6= ∅, let u2,`3 ∈Mon(S) be the greatest monomial of degree `3 with m(u2,`3) ≤
k3 + 1 not belonging to ∪2

j=1Shad`3−`j(J2(`j)). Hence, we test all Y ∈ S̃2,`3 with the

greatest cardinality, and such that max(Y) = u2,`3 . If Ỹ ∈ S̃2,`3 is such an element,

we set J2(`3) = Ỹ .
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(v) Proceeding in this way, we obtain a strongly stable ideal J2 of S, which is generated
in at most `1 < `2 < · · · < `r degrees and such that each block J2(`j) (j ∈ {4 . . . , r}) is
determined either by the set:

S2,`j
=
{

Ii(`j) \
(
∪j−1

p=1Shad`j−`i(J2(`p))
)

, i ∈ [m]
}

,

where the `j-degree blocks Ii(`j) have not been involved in the construction of J1, or
by a certain `j-degree sub-block arising in the construction of G(J1)`j

.

(vi) Save the sets of monomials of degrees `i (i = 2, . . . , r) that can appear during the
construction of J2:

(I) (Ib(`2) \ X̃) ∪ Ia(`2), if X̃ ∈ S2,`2 ; ((Is(`2) \ Is(`2)) ∪ It(`2) \ X̃) ∪ Ia(`2) (b 6= s),
if X̃ = ((Is(`2) \ Is(`2))∪ It(`2)) \ Shad`2−`1(Ia(`1)), in degree `2;

(II) Ic(`3) \ Ỹ 6= ∅ (c 6= q) if Ỹ ∈ S2,`3 , ((Iq(`3) \ Iq(`3)) ∪ (Is(`3)) \ Ỹ, if

Ỹ = ((Iq(`3) \ Iq(`3))∪ Is(`3)) \ (∪2
j=1Shad`3−`j(J2(`j))), in degree `3;

(III) and so on.

(vii) The segments in (vi), if not empty, will be involved in the computation of G(M̃ \
{J1e1, J2e2})`j

(j = 4, . . . , r).
(viii) Repeating the same procedure as in Steps 1, and 2, the monomial submodule

M̃ = ⊕m
i=1 Jiei is an SBF submodule with Corn(M̃) = Corn(M) and b(M̃) = b(M).

Case 2. Let Corn(D(M)) = {Ij1 , . . . , Ijt} ⊂ D(M).

(i) Set Ji = 〈x`1−1
k1+1〉 , for all i = 1, . . . , m− t;

(ii) construct an SBF submodule M2 = ⊕t
i=1 Jm−t+iem−t+i , with Corn(M2) = Corn(M) and

b(M2) = b(M), by using the criterion described in Steps 1 and 2.

(iii) The submodule M̃ = M1⊕M2 , with M1 = ⊕m−t
i=1 Jiei, is an SBF submodule generated in

degrees `1 − 1 < `1 < · · · < `r, which preserves the extremal Betti numbers (values and
positions). Note that D(M2) = Corn(D(M̃)).

The correctness of the SBF Algorithm is stated by the next theorem.

Theorem 1. Let M be a strongly stable submodule of Sm (m > 1) with corner sequence
C = {(k1, `1), . . . , (kr, `r)} and corner values sequence b(M) = (a1, . . . , ar). Assume M is generated in degrees
`1 < `2 < · · · < `r. Then, there exists an SBF submodule M̃ of Sm such that:

(i) Corn(M̃) = C;
(ii) b(M̃) = b(M).

Proof. We construct an SBF submodule M̃ = ⊕m
i=1 Jiei of Sm generated in at most the r + 1 degrees

`1− 1 < `1 < `2 < · · · < `r.
Let M = ⊕m

i=1Iiei be a strongly stable submodule of Sm with Corn(M) = C and corner values
sequence b(M) = (a1, . . . , ar). Set Ii = [Ii(`1), Ii(`2), . . . , Ii(`r)], for i = 1, . . . , m. From [1] Lemma 4.5, we
may assume that Corn(Ii) = CornM(Ii), for all Ii ∈ D(M); furthermore, by Lemma 1, we may suppose
that each ideal Ii ∈ Corn(D(M)) is a finitely generated Borel ideal such that m(min(Ii(`j))) = kj + 1,
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whenever (kj, `j) ∈ Corn(Ii). We construct M̃ = ⊕m
i=1 Jiei rearranging the blocks and the sub-blocks of

the ideals Ii ∈ Corn(D(M)), for i = 1, . . . , m.
We distinguish two cases: Corn(D(M)) = D(M); Corn(D(M)) ⊂ D(M).
First, we consider the case Corn(D(M)) = D(M).

Step 1. Construction of J1.

Let us consider the `1-degree blocks in M with the greatest number of monomials. If It(`1) is such
a block, we choose J1(`1) = It(`1). In order to construct J1(`2), we proceed as follows. Consider the
following set of monomials of degree `2:

S1,`2 =
{

Ii(`2) \ Shad`2−`1(It(`1)), i = 1, . . . , m
}

.

If S1,`2 = ∅, we set J1(`2) = [ ].
Otherwise, if S1,`2 6= ∅, let u1,`2 ∈ Mon(S) be the greatest monomial of degree `2 with

m(u1,`2) ≤ k2 + 1 not belonging to Shad`2−`1(It(`1)). If Is(`2) = Is(`2) \ Shad`2−`1(It(`1)) ∈ S1,`2 s ∈ [m],
is a set with the largest number of elements, and such that max(Is(`2)) = u1,`2 , we set J1(`2) = Is(`2).

If s = t, then J1(`2) = It(`2) and Is(`2) \ Is(`2) = ∅. Let s 6= t, and consider the set Is(`2) \ Is(`2).
If Is(`2) \ Is(`2) 6= ∅, then it will come into play in the construction of the `2-degree generators of
M̃ \ {J1e1}, as we will see in the sequel. Otherwise, Is(`2) \ Is(`2) will not give any contribution
for the computations of such generators. Let Is(`2) \ Is(`2) 6= ∅, i.e., max Is(`2) > u1,`2 . The set
(Is(`2) \ Is(`2)) ∪ It(`2) is a segment of monomials of degree `2. Indeed, one can observe that,
if It(`2) 6= [ ], then It(`2) ⊂ Is(`2) and max(Is(`2)) = max(It(`2)) = u1,`2 .

In order to construct the `3-degree generators of J1, let us consider the set:

S1,`3 =
{

Ii(`3) \
(
∪2

i=1Shad`3−`i(J1(`i))
)

, i = 1, . . . , m
}

.

If S1,`3 = ∅, let J1(`3) = [ ]. Otherwise, if S1,`3 6= ∅, let u1,`3 ∈ Mon(S) be the greatest monomial

of degree `3 with m(u1,`3) ≤ k3 + 1 not belonging to ∪2
i=1Shad`3−`i(J1(`i)). Setting Ii(`3) = Ii(`3) \(

∪2
i=1Shad`3−`i(J1(`i))

)
(i ∈ [m]), we consider the elements Ii(`3) ∈ S1,`3 with the greatest cardinality

and such that max(Ii(`3)) = u1,`3 . If Iq(`3) ∈ S1,`3 is such an element, for some q ∈ [m], we set

J1(`3) = Iq(`3).

If the `3-degree sub-block Iq(`3) \ Iq(`3) of the strongly stable ideal Iq ∈ D(M) is not empty,
then it will come into play in the construction of G(M̃ \ {J1e1})`3 . More specifically, if J1(`2) = Is(`2),

for s ∈ [m], then the segment (Iq(`3) \ Iq(`3))∪ Is(`3), Is(`3) ⊂ Iq(`3) (s 6= q) will be considered in the
construction of G(M̃ \ {J1e1})`3 , if it is not empty.

Proceeding in this way, we obtain a strongly stable ideal J1 of S which is generated in at most
`1 < `2 < · · · < `r degrees and such that each `j-degree block J1(`j) (j ∈ {4, . . . , r}) is determined by
the set:

S1,`j
=
{

Ii(`j) \
(
∪j−1

p=1Shad`j−`i(J1(`p))
)

, i = 1, . . . , m
}

.

It is relevant to point out that in some degree `j, a certain `j-degree sub-block of Ii(`j) (i ∈ [m];
j ∈ {4, . . . , r}) can arise, as in the {`2, `3}-degree cases. Such segments will be involved in the
computation of G(M̃ \ {J1e1})`j

, as we will explain in a while.

Step 2. Construction of J2.

In order to construct J2, we manage the blocks and the sub-blocks not involved in the construction
of J1.

First, we examine all the blocks Ii(`1), with i 6= t, where t is the integer defined in Step 1. Among all
these sets, we consider the ones that are maximal `1-degree blocks in M. If Ia(`1) is such a set, for some
a ∈ [m] \ {t}, we choose J2(`1) = Ia(`1). If Ii(`1) = [ ] for all i ∈ [m] \ {t}, then we set J2(`1) = 0.
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Let J2(`1) = Ia(`1). Consider the sets:

S2,`2 = {Ii(`2) \ Shad`2−`1(Ia(`1)), i ∈ [m] \ {s}},

S̃2,`2 = S2,`2 ∪
{(

(Is(`2) \ Is(`2))∪ It(`2)
)
\ Shad`2−`1(Ia(`1))

}
, (3)

where Is(`2), Is(`2) and It(`2) are the sets defined in Step 1. If the set defined in (3) is empty,
let J2(`2) = [ ]. Otherwise, if u2,`2 is the greatest monomial of degree `2 with m(u2,`2) ≤ k2 + 1
not belonging to Shad`2−`1(Ia(`2)), we test all X ∈ S̃2,`2 with the greatest cardinality, and such that
max(X) = u2,`2 . If X̃ is such an element, let J2(`2) = X̃. Reasoning as in Step 1, if X̃ ∈ S2,`2 ,
i.e., X̃ = Ib(`2) \ Shad`2−`1(Ia(`1)), for some b ∈ [m] \ {s}, and, Ib(`2) \ X̃ 6= ∅ (it has to be b 6= a), then
the segment (Ib(`2) \ X̃)∪ Ia(`2) comes out. Such a set will be considered in the construction of the
`2-degree generators of M̃ \ {J1e1, J2e2}. Similarly, if X̃ = ((Is(`2) \ Is(`2))∪ It(`2)) \ Shad`2−`1(Ia(`1))

and ((Is(`2) \ Is(`2))∪ It(`2)) \ X̃ 6= ∅, then the set ((Is(`2) \ Is(`2))∪ It(`2) \ X̃)∪ Ia(`2) will come into
play in the construction of G(M̃ \ {J1e1, J2e2})`2 , if it is a non-empty set.

Finally, if Ii(`1) = [ ], for all i 6= t, then α(J2) ≥ `2, and we can construct J2(`2) using the above
arguments on J2(`1) 6= [ ].

In order to get J2(`3), setting S2,`3 = {Ii(`3) \ (∪2
j=1Shad`3−`j(J2(`j))), i ∈ [m] \ {q}}, we consider

the set:
S̃2,`3 = S2,`3 ∪

{(
(Iq(`3) \ Iq(`3))∪ Is(`3)

)
\
(
∪2

j=1Shad`3−`j(J2(`j))
)}

, (4)

where Iq(`3), Iq(`3) and Is(`3) are the sets defined in the `3-degree case of Step 1.
If the set in (4) is empty, let J2(`3) = [ ]. Otherwise, if u2,`3 is the greatest monomial of degree
`3 with m(u2,`3) ≤ k3 + 1 not belonging to ∪2

j=1Shad`3−`j(J2(`j)), we test all Y ∈ S̃2,`3 with the

greatest cardinality and such that max(Y) = u2,`3 . If Ỹ ∈ S̃2,`3 is such an element, we set
J2(`3) = Ỹ. Let Ỹ ∈ S2,`3 , i.e., Ỹ = Ic(`3) \ ∪2

j=1Shad`3−`j(J2(`j)), for some c ∈ [m] \ {q}.
If Ic(`3) \ Ỹ 6= ∅, then such a set will contribute to the construction of the `3-degree generators
of M̃ \ {J1e1, J2e2} (see Step 1, construction of G(J1)`3). Otherwise, it will not give any
contribution for such generators. A similar reasoning, follows as in the previous `2-degree case,

if Ỹ = ((Iq(`3) \ Iq(`3))∪ (Is(`3)) \ (∪2
j=1Shad`3−`j(J2(`j))).

Going on this way, we obtain a strongly stable ideal J2 of S, which is generated in at most
`1 < `2 < · · · < `r degrees and such that each block J2(`j) (j ∈ {4 . . . , r}) is determined either by the set:

S2,`j
=
{

Ii(`j) \
[
∪j−1

p=1Shad`j−`i(J2(`p))
]

, i ∈ [m]
}

,

where the `j-degree blocks Ii(`j) have not been involved in the construction of J1, or by a certain
`j-degree sub-block arising in the construction of G(J1)`j

. Moreover, the nonempty sub-blocks of
Ii(`j) (j ∈ {4, . . . , r}) that will arise during the creation of J2 will be involved in the calculation of
G(M̃ \ {J1e1, J2e2})`j

.

Now, let us examine the special segments that can appear during the construction of M̃. Let us
consider the `1-degree case described in Step 1. The set (Is(`2) \ Is(`2)) ∪ It(`2), with s 6= t, gives a
contribution to the construction of the `2-degree generators of the ideal Jv ∈ D(M̃) (v ∈ {2, . . . , m}) for
which Jv(`1) = Is(`1). In other words, we can construct a strongly stable ideal Jv ∈ D(M̃) such that
α(Jv) ∈ {`1, `2}, with Jv(`1) = Is(`1) and Jv(`2) = (Is(`2) \ Is(`2))∪ It(`2). Note that Is(`1) = [ ] means
that max((Is(`2) \ Is(`2)) ∪It(`2)) = x`2

1 .
Assume Jv(`2) = (Is(`2) \ Is(`2)) ∪ It(`2), It(`2) 6= [ ]. In such a case, It(`3) 6= [ ] may give a

contribution to the `3-degree generators of Jv (i.e., Jv(`3) = It(`3)). Note that such a case is achieved if
It(`3) has the greatest cardinality among all the blocks, the sub-blocks and the segments Z of M that are
not yet involved in the construction of the `3-degree generators ofD(M̃), and such that max(Z) is equal
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to the greatest monomial z ∈ Mon`3(S) with m(z) ≤ k3 + 1 not belonging to ∪2
j=1Shad`3−`j(Jv(`j)).

If It(`3) = [ ], or It(`3) 6= [ ] does not satisfy the conditions above, then we look for a block, a sub-block
or a segment of M not yet involved in the construction of the ideals J1, . . . , Jv−1 ∈ D(M̃) and satisfying
the conditions above. If it does not exist, we set Jv(`3) = [ ]; and so on; similarly if Jv(`2) = Is(`2) \ Is(`2).
Furthermore, the same reasoning can be iterated for the segments arising in degrees `j, j ≥ 3.

Finally, proceeding in the same way as in Steps 1 and 2, due to the structure of M, all the monomial
generators of M are swapped in a suitable way so that the monomial submodule M̃ = ⊕m

i=1 Jiei is an
SBF submodule such that Corn(M̃) = Corn(M) and b(M̃) = b(M).

Now, we consider the second case. Let Corn(D(M)) = {Ij1 , . . . , Ijt} ⊂ D(M).

We construct an SBF submodule M̃ = M1⊕M2, such that M1 = ⊕m−t
i=1 Jiei with Ji = 〈x`1−1

k1+1〉, for all

i = 1, . . . , m− t, and M2 = ⊕t
i=1 Jm−t+iem−t+i, with D(M2) = Corn(D(M̃)). The monomial submodule

M2 will be obtained by using the criterion described in Steps 1 and 2. Note that M1 does not give any
contribution to the computation of the extremal Betti numbers of M̃, and J1 = · · · = Jm−t ⊇ Jm−t+1.

We close this section by considering some examples where the algorithm in Theorem 1 is used.
First, we consider a complicated example suitably chosen in order to show that all the cases considered
in Theorem 1 can really occur in a single concrete situation.

For a pair (k, d) of positive integers with d ≥ 1 and 1 ≤ k ≤ n− 1, let us define:

A<(k, d) = {u ∈Mond(S) : m(u) ≤ k + 1}.

Example 6. Let S = K[x1, . . . , x6]. Set k1 = 5, k2 = 4, k3 = 3, `1 = 2, `2 = 3, `3 = 5, and C =

{(k1, `1), (k2, `2), (k3, `3)}. Moreover, let a1 = 4, a2 = 8 and a3 = 39. Consider the monomial submodule
M = ⊕4

i=1Iiei of S4 generated in degrees 2, 3, 5, where the ideals Ii ∈ D(M) (i = 1, 2, 3, 4) are described in
Table 5:

Table 5. The non-SBF submodule M.

I1

I1(2) = {x2
1, x1x2, x1x3, x1x4, x1x5, x1x6}

I1(3) = {x3
2, x2

2x3, x2
2x4, x2

2x5, x2x2
3, x2x3x4, x2x3x5, x2x2

4, x2x4x5, x2x2
5, x3

3, x2
3x4, x2

3x5}
I1(5) = {x3x4

4}

I2

I2(2) = {x2
1, x1x2, x1x3, x1x4, x1x5, x1x6, x2

2, x2x3, x2x4, x2x5, x2x6}
I2(3) = [ ]
I2(5) = {x5

3, x4
3x4, x3

3x2
4}

I3

I3(2) = {x2
1, x1x2, x1x3, x1x4, x1x5, x1x6}

I3(3) = {x3
2, x2

2x3, x2
2x4, x2

2x5, x2x2
3, x2x3x4, x2x3x5, x2x2

4, x2x4x5}
I3(5) = {x5

3, x4
3x4}

I4

I4(2) = [ ]
I4(3) = [ ]
I4(5) = A<(3, 5)

M is a not SBF submodule with Corn(M) = C, b(M) = (a1, a2, a3) = (4, 8, 39) and the corner matrix
is the following one:

CM =

 1 2 1 0
5 0 3 0
1 2 1 35

 .

From Table 5, we can observe that the required inclusions I1 ⊇ I2 ⊇ I3 ⊇ I4 do not hold.
By the method described in Theorem 1, we will construct an SBF submodule M̃ = ⊕4

i=1 Jiei of S4

generated in degrees 2, 3, 5, which preserves the extremal Betti numbers of M, both values and positions, i.e.,
Corn(M̃) = Corn(M) and b(M̃) = b(M).
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Construction of J1. Let us consider the two-degree blocks of M with the greatest cardinality. From Table 5,
there exists I2(2) such that |I2(2)| > |Ii(2)|, for i ∈ {1, 3, 4}. Hence, let

J1(2) = I2(2).

Now, let us consider the set of monomials S1,3 = {Ii(3) \ Shad(I2(2)), i = 1, 2, 3, 4}. Denote by u1,3 the
greatest monomial of Mon(S) of degree three with m(u1,3) ≤ k2 + 1 = 5 not belonging to Shad(I2(2)). It is
u1,3 = x3

3. By direct computation, we can see that the set I1(3) \ Shad(I2(2)) = {x3
3, x2

3x4, x2
3x5} ∈ S1,3 has

the greatest cardinality and max(I1(3) \ Shad(I2(2))) = u1,3. Let:

J1(3) = I1(3) \ Shad(I2(2)) := I1(3).

Note that I1(3) \ I1(3) 6= ∅. Indeed,

I1(3) \ I1(3) = {x3
2, x2

2x3, x2
2x4, x2

2x5, x2x2
3, x2x3x4, x2x3x5, x2x2

4, x2x4x5, x2x2
5}. (5)

This segment will be used for the construction of G(Ji)3, 2 ≤ i ≤ 4.
In order to construct J1(5), let us consider the set:

S1,5 =
{

Ii(5) \
(

Shad3(J1(2)) ∪ Shad2(J1(3)
)

, i = 1, 2, 3, 4
}

.

Let u1,5 ∈ Mon(S) be the greatest monomial of degree five with m(u1,5) ≤ k3 + 1 = 4 not belonging to
Shad3(J1(2)) ∪ Shad2(J1(3)). It is u1,5 = x3x4

4.

The set I4(5) \
(

Shad3(J1(2)) ∪ Shad2(J1(3))
)
= {x3x4

4, x5
4} has the greatest cardinality among all the

sets in S1,5 and max(I4(5) \ (Shad3(J1(2)) ∪ Shad2(J1(3)))) = u1,5. Let:

J1(5) = I4(5) \
(

Shad3(J1(2)) ∪ Shad2(J1(3))
)

:= I4(5).

Note that I4(5) \ I4(5) 6= ∅. In fact, I4(5) \ I4(5) = {u ∈ A<(3, 5) : u ≥lex x2
3x3

4}. Moreover,

(I4(5) \ I4(5)) ∪ I1(5) = {u ∈ A<(3, 5) : u ≥lex x3x4
4} (6)

is a segment. Such a set will come into play in the characterization of the five-degree generators of the ideals Ji,
for i ∈ {2, 3, 4}. Table 6 summarizes the finitely-generated Borel ideal J1:

Table 6. The ideal J1.

J1

J1(2) = I2(2)

J1(3) = I1(3)

J1(5) = I4(5)

Construction of J2: Let us consider the non-zero two-degree blocks of M not involved in the construction of
J1, i.e., I1(2), I3(2). We have that |I1(2)| = |I3(2)|. Let:

J2(2) = I1(2).

In order to determine the three-degree generators (five-degree generators, respectively) of J2, we will take
into account the sets in (5) (in (6), respectively).

Setting S2,3 = {Ii(3) \ Shad(I1(2)), i = 2, 3, 4}, let us consider the set of monomials:

S̃2,3 = S2,3 ∪
{
(I1(3) \ I1(3)) \ Shad(I1(2))

}
.



Mathematics 2017, 5, 56 17 of 26

Denote by u2,3 the greatest monomial of degree three with m(u1,3) ≤ k2 + 1 = 5 not belonging to
Shad(J1(2)). It is u2,3 = x3

2.
It is clear that (I1(3) \ I1(3)) \ Shad(J1(2)) = I1(3) \ I1(3) ∈ S̃2,3 has the greatest cardinality

(see (5)) and max(I1(3) \ I1(3)) = u2,3. Let:

J2(3) = I1(3) \ I1(3) := X̃.

In order to construct J2(5), we consider the following sets:

S2,5 =
{

Ii(5) \
(

Shad3(J2(2)) ∪ Shad2(J2(3)
)

, i ∈ {1, 2, 3}
}

,

S̃2,5 = S2,5 ∪
{
((I4(5) \ I4(5)) ∪ I1(5)) \

(
Shad3(J2(2)) ∪ Shad2(J2(3)

)}
.

Let u2,5 be the greatest monomial of degree five with m(u1,5) ≤ k3 + 1 = 4 not belonging to
Shad3(J2(2)) ∪ Shad2(J2(3)). It is u2,5 = x5

3. One can quickly check that the set:

((I4(5) \ I4(5)) ∪ I1(5)) \
(

Shad3(J2(2)) ∪ Shad2(J2(3)
)
= {x5

3, x4
3x4, x3

3x2
4, x2

3x3
4, x3x4

4} := Ỹ

has the greatest cardinality among all the sets in S̃2,5 and max(Ỹ) = u2,5. Let:

J2(5) = Ỹ.

Note that ((I4(5) \ I4(5)) ∪ I1(5)) \ Ỹ 6= ∅. Indeed,

((I4(5) \ I4(5)) ∪ I1(5)) \ Ỹ = {u ∈ A<(3, 5) : u ≥lex x2x4
4}. (7)

Table 7 represents the ideal J2:

Table 7. The ideal J2.

J2

J2(2) = I1(2)

J2(3) = X̃

J2(5) = Ỹ

Construction of J3: Let us consider the non-zero two-degree blocks of M not involved in the construction of
J1 and J2. Since I3(2) is the only non-zero two-degree block, let:

J3(2) = I3(2).

Moreover, since the only non-zero three-degree block of M is I3(3), and there is not a three-degree sub-block
arising during the construction of J2, we set:

J3(3) = I3(3).

In order to determine J3(5), we have to take into account the following sets:

S3,5 =
{

Ii(5) \ (Shad3(J3(2)) ∪ Shad2(J3(3)), i ∈ {2, 3}
}

,

S̃3,5 = S3,5 ∪
{
((I4(5) \ I4(5)) ∪ I1(5)) \ Ỹ) \ (Shad3(J3(2)) ∪ Shad2(J3(3))

}
.
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Note that I2(5) and I3(5) are the only five-degree blocks of M not yet involved in the construction of J1

and J2. Let u3,5 ∈ Mon(S) be the greatest monomial of degree five with m(u3,5) ≤ k3 + 1 = 4 not belonging
to Shad3(J3(2)) ∪ Shad2(J3(3)). It is u3,5 = x5

3.
By direct computation, one has that the set I2(5) \ (Shad3(J3(2)) ∪ Shad2(J3(3)) = I2(5) satisfies the

required properties, i.e., max(I2(5) \ (Shad3(J3(2)) ∪ Shad2(J3(3))) = u3,5, and moreover, it has the greatest
cardinality among all the sets in S̃3,5. Hence, we set:

J3(5) = I2(5),

and J3 is described in Table 8:
Table 8. The ideal J3.

J3

J3(2) = I3(2)
J2(3) = I3(3)
J3(5) = I2(5)

Construction of J4: In order to determine J4, we can manage only monomials of degree five and, more
precisely, the block I3(5) and the set in (7). We notice that:

((I4(5) \ I4(5)) ∪ I1(5)) \ Ỹ) ∪ I3(5) = {u ∈ A<(3, 5) : u ≥lex x4
3x4} (8)

is a segment. More in detail, the ideal J4 is shown in Table 9:

Table 9. The ideal J4.

J4

J4(2) = [ ]
J4(3) = [ ]

J4(5) = ((I4(5) \ I4(5)) ∪ I1(5)) \ Ỹ) ∪ I3(5)

We have obtained a monomial submodule M̃ = ⊕4
i=1 Jiei of S4 (Table 10), where the ideals Ji ∈ D(M)

(i = 1, . . . , 4) are:

Table 10. The SBF submodule M̃.

J1

J1(2) = {x2
1, x1x2, x1x3, x1x4, x1x5, x1x6, x1x7, x2

2, x2x3, x2x4, x2x5, x2x6}
J1(3) = {x3

3, x2
3x4, x2

3x5}
J1(5) = {x3x4

4, x5
4}

J2

J2(2) = {x2
1, x1x2, x1x3, x1x4, x1x5, x1x6, x1x7}

J2(3) = {x3
2, x2

2x3, x2
2x4, x2

2x5, x2x2
3, x2x3x4, x2x3x5, x2x2

4, x2x4x5, x2x2
5}

J2(5) = {x5
3, x4

3x4, x3
3x2

4, x2
3x3

4, x3x4
4}

J3

J3(2) = {x2
1, x1x2, x1x3, x1x4, x1x5, x1x6}

J3(3) = {x3
2, x2

2x3, x2
2x4, x2

2x5, x2x2
3, x2x3x4, x2x3x5, x2x2

4, x2x4x5}
J3(5) = {x5

3, x4
3x4, x3

3x2
4}

J4

J4(2) = [ ]
J4(3) = [ ]
J4(5) = {u ∈ A<(3, 5) : u ≥ lexx4

3x4}
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M̃ is an SBF submodule generated in degrees 2, 3, 5 such that Corn(M̃) = Corn(M) and
b(M̃) = b(M). Indeed, the corner matrix of M̃ is:

CM̃ =

 2 1 1 0
1 4 3 0
2 4 2 31


and J1 ⊇ J2 ⊇ J3 ⊇ J4.

Example 7. Let S = K[x1, . . . , x6]. Set k1 = 5, k2 = 3, k3 = 2, and `1 = 2, `2 = 3, `3 = 5,
and C = {(k1, `1), (k2, `2), (k3, `3)}. Consider the monomial submodule M = ⊕4

i=1 Iiei of S4 generated
in degrees 2, 3, 5 (Table 11), where:

Table 11. The non-SBF submodule M.

I1

I1(2) = {x2
1, x1x2, x1x3, x1x4, x1x5, x1x6, x2

2, x2x3, x2x4, x2x5, x2x6}
I1(3) = [ ]
I1(5) = {x5

3}

I2

I2(2) = {x2
1, x1x2, x1x3, x1x4, x1x5, x1x6}

I2(3) = {x3
2, x2

2x3, x2
2x4}

I2(5) = {x2x4
3, x5

3}

I3

I3(2) = {x2
1, x1x2, x1x3, x1x4, x1x5, x1x6, x2

2, x2x3, x2x4, x2x5, x2x6}
I3(3) = {x3

3, x2
3x4, x3x2

4}
I3(5) = [ ]

I4

I4(2) = [ ]
I4(3) = {x3

1, x2
1x2, x2

1x3, x2
1x4, x1x2

2, x1x2x3, x1x2x4, x1x2
3, x1x3x4,

x1x2
4, x3

2, x2
2x3, x2

2x4, x2x2
3, x2x3x4, x2x2

4}
I4(5) = {x5

3}

M is a strongly stable submodule with Corn(M) = C and corner values sequence given by
b(M) = (5, 10, 4). Indeed, its corner matrix is the following one:

CM =

 2 1 2 0
0 1 2 7
1 2 0 1

 .

Applying the algorithm described in Theorem 1, we obtain an SBF submodule M̃ = ⊕4
i=1 Jiei of S4, generated

in degrees 2, 3, 5 with Corn(M̃) = Corn(M) and b(M̃) = b(M).
Construction of J1: Let us consider the two-degree blocks of M with the greatest cardinality. From Table 11,

there exists I3(2) such that |I3(2)| > |Ii(2)|, for i ∈ {1, 2, 4}. Hence, let:

J1(2) = I3(2).

Now, let us consider the set of monomials S1,3 = {Ii(3) \ Shad(J1(2)), i = 1, 2, 3, 4}. One can observe that
Ii(3) \ Shad(J1(2)) = ∅, for i = 2, 4; whereas I3(3) \ Shad(J1(2)) = I3(3) = {x3

3, x2
3x4, x3x2

4}.
Denote by u1,3 the greatest monomial of S of degree three with m(u1,3) ≤ k2 + 1 = 4 not belonging to

Shad(I3(2)). It is u1,3 = x3
3 = max(I3(3) \ Shad(J1(2))). Let:

J1(3) = I3(3).

In order to construct J1(5), let us consider the set:

S1,5 =
{

Ii(5) \
(

Shad3(J1(2))∪ Shad2(J1(3)
)

, i = 1, 2, 3, 4
}

.
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Since S1,5 = ∅, we set:
J1(5) = [ ].

Table 12 summarizes the finitely generated Borel ideal J1:

Table 12. The ideal J1.

J1

J1(2) = I3(2)
J1(3) = I3(3)
J1(5) = I3(5) = [ ]

Note that J1 = I3.
Construction of J2: Let us consider the non-zero two-degree blocks of M not involved in the construction of

J1, i.e., Ii(2), for i = 1, 2, 4. Since |I1(2)| > |I2(2)| and I4(2) = [ ], let:

J2(2) = I1(2).

In order to determine the three-degree generators of J2, we have to take into account the set:

S2,3 = {Ii(3) \ Shad(J2(2)), i = 1, 2, 4} .

Since S2,3 = ∅, we set:
J2(3) = [ ].

In order to construct J2(5), we consider the following set:

S2,5 =
{

Ii(5) \ (Shad3(J2(2)), i ∈ {1, 2, 4}
}

.

It is S2,5 6= ∅. Let u2,5 be the greatest monomial of S of degree five with m(u1,5) ≤ k3 + 1 = 3 not
belonging to Shad3(J2(2)). It is u2,5 = x5

3 = max(I1(5) \ (Shad3(J2(2))). Moreover, one can verify that:

I1(5) \ (Shad3(J2(2)) = I1(5) = I2(5) \ (Shad3(J2(2)) = I4(5) \ (Shad3(J2(2)) = {x5
3}.

Hence, let:
J2(5) = I1(5).

Finally, J2 (Table 13) can be chosen equal to the ideal I1:

Table 13. The ideal J2.

J2

J2(2) = I1(2)
J2(3) = [ ]
J2(5) = I1(5)

Construction of J3: Let us consider the non-zero two-degree blocks of M not involved in the construction of
J1 and J2. Since I4(2) = [ ], we choose:

J3(2) = I2(2).

In order to compute J3(3), let us consider the set:

S2,3 = {Ii(3) \ Shad(J3(2)), i = 2, 4} .

One has:
I2(3) \ Shad(J3(2)) = {x3

2, x2
2x3, x2

2x4},
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I4(3) \ Shad(J3(2)) = {x3
2, x2

2x3, x2
2x4, x2x2

3, x2x3x4, x2x2
4} := I4(3) ⊃ I2(3) \ Shad(J3(2)).

Moreover, the greatest monomial of S of degree three with m(u3,3) ≤ k2 + 1 = 4 not belonging to
Shad(J3(2)) is u3,3 = x3

2 = max(I4(3) \ Shad(J3(2))). Let:

J3(3) = I4(3).

Note that, setting:

I4(3) = I4(3) \ I4(3) = {x3
1, x2

1x2, x2
1x3, x2

1x4, x1x2
2, x1x2x3, x1x2x4, x1x2

3, x1x3x4, x1x2
4},

then I4(3) ∪ I2(3) is a segment of degree three. As we will see, it comes into play in the characterization of the
three-degree generators of the ideal J4.

In order to determine J3(5), we have to analyze the following set:

S3,5 =
{

Ii(5) \
(

Shad3(J3(2)) ∪ Shad2(J3(3)
)

, i ∈ {2, 4}
}

,

Note that I2(5) and I4(5) are the only five-degree blocks of M not yet involved in the construction of J1 and J2.
S3,5 6= ∅. Indeed, Ii(5) \

(
Shad3(J3(2))∪ Shad2(J3(3)

)
= {x5

3}, for i = 2, 4, and x5
3 is the greatest monomial of

S of degree five with m(u3,5) ≤ k3 + 1 = 3 not belonging to Shad3(J3(2))∪ Shad2(J3(3). Hence, we set:

J3(5) = I4(5),

and J3 is shown in Table 14:

Table 14. The ideal J3.

J3

J3(2) = I2(2)

J2(3) = I4(3)
J3(5) = I4(5)

Construction of J4: We note that the only two-degree block not involved in the construction of J1, J2 and J3

is I4(2), which is empty. Hence, we set:
J4(2) = [ ] = I4(2).

Moreover, since the set S4,3 = ∅ and S̃4,3 = {I4(3) ∪ I2(3)}, let:

J4(3) = I4(3) ∪ I2(3),

and:
J4(5) = I2(5).

Indeed, I2(5) \ Shad((I4(3) ∪ I2(3))) = I2(5). More in detail, the ideal J4 is described in Table 15:

Table 15. The ideal J4.

J4

J4(2) = [ ]

J4(3) = I4(3) ∪ I2(3)
J4(5) = I2(5)

We have obtained a monomial submodule M̃ = ⊕4
i=1 Jiei of S4, where the ideals Ji ∈ D(M) (i = 1, . . . , 4)

are described in Table 16:
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Table 16. The SBF submodule M̃.

J1

J1(2) = I3(2)
J1(3) = I3(3)
J1(5) = I3(5) = [ ]

J2

J2(2) = I1(2)
J2(3) = I1(3) = [ ]
J2(5) = I1(5)

J3

J3(2) = I2(2)
J3(3) = {x3

2, x2
2x3, x2

2x4, x2x2
3, x2x3x4, x2x2

4}
J3(5) = I4(5)

J4

J4(2) = I4(2) = [ ]
J4(3) = {x3

1, x2
1x2, x2

1x3, x2
1x4, x1x2

2, x1x2x3, x1x2x4, x1x2
3, x1x3x4, x1x2

4, x3
2, x2

2x3, x2
2x4}

I4(5) = I2(5)

Moreover, Corn(M) = Corn(M̃), b(M) = b(M̃), and the corner matrix of M̃ is the following:

CM̃ =

 2 2 1 0
2 0 3 5
0 1 1 2

 .

Example 8. Let S = K[x1, . . . , x6]. Set k1 = 5, k2 = 3, k3 = 2, and `1 = 3, `2 = 4, `3 = 5, and
C = {(k1, `1), (k2, `2), (k3, `3)}. Consider the monomial submodule M = ⊕5

i=1 Iiei of S3 in Table 17:

Table 17. The non-SBF submodule M.

I1

I1(3) = {x3
1, x2

1x2, x2
1x3}

I1(4) = [ ]
I1(5) = [ ]

I2

I2(3) = {x3
1, x2

1x2, x2
1x3, x2

1x4, x2
1x5, x2

1x6, x1x2
2, x1x2x3, x1x2x4, x1x2x5, x1x2x6}

I2(4) = {x1x3
3, x1x2

3x4, x1x3x2
4}

I2(5) = [ ]

I3

I3(3) = [ ]
I3(4) = {x4

1, x3
1x2}

I3(5) = [ ]

I4

I4(3) = {x3
1, x2

1x2, x2
1x3, x2

1x4, x2
1x5, x2

1x6}
I4(4) = [ ]
I4(5) = {x1x4

2, x1x3
2x3, x1x2

2x2
3, x1x2x3

3, x1x4
3, x5

2, x4
2x3}

I5

I5(3) = 0
I5(4) = {x4

1, x3
1x2, x3

1x3, x3
1x4, x2

1x2
2, x2

1x2x3, x2
1x2x4, x2

1x2
3, x2

1x3x4, x2
1x2

4, x1x3
2, x1x2

2x3,
x1x2

2x4, x1x2x2
3, x1x2x3x4, x1x2x2

4, x1x3
3, x1x2

3x4, x1x3x2
4, x1x3

4}
I5(5) = {x5

2, x4
2x3, x3

2x2
3}

M is a strongly stable submodule with Corn(M) = C, b(M) = (3, 12, 7) and:

CM =

 0 2 0 1 0
0 2 0 0 10
0 0 0 5 2

 .

Indeed, the ideals I1 and I3 do not give any contribution to the computation of the extremal Betti
numbers of M, i.e., Corn(D(M)) = {I2, I4, I5} ⊂ D(M).

Using Theorem 1, we construct a monomial module M̃ = ⊕5
i=1 Jiei, with Corn(M̃) = Corn(M)

and b(M̃) = b(M).
First, let:

J1 = J2 = 〈x2
6〉.
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Therefore, in order to construct J3, J4, J5, we manage the blocks and sub-blocks of the ideals in
Corn(D(M)) = {I2, I4, I5}. More specifically, when we speak about the blocks (or sub-blocks) of M,
we refer to the blocks (or sub-blocks) of the corner ideals I2, I4, I5.

Construction of J3: Let us consider the three-degree blocks of M with the greatest cardinality.
From Table 17, there exists I2(3) such that |I2(3)| > |I4(3)| > |I5(3)|. Hence, let:

J3(3) = I2(3).

Now, let us consider the set of monomials:

S3,4 = {Ii(4) \ Shad(J3(3)), i = 2, 4, 5} .

One can observe that I4(4) \ Shad(J3(3)) = ∅; whereas:

I2(4) \ Shad(J3(3)) = I2(4) = {x1x3
3, x1x2

3x4, x1x3x2
4},

I5(4) \ Shad(J3(3)) = {x1x3
3, x1x2

3x4, x1x3x2
4, x1x3

4} := I5(4).

Denote by u3,3 the greatest monomial of S of degree three with m(u3,3) ≤ k2 + 1 = 4 not belonging
to Shad(J3(3)). It is u3,3 = x1x3

3 = max I5(4).
Let

J3(4) = I5(4).

Note that, setting:

I5(4) := I5(4) \ I5(4) = {x4
1, x3

1x2, x3
1x3, x3

1x4, x2
1x2

2, x2
1x2x3, x2

1x2x4, x2
1x2

3,

x2
1x3x4, x2

1x2
4, x1x3

2, x1x2
2x3, x1x2

2x4, x1x2x2
3, x1x2x3x4, x1x2x2

4}

the set I5(4) ∪ I2(4) is a segment of degree four. It will come into play in the characterization of the
four-degree generators of the ideals J4, J5.

In order to construct J3(5), let us consider the set:

S3,5 =
{

Ii(5) \
(

Shad2(J3(3)) ∪ Shad(J3(4)
)

, i = 2, 4, 5
}

.

One has:
I2(5) \

(
Shad2(J3(3)) ∪ Shad(J3(4)

)
= ∅,

I4(5) \
(

Shad2(J3(3)) ∪ Shad(J3(4)
)
= {x5

2, x4
2x3} := I4(5),

I5(5) \
(

Shad2(J3(3)) ∪ Shad(J3(4)
)
= {x5

2, x4
2x3, x3

2x2
3} = I5(5).

Hence, since the greatest monomial of S of degree five with m(u3,5) ≤ k3 + 1 = 3 not belonging
to Shad2(J3(3)) ∪ Shad(J3(4) is u3,5 = x5

2 = max(I5(5) \ (Shad2(J3(3)) ∪ Shad(J3(4)), we set:

J3(5) = I5(5).

Observe that:

I4(5) := I4(5) \ I4(5) = {x1x4
2, x1x3

2x3, x1x2
2x2

3, x1x2x3
3, x1x4

3} (9)

will be used for the construction of the five-degree generators of J4 and J5. Table 18 represents the
finitely generated Borel ideal J3:
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Table 18. The ideal J3.

J3

J3(3) = I2(3)

J3(4) = I5(4)
J3(5) = I5(5)

Construction of J4: Let us consider the non-zero three-degree blocks of M not involved in the
construction of J3, i.e., Ii(3), for i = 2, 4. Since |I4(3)| > |I2(3)|, let:

J4(3) = I4(3).

In order to determine the four-degree generators of J4, we have to take into account the sets:

S4,4 = {Ii(4) \ Shad(J4(3)), i = 2, 4} ,

S̃4,4 = S4,4 ∪ {I5(4) ∪ I2(4) \ Shad(J4(3))}.

Let u4,4 be the greatest monomial of S of degree four with m(u4,4) ≤ k2 + 1 = 4 not belonging to
Shad(J4(3)). It is:

u4,4 = x1x3
2 = max((I5(4) ∪ I2(4)) \ Shad(J4(3))).

Hence, setting:

X̃ = (I5(4) ∪ I2(4)) \ Shad(J4(3))} = {x1x3
2, x1x2

2x3, x1x2
2x4, x1x2x2

3, x1x2x3x4, x1x2x2
4},

Let:
J4(4) = X̃.

Note that the set:

Ỹ =
(

I5(4) ∪ I2(4)
)
\ X̃ = {x4

1, x3
1x2, x3

1x3, x3
1x4, x2

1x2
2, x2

1x2x3, x2
1x2x4, x2

1x2
3, x2

1x3x4, x2
1x2

4} (10)

is a segment of degree four, which comes into play for determine the four-degree generators of J5.
In order to construct J4(5), we consider the following set:

S4,5 =
{

Ii(5) \
(

Shad2(J4(3)) ∪ Shad(J4(4)
)

, i ∈ {2, 4}
}

.

Since, I2(5) \
(

Shad2(J4(3)) ∪ Shad(J4(4)
)
= ∅,

I4(5) \
(

Shad2(J4(3)) ∪ Shad(J4(4)
)
= {x5

2, x4
2x3} := I4(5),

and moreover, max(I4(5) \ (Shad2(J4(3)) ∪ Shad(J4(4))) = x5
2 is the greatest monomial of S of degree

five with m(u4,5) ≤ k3 + 1 = 3 not belonging to Shad2(J4(3)) ∪ Shad(J4(4)); let:

J4(5) = I4(5).

Finally, Table 19 represents J2:
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Table 19. The ideal J2.

J4

J4(3) = I4(3)

J4(4) = X̃

J4(5) = I4(5)

Construction of J5: In order to determine the three-degree generators (four-degree generators,
five-degree generators, respectively) of J5, we have to consider the non-zero three-degree blocks
(four-degree blocks, five-degree blocks, respectively) of M not involved in the construction of J3 and
J4, and moreover, in the case of the {4, 5}-degree generators we should also consider the sub-blocks
arising during the construction of J3 (see (9), (10)).

Hence, J5 is described in Table 20:

Table 20. The ideal J5.

J5

J5(3) = [ ]

J5(4) = Ỹ

J5(5) = I4(5)

We have obtained a monomial submodule M̃ = ⊕5
i=1 Jiei of S5 (Table 21) , where the ideals

Ji ∈ D(M) (i = 1, . . . , 4) are:

Table 21. The SBF submodule M̃.

J1 〈x2
6〉

J2 〈x2
6〉

J3

J3(3) = I2(3)
J3(4) = {x1x3

3, x1x2
3x4, x1x3x2

4, x1x3
4}

J3(5) = I5(5)

J4

J4(3) = I4(3)
J4(4) = {x1x3

2, x1x2
2x3, x1x2

2x3, x1x2
2x4, x1x2x2

3, x1x2x3x4, x1x2x2
4}

J4(5) = {x5
2, x4

2x3}

J5

J5(3) = I3(3) = [ ]
J5(4) = {x4

1, x3
1x2, x3

1x3, x3
1x4, x2

1x2
2, x2

1x2x3, x2
1x2x4, x2

1x2
3, x2

1x3x4, x2
1x2

4}
J5(5) = {x1x4

2, x1x3
2x3, x1x2

2x2
3, x1x2x3

3, x1x4
3}

M̃ is an SBF submodule of S5 generated in degrees 2, 3, 4, 5 with Corn(M) = Corn(M̃) and
b(M) = b(M̃). Indeed, the corner matrix of M̃ is:

CM̃ =

 0 0 2 1 0
0 0 3 5 4
0 0 2 1 4

 .

5. Conclusions and Perspectives

In this paper, given a strongly stable submodule M of the finitely generated graded free S-module Sm,
m ≥ 1, we have constructed an SBF submodule of Sm preserving the extremal Betti numbers (values, as
well as positions) of M. Due to Theorem 1 and taking into account what has been done in [1], Theorem 4.6,
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we are able to obtain a numerical characterization of all possible extremal Betti numbers of any SBF
submodule of a finitely generated graded free S-module Sm.

Remarkably, the constructive nature of the main theorem proved in this paper (Theorem 1) may
allow for the implementation of a symbolic package ([15,16]) doing almost automatically all the lengthy
and tedious calculations involved. Work in this direction is in progress.
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